
Citation: Feng, Y.; Wang, H.; Chang,

C.; Lu, H.; Yang, F.; Wang, C. A Novel

Nonlinear Pseudorandom Sequence

Generator for the Fractal Function.

Fractal Fract. 2022, 6, 589. https://

doi.org/10.3390/fractalfract6100589

Academic Editors: Song Zheng,

Yangquan Chen, Emad E. Mahmoud

and Stanislaw Migorski

Received: 30 August 2022

Accepted: 2 October 2022

Published: 13 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

A Novel Nonlinear Pseudorandom Sequence Generator for the
Fractal Function
Yelai Feng 1,2 , Huaixi Wang 1,* , Chao Chang 1, Hongyi Lu 2, Fang Yang 1 and Chenyang Wang 1,*

1 College of Electronic Engineering, National University of Defense Technology, Hefei 230000, China
2 College of Computer Science and Technology, National University of Defense Technology,

Changsha 410000, China
* Correspondence: wanghuaixi@nudt.edu.cn (H.W.); wcy@nudt.edu.cn (C.W.)

Abstract: A pseudorandom sequence is a repeatable sequence with random statistical properties that
is widely used in communication encryption, authentication and channel coding. The pseudorandom
sequence generator based on the linear feedback shift register has the problem of a fixed sequence,
which is easily tracked. Existing methods use the secret linear feedback shift register (LFSR) and
built-in multiple LFSRs and is difficult to prevent cracking based on the hardware analysis. Since the
plaintext depends on a specific language to be generated, using pseudo-random sequence encryption,
it faces the problem that the encryptor cannot hide the characteristics of the plaintext data. Fractal
functions have the following properties: chaotic, unpredictable and random. We propose a novel
pseudorandom sequence generator based on the nonlinear chaotic systems, which is constructed by
the fractal function. Furthermore, we design a data processing matrix to hide the data characteristics
of the sequence and enhance the randomness. In the experiment, the pseudo-random sequences
generator passed 16 rigorous test items from the National Institute of Standards and Technology
(NIST), which means that the nonlinear pseudorandom sequence generator for the fractal function is
effective and efficient.

Keywords: pseudo-random; nonlinear system; chaos; fractal function

1. Introduction

Pseudorandom sequences are generated by deterministic algorithms and used to
simulate truly random sequences [1], which are reproducible, traceable and predictable
sequences with random statistical properties. Initially, research was conducted on pseu-
dorandom sequences owing to their unique mathematical structure; for example, the De
Bruijn sequence was studied as a combinatorial problem. In 1948, Shannon systematically
proposed the concept of information theory [2]. A secure cryptosystem requires the amount
of key data used for secure communication to be greater than the amount of encrypted
plaintext data, and Shannon proved the security of the one-time pad encryption method [3].
Since then, researchers have focused on generating the longest possible pseudorandom
sequences [4–9], which is convenient for encryption but difficult for attackers to crack.

The m-sequence is the longest sequence of an n-stage linear feedback shift register,
with a length of up to 2n − 1. It satisfies the random properties of Golomb’s randomness
assumption [10]. Massey proposed that if the linear complexity of the sequence is k, the
attacker only needs to track 2k consecutive bits to recover the entire sequence [11]. This
means that m-sequences with low linear complexity are easy to recover; thus, nonlinear
pseudorandom generators have become a new research direction [12–15]. Some classical
nonlinear pseudorandom sequence generators are widely used and studied, such as the
Geffe generator [16–20], JK flip-flop [21–23] and clock-control generator [24–26].

A chaotic system refers to the existence of irregular motion in a deterministic system,
and its dynamic properties lead it to a secure cryptosystem design, such as unpredictability,
randomness, sensitivity to the minute change in its initial value, ergodicity and complex
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structure [27]. Chaos may be realized by analog circuitry or finite precision computing in
the design of algorithms and digital devices, which are termed analog chaotic systems or
discrete chaotic maps, respectively [28].

Over the past few decades, designing ciphers based on the chaotic systems has at-
tracted the attention of researchers and a huge number of papers published in the field of
chaos-based cryptography [29–34]. Kocarev proposed that there are some deficiencies in
the existing research:

1. All chaotic-based cryptographic algorithms use dynamic systems defined on the set
of real numbers and are therefore difficult to implement;

2. The security and performance of chaos-based methods are rarely tested by researchers
using standard tools of cryptography.

Hence, the impact of this research on conventional cryptography was not as far-
reaching as expected [35]. Je Sen Teh et al. proposed that the realization problem of chaotic
system exists until now [28].

A pseudo-random sequence generator (hereinafter referred to as PRSG) based on
the nonlinear chaotic systems and the fractal functions is a research direction that has
attracted attention and achieved practical results. Shafali proposed the pseudorandom
sequence generator based on the cascaded fractal function [27]. Shouliang Li et al. proposed
an implementation based on the discrete hyper-chaotic system [36]. The impact of finite
precision in different hardware and software setups has received little attention. Even a
cryptosystem based on the chaotic system will generate different key streams on different
devices, which is caused by the calculation accuracy error of different devices. In order
to overcome this problem, Lucas et al. introduced an efficient cryptosystem in which the
chaotic logistic map and the Galois field theory are applied [37]. This technical path solves
the problem of errors caused by computational precision. Computing binary sequences can
yield the same and accurate results on different devices.

We propose a novel pseudorandom sequence generator based on the non-linear chaotic
systems with the lambda fractal function. Furthermore, we design the data processor to
hide the data characteristics of the ciphertext. The main contributions of this work are
as follows:

1. We propose a pseudo-random sequence generator based on the non-linear chaotic
systems with the lambda fractal function.

2. Sequences generated by PRSG pass 16 rigorous tests from the National Institute
of Standards and Technology (NIST), which has developed the most authoritative
pseudo-random sequence standard detection tool [38].

3. We propose a data processor based on the matrix operations for the secondary encryp-
tion, which reduces the data characteristics of the ciphertext sequences, producing a
more balanced distribution of 0 s and 1 s.

The rest of this paper is organized as follows. In Section 2, we introduce the theoretical
foundation of the pseudo-random sequence generator and its typical solutions. In Section 3,
we elaborate the design of the novel non-linear pseudo-random sequence generator and
describe the mathematical foundations and effects of data processors. In Section 4, we
demonstrate the random properties of pseudorandom sequences and test the performance
of the data processor. In Section 5, we conclude the work of this paper.

2. Related Work

In this section, we describe the related work of this paper in three aspects: the concept
and properties of sequences generators, an introduction to three typical non-linear sequence
generators and an introduction to the PRSG based on the non-linear chaotic systems.

2.1. Random Sequence Generator

Random sequence generators can be divided into two categories based on the gen-
erating methods: physically implemented true random generators and computationally
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implemented pseudorandom generators. The true random sequence generator realized
by physics is mainly based on components including electronic component noise [39,40],
nuclear radiation [41,42] and vacuum energy fluctuation [43,44]. Such components have the
disadvantages of inconvenient use and high manufacturing, testing and use costs, which
limit their wide application.

Pseudorandom sequences are repeatable and have random statistical properties. Com-
mon pseudorandom generators mainly include m-sequence generators and nonlinear
sequence generators. Formula (1) is the characteristic polynomial of the linear feedback
shift register:

F(x) =
n

∑
i=0

cixi, (1)

where xi represents the corresponding position of the elements, and ci represents the
feedback state of the i-stage [45]. The m-sequence represents the longest linear feedback
shift register sequence. An n-stage linear feedback shift register has a maximum of 2n states,
and except for the all 0 state, the m sequence has a maximum period of 2n − 1 [45]. The
primitive polynomial is the generator polynomial corresponding to the m sequence, which
is only a minority among the polynomials. The linear complexity of the m-sequence is
low, and the ciphertext encrypted by the m-sequence is easily recovered. Researchers have
developed many nonlinear pseudorandom sequence generators based on LFSR, and we
introduce the typical generators in detail in the next two sections.

2.2. Typical Nonlinear Sequence Generators

In this section, we mainly introduce the Geffe generator, the JK flip-flop and the
clock-control generator.

Geffe generators and the JK flip-flop are filter generators, which are generally com-
posed of one or more LFSRs and filter functions, wherein the filter functions are required to
have better nonlinear properties. We show the Geffe generator and JK flip-flop generator in
the Figures 1 and 2.

Figure 1. Geffe generator, which use three LFSRs and three logic gates.

The sequence ak from LFSR1 is directly input to the J terminal of the J-K flip-flop and
the sequence bk from LFSR2 is input to the K terminal. When the gates of the two LFSRs
are p, q and gcd(p, q) = 1, the period of the output sequence is (2p − 1)(2q − 1).

Figure 2. J-K flip-flop, which use two LFSRs and one flip-flop.

The clock-control generator uses the sequence generated by one LFSR to control the
shift of another LFSR [26], with the maximum period being (2p − 1)(2q − 1). We show the
clock-control generator in the Figure 3.
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Figure 3. Clock-control generator, which use two LFSRs and one logic gate.

2.3. Generators Based on the Non-Linear Chaotic Systems

Shafali proposed the pseudorandom sequence generator based on the cascaded fractal
function [27], which is proposed by considering the phoenix and lambda fractal functions.
Shafali performed several analyses on the generator, such as key sensitivity using NBCR
analysis, entropy analysis, correlation analysis and autocorrelation analysis, proving that
the generator has a large key space, fast key generation speed, high key sensitivity and
strong randomness.

Shouliang Li et al. proposed the implementation based on the discrete hyper-chaotic
system with an embedded cross-coupled topological structure, which exhibit a high level
of the complexity of chaotic dynamics [36]. Shouliang Li et al. used the tool of the NIST
SP800.22 and TestU01 to test the generator and proved that it has good randomness.

3. Method

In this section, we elaborate the implementation of the non-linear pseudo-random
sequence generator, which mainly includes three aspects: generator design, data processor
design and discussion of security.

3.1. Nonlinear Generator

In this section, we elaborate the implementation of the non-linear generator, which
mainly includes three aspects: theoretical foundations, implementation and period estimation.

3.1.1. Theoretical Foundations

In general, the characteristic polynomial of LFSR is fixed and determined by the
hardware design:

F(x) =
n

∑
i=1

fixi + 1. (2)

We hope that tap fi of the ith stage is random; that is, some data are randomly selected
for calculating the feedback value. We obtain the formulas of AND operations:

x0 ∧ x1 = y0, (3)

where x1 takes the values 0 and 1:

y0 = x0 ∧ 1 = x0,

y0 = x0 ∧ 0 = 0.
(4)

x0, x1 and y0 represent the entries involved in the AND operation. Hence, we can use AND
operations to simulate tap functions and form generators of dynamic polynomials. We
obtain the polynomial of the generator as:

F(x) =
n

∑
i=1

ak[i]bk[i] + 1, (5)
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where ak represents the feedback state of the i-stage and bk represents the state sequence of
the register. We show the structure and data flow of the nonlinear pseudorandom sequence
generator in Figure 5. Furthermore, we obtain:

sk =
n

∏
i=1

ck[i]. (6)

The Lambda function is an alternative version of the equation for Julia fractals. While
it is capable of creating the same Julia sets, the corresponding Mandelbrot version looks
different. Julia sets are closely related to the well-known Mandelbrot set. Tan discusses
the similarities between the Julia sets and the Mandelbrot sets [46]. The mathematical
definition of the lambda fractal function is as follows [47]:

zn+1 = µzn(1− zn)
w−1, (7)

where µ ∈ C, and we take µ = 1, w = 3 for convenient implementation. We assume the use
of 32-bit data, and the fractal function is as follows:

zn+1 = zn ×
[
(0x f f − zn)

2]. (8)

We convert zn to a binary number, and by default, the decimal point is at the far left
and not displayed, which means that the value range of zn is from 0x00 to 0x f f . We use
inverters to implement 1− zn and perform the shift operations on the result of (0x f f − zn)2,
leaving only the upper bits for the next calculation. Therefore, Formula (8) is not equivalent
to zn+1 = z3

n. We show the lambda fractal function in Figure 4.

Figure 4. Lambda fractal function, which use two multipliers, one inverter and two shift registers.

The output sequence is also reserved for high bits, which is consistent with the length
of sequence bk. We use Algorithm A1 to describe the fractal function in the Appendix A.

3.1.2. Implementation

When the generator finishes running, record the state sequence of m-LFSR and shift
the register at this time, as seed1 and seed2, for the input of the next process. The process of
the generator is as follows:

1. The m-LFSR reads the Seed1 and generates the new state sequence {mk};
2. Input the mk to the lambda fractal function and output sequence {ak};
3. The shift register reads Seed2 and generates the new state sequence {bk};
4. Output the state sequence {ak}, {bk} and perform bitwise AND operation {ck} =

{ak} ∧ {bk}; then, store {ck} in the register;
5. Read the register state sequence {ck} and perform a bit-by-bit XOR operation to

generate the new element sk;
6. The shift register is shifted to the left by one bit, and sk is used as the return value of

the feedback function to enter the rightmost end;
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7. Output sk as the pseudorandom number.

The decryptor needs to know the seed1 and seed2; otherwise, it cannot decrypt, which
means that seed1 and seed2 become the keys for valid communication. In Section 3.3, we
will discuss how to use seed1 and Seed2. In Section 3.2.2, we will introduce how to securely
synchronize seed1 and Seed2 via the data processor. We used Algorithm A2 to describe the
process of pseudorandom sequence generation in the Appendix A. We show the structure
and data flow of the nonlinear pseudorandom sequence generator in Figure 5.

Figure 5. Nonlinear pseudorandom sequence generator, which uses one m-sequence LFSR, two logic
gates and two registers.

3.1.3. Period Estimation

We estimate the average period of the generator. The formula for the mathematical
expectation of discrete variables is:

E(X) =
n

∑
k=1

xk pk, (9)

where X0 represents the number of polynomials, X1 represents the number of primitive
polynomials, X2 represents the number of nonprimitive polynomials and X1 and X2 are
independent of each other. The m-sequence contains all states of the LFSR; thus, the variable
X is uniformly distributed. We obtain:

E(X0) = E(X1 + X2) = E(X1)Pi + E(X2)(1− Pi), (10)

and the length of the m-sequence is the constant 2n − 1, which represents the mathematical
expectation E(X1) = 2n − 1. Therefore, we obtain the following formula:

E(X0) > E(X1)Pi,

E(X0) > (2n − 1)Pi.
(11)
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We count the proportion of primitive polynomials in all polynomials within the 64th
degree and plot them on the scatter plot shown in Figure 6.

Figure 6. Proportion of primitive polynomials in all polynomials within the 64th degree, used a curve
for fitting.

We calculate the fitting function and draw a fitting curve as:

f (x) = 0.5019x−0.8395, (12)

and obtain the expectation formula:

E(X0) > 0.5019n−0.8395 × (2n − 1). (13)

The approximation of Formula (13) is:

0.5019n−0.8395 × (2n − 1) >
1

2n
× (2n − 1) >

1
n
× 2n−1 − 1

n
> 2n−log 2n − 1

n
, (14)

E(X0) > 2n−log 2n − 1
n

, (15)

and the right side of the inequality is mono-increasing. In summary, we have proved the
feasibility of the dynamic polynomials.

3.2. Data Processor

In this section, we describe the data processor from two aspects: the theoretical
foundations and implementation.

3.2.1. Theoretical Foundations

At present, the one-way trapdoor function is a common encryption method. After
the attacker obtains the ciphertext, it is difficult to recover the plaintext through data
characteristics. For example, RSA is based on the difficulty of factoring large integers in
number theory to ensure security [48,49]. Kocher et al. conducted security tests on the RSA
cryptosystem [50,51].

Because the plaintext depends on a specific language to be generated, using pseu-
dorandom sequence encryption, we face the problem that the encryptor cannot hide the
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characteristics of the plaintext data. We hope to use the data processor to prevent the
attacker from deducing the plaintext from the data characteristics until the encryption
method is broken. We elaborate on the rationale for this method below.

First, the plaintext suspicion degree formula is [52]:

H(M|C) = − ∑
m∈M

P(m|c) · log P(m|c), (16)

where M is the plaintext space, m is the plaintext, C is the ciphertext space and c is the ciphertext.
Formula (16) expresses the degree of doubt about the corresponding plaintext space M

while determining the ciphertext space C. When the ciphertext and plaintext distributions
are independent of each other, H(M|C) and H(M) are the same. At this time, M is entirely
untrustworthy, and the cryptographic system has perfect secrecy [53]. When the value of
H(M|C) is 0, M is fully trusted and the ciphertext can determine the plaintext. Simplify
the Formula (16) to obtain:

H(M|C) = − ∑
m∈M

P(m, c)
P(c)

· log
P(m, c)

P(c)
, (17)

and we suppose that P(m,c)
P(c) = X, where X > 0. Entry m and c obey uniform distribution;

thus, we obtain:
H(X) = −qX · log X, (18)

where q is the number of plaintexts in the plaintext space. H(X) is 0, if X = 1. After
determining all the mapping relations between the plaintext space and the ciphertext space,
we can obtain P(c); however, this is almost impossible for attackers. As X approaches 0,
the limit exists and is 0. When the attacker has obtained enough ciphertext, plaintext and
ciphertext information is accumulated, the uncertainty of the plaintext is reduced and the
plaintext can be determined by the ciphertext.

We classify the sequences in the ciphertext space and define the offset sequences in
which the probability of an occurrence of 0 or 1 is lower than 25% or higher than 75%. The
rest are represented as uniform sequences. We hope to map the offset sequences in C to the
uniform sequence through a matrix algorithm to form the ciphertext space C1. C is invisible
to the attacker and keeps C1 as a subset of C so that the attacker is unable to establish a
complete mapping from the plaintext space (M) to C1.

Information entropy is used to describe the uncertainty of information. The greater
the information entropy, the higher the tension. The formula is as follows:

Hc = −
max

∑
i=1

P(i) · log P(i), (19)

and if the same probability of 0 and 1 appears in the space, information entropy is the same,
which is meaningless. Whether it is the decryptor or the attacker, a series of continuous data
is obtained. Therefore, we use sequence information entropy to evaluate the uncertainty of
information. For example, we set a sequence space consisting of 6-bit sequences, and the
mathematical expectation of traversing the sequence entropy is:

E(Hc) = (
1
6

log 6 +
5
6

log
6
5
)× 12

64
+ (

2
6

log 3 +
4
6

log
6
4
)× 30

64
+ log 2× 20

64
≈ 0.59945 bit. (20)

If the sequence of the sum of the bit values of the sequence space of 3 is retained (for
example, 111,000), there are only 20 sequences left in the sequence space, and the sequence
entropy is as follows:

E(H)
′
= log 2 ≈ 0.69315 bit, (21)
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which shows the information entropy increasing for the sequence space. We extend this
feature to the general situation. For a q-bit traversal sequence space, the mathematical
expectation of its entropy is as follows:

Eq =
q

∑
i=1

i
q
· Hi. (22)

When the offset sequences is mapped to a uniform sequence, the mathematical expec-
tation of sequence entropy in the new space is:

E
′
q =

q/2

∑
i=1

i
q/2
· Hi. (23)

Sequence information entropy has increased, which means that some information is added
to the sequences.

3.2.2. Implementation

We used the Algorithm A3 to simulate the operation of the data processor in the
Appendix A. We encrypted the plaintext using a pseudorandom sequence to form the
initial ciphertext and then fill the matrix A with the ciphertext bits in order. The array Seed3
controls the times of the left shift for the rows in matrix A, which can be used as the keys.

In the algorithm, we use the formula:

A[i][j] = (A[i][j] + 1) mod 2, (24)

which changes the ratio of 0 s and 1 s in the matrix A. The proportion of the offset sequences
gradually increases as the algorithm loops, if without the Formula (24).

Figure 7 shows matrix A of dimensions 16× 16, which uses Algorithm A3 without
the Formula (24). The horizontal axis is the value of the input sequence, traversing all
sequences from 0x0001 to 0xffff; the vertical axis is the mathematical expectation of the
offset sequences in matrix A in the 2000 left-shift operations.

Figure 7. Mathematical expectation of the offset sequences in matrix A in the 2000 left-shift operations
without Formula (24). The horizontal axis is the value of the input sequence; the vertical axis is the
mathematical expectation of the offset sequences.
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In Figure 7, the average value of the offset sequences exceeds 11, which indicates that
most of the sequences in the matrix are offset sequences at each iteration. After adding
the Formula (24) to the algorithm, we show the result in Figure 8. The proportion of offset
sequences drops from 74.375% to 16.5625%. The experiment simply demonstrated the
importance of the feasibility of the method. In Section 4, we discuss extended experiments
to further demonstrate the effectiveness and efficiency of the data processor.

The communicating parties can agree on a special sequence, such as 0101 · · · 01, to
regard the number of required operations as the seed3. The number of required operations
refers to the number of shift and XOR operations required to make the ciphertext sequence
completely coincide with the agreed sequence.

Figure 8. Mathematical expectation of the offset sequences in matrix A, in the 2000 left-shift operations.
The horizontal axis is the value of the input sequence; the vertical axis is the mathematical expectation
of the offset sequences.

3.3. Security

Seed1 and Seed2 can be used as dynamic keys, which need the receiver and sender
to synchronize before the communication starts. Seed3 is a fixed value and the process
of synchronizing seed1 and seed2 by communication parties needs to be encrypted by a
data processor that is controlled by Seed3. After the communication ends, the receiver and
the sender can agree on the Seed3 for the next communication and update the existing
communication.

Ensuring that authorized keys are not copied has been a recent concern of researchers.
We set up the memory for the data as follows:

1. Record the identifier of the communication object;
2. Record the state of the nonlinear generator at the beginning and end of the communi-

cation, which are the seeds of this and the next loop, respectively;
3. The nonlinear generator starts to work when it receives the communication requests

and if the verification of the communication object fails, record the state of the linear
generator and the object identifier sending the communication request.

We used the following example to reveal what the data do. We assumed that an
attacker wants to use device R to illegally copy an access control card S. The process is
as follows:
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1. S records the device identifier of the device requesting communication and then
checks whether the device is legal;

2. If R is not in the list of objects that are allowed to communicate, S does not respond to
the communication request and then records the state of the nonlinear generator and
the identifier of R;

3. If R is in the list of objects allowed to communicate, S responds to the communication
request and then updates the seeds with F (we cannot rule out that R is masquerading
as the legitimate device F).

This is under the condition that R has obtained Seed3; otherwise communication
cannot be established. In the access control card S, the seeds related to F have been updated.
If the attacker uses R and S to verify the identity on a legitimate device, the access control
system do not pass the key verification of F. To re-enable this card, we need to delete the
data in the card and distribute a new set of seeds.

A pseudorandom sequence generator based on m-sequence linear feedback shift
registers (m-LFSR) is a common solution. There is mature research on the cracking of such
pseudo-random generators, such as algebraic attacks [54,55], fast correlation attacks [56,57],
known-plaintext attacks [58], etc. m-LFSR is also weak against rational approximation
algorithms and Berlekamp–Massey algorithm attacks [59–62].

Siswanto et al. studied the randomness of m-sequence primitive polynomials [63].
They tested four m-sequence primitive polynomials using NIST tools, and only one m-
sequence passed the test. The m-sequence has a large key space, but does not have good
randomness. The nonlinear chaotic system has unpredictability, randomness, sensitivity
to the minute change in its initial value, ergodicity and complex structure, which makes
the above attack methods to be ineffective. Lucas et al. proposed that the pseudorandom
sequence generator based on nonlinear chaotic system presents an astonishing key space of
up to 24096 [37].

We briefly discuss the key distribution process ahead and use an example to explain
the need to record this data. A secure and efficient key distribution process could be the
direction of future work. In the next section, we will show the advantages of nonlinear
chaotic systems in terms of randomness, and the generator can pass 16 rigorous NIST
test items.

4. Results

We truncated three sequences with 125 MB from the data stream generated by the
128-bit nonlinear PRNG and ran all NIST test items. The NIST tools and specific content
of the test items can be found at https://csrc.nist.gov/projects/random-bit-generation
(accessed on 29 September 2022). We show the results of the NIST test items in Table 1.
We need to declare that the generator was simulated by the computing system and the
sequences were not from a real 128-bit generator. If the p-value was more than 0.001, it
could be considered as passing the test.

The experimental results show that the nonlinear pseudorandom sequence generator
based on the dynamic polynomials is effective and efficient and the generated sequences
pass 16 rigorous NIST test items.

In Section 3.2.2, we preliminarily demonstrated the effectiveness of Algorithm A3
through the experiment based on a 16-order matrix. We extensively tested the effectiveness
of the data processor on the range of 3000-order matrices, and the results are shown in
Figures 9 and 10. The input is the sequences of all 1 s, the horizontal axis is the order of
the matrices and the vertical axis is the occurrence probability of the offset sequence in
5000 loops.

In Figure 9, the occurrence probability of the offset sequence has peaks, which can be
represented as:

xi =
n

∑
k=1

λk · 2blog ic, (25)

https://csrc.nist.gov/projects/random-bit-generation
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where n ∈ (1, 3000), b·c represents the operation of round down and xi represents the
position of the peak. We added Formula (24) to Algorithm A3 and obtained the result in
Figure 10.

Table 1. The results of the NITST test, where we used three sequences with 125 MB from the data
stream generated by the 128-bit nonlinear PRNG and ran all NIST test items.

Test Items p-Value p-Value p-Value

Frequency Test 0.364718 0.214125 0.446560
Frequency Test within a Block 0.716768 0.633599 0.729238
Cumulative Sums Test 0.528209 0.446560 0.550851
Runs Test 0.164068 0.265407 0.355647
Test for the Longest Run of Ones in a Block 0.323647 0.280352 0.393501
Binary Matrix Rank Test 0.122371 0.222959 0.114587
Discrete Fourier Transform (Spectral) Test 0.876181 0.723175 0.638315
Non-overlapping Template Matching Test 0.509980 0.645031 0.407472
Overlapping Template Matching Test 0.630870 0.693978 0.784372
Maurer’s Universal Statistical Test 0.513756 0.501741 0.489264
Approximate Entropy Test 0.135386 0.254827 0.221754
Random Excursions Test 0.429587 0.578509 0.318043
Random Excursions Variant Test 0.395772 0.355201 0.451801
Serial Test 0.791572 0.666109 0.519752
Linear Complexity Test 0.204319 0.249184 0.218881
Lempel–Ziv Compression Test 0.199323 0.161428 0.173379

In Figure 9, there is a vague relationship between the peak width τ and order of matrices:

τ = j · 2−2, (26)

if and only if log j ∈ N+. Otherwise, we obtain the formula as follows:

τ = (j− b2log jc) · 2−2, (27)

which means that the peak width is not monotonically increasing.

Figure 9. Occurrence probability of the offset sequence in the range of 3000-order matrices, where the
horizontal axis is the order of the matrices and the vertical axis is the occurrence probability of the
offset sequence in 5000 loops, without Formula (24).



Fractal Fract. 2022, 6, 589 13 of 17

Thus, in the extended experiments, we found that the 16-order matrix did not have
good data processing capabilities, which almost made us miss the important results of this
paper. The proportion of offset sequences in the matrix with better performance was less
than 3‰. We show the result in Figure 10. A limitation of this study is the lack of clarity
behind the reason for this phenomenon.

Figure 10. Occurrence probability of the offset sequences in the range of 3000-order matrices, where
the horizontal axis is the order of the matrices and the vertical axis is the occurrence probability of
the offset sequences in 5000 loops.

5. Conclusions

In this study, we proposed a novel nonlinear pseudorandom sequence generator based
on the nonlinear chaotic systems, which is constructed by the fractal function. Furthermore,
we design a data processing matrix to hide the data characteristics of the sequence and
enhance the randomness. We experimentally verified the effectiveness and efficiency of
the generator of the nonlinear chaotic systems, which passed 16 rigorous test items from
NIST. Furthermore, we briefly discussed how to ensure the security of the system through
dynamic data and provided an example of access control card replication to facilitate
understanding of the method. In extended experiments, we further demonstrated the
better performance of the data processor in reducing offset sequences, which laid a solid
foundation for subsequent research.

Despite the limitations of this study, the safety of the generator is not affected. The
generator had a wide range of application directions, such as identity authentication,
secret sharing, data anti-counterfeiting, information interaction and data transmission. We
will focus on the adaptation of the method to usage scenarios and operating devices in
the future.
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Abbreviations
The following abbreviations are used in this manuscript:

Seed1, Seed2, Seed3 Initial input to the generator, which are the sequences of booleans
F(x) Characteristic polynomial of the linear feedback shift register
ci, fi The feedback state of i-stage
gcd(a, b) The greatest common factor of a and b
zn, µ Complex parameters
ak, bk, ck, mk Sequence
E(X) Mathematical expectations for X
H(M|C) The plaintext suspicion degree
M, C Space of plaintext and ciphertext
m, c Sequences of plaintext and ciphertext
EH The mathematical expectation of traversing the sequence entropy
xi, τ The position and width of the peak

Appendix A. Algorithm

Algorithm A1: The Fractal Function
Input: mk
Output: ak

1 for i = 0 to 31 do
2 nk[i]⇐ mk[i]⊕ 1;
3 end
4 nk ⇐ nk × nk;
5 if length(nk)− 1 > 32 then
6 for i = 32 to length(nk)− 1 do
7 nk.erase(i);

/* Function erase refers to deleting the ith digit from the
array to ensure that the bits of the data is the same in
the operations. */

8 end
9 end

10 else
11 continue;
12 end
13 ak ⇐ nk ×mk;

/* The operation array× array refers to binary multiplications. */
14 if length(ak)− 1 > 32 then
15 for i = 32 to length(ak)− 1 do
16 ak.erase(i);
17 end
18 end
19 else
20 continue;
21 end
22 return ak
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Algorithm A2: The Nonlinear Pseudorandom Sequence Generator
Input: Seed1, Seed2
Output: sk

1 mk ⇐ GmLFSR(Seed1);
2 ak ⇐ Gλ(mk);
3 for j = 0 to n− 1 do
4 bk[j]⇐ Seed2[j];
5 end
6 for j = 0 to n− 1 do
7 ck[j]⇐ ak[j] ∧ bk[j];
8 end
9 for j = 0 to n− 1 do

10 sk ⇐ sk ⊕ ck[j];
11 end
12 bk << 1;
13 bk[n− 1] = sk;
14 return sk

Algorithm A3: Data Processor
Input: A, Seed3
Output: A
/* We encrypted the plaintext using a pseudorandom sequence to form

the initial ciphertext and then fill the matrix A with the
ciphertext bits in order. */

1 for i = 0 to n− 2, j = 0 to n− 2 do
2 A[i][j]⇐ (A[i][j] + A[i + 1][j + 1]) mod 2;
3 end
/* The array Seed3 controls the times of the left shift for the rows

in matrix A, which can be used as the keys. */
4 for j = 0 to n− 1 do
5 for k = 0 to Seed3[i] do
6 tmp⇐ A[0][j];
7 for i = 0 to n− 2 do
8 A[i][j]⇐ A[i + 1][j];
9 end

10 A[n− 1][j]⇐ tmp;
11 for i = 0 to n− 1 do
12 A[i][j]⇐ (A[i][j] + 1) mod 2;
13 end
14 end
15 end
16 return A

Appendix B. Code

The code of this paper can be found at https://github.com/lxrzlyr/Nonlinear-pseudo-
random-sequence-generator.git accessed on 29 September 2022.
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