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Abstract: SEM micrographs of the fracture surface for UO2 ceramic materials have been analysed.
In this paper, we introduce some algorithms and develop a computer application based on the
time-series method. Utilizing the embedding technique of phase space, the attractor is reconstructed.
The fractal dimension, lacunarity, and autocorrelation dimension average value have been calculated.
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1. Introduction

The uranium chemical element has the capital letter U as its symbol, and its atomic
number is 92. Statistically speaking, it constitutes three important isotopes that may
definitely be found in nature: 238U (99.28% abundance), 235U (0.71% abundance), and 234U
(0.0054% abundance). Classified in the periodic table as an actinide, uranium is generally a
solid body at room temperature [1]. Uranium is a naturally radioactive element, from the
physics viewpoint. It powers nuclear reactors in the form of nuclear fuel and helps to make
atomic bombs (still improperly called), but more precisely, named nuclear bombs, because
fission is a nuclear process.

Uranium-235 is an isotope of uranium that makes up about 0.71% of naturally existing
uranium in nature. Unlike the predominant isotope uranium-238 (fertile material), uranium-
235 is a fissile material; that is, they can support a nuclear chain reaction and a nuclear
fission, respectively. Moreover, uranium-235 is the only fissile isotope that exists in nature
as a primordial nuclide.

At first sight, real ceramic materials may be interpreted as inorganic and non-metallic
materials. They are typically crystalline in nature (but may also contain a combination of
glassy and crystalline phases) and are compounds formed among metallic and non-metallic
elements. Chemically speaking, they are materials with atomic and ionic bonds, of which
the complex hyaline structure is obtained by sintering. This is basically responsible for
many of the properties of ceramics [2–4]. The word ceramic comes from the Greek word
keramicos, which in direct translation, means burnt clay. In conclusion, being typically a
crystalline construction, it can be considered traditionally as a mixed compound mostly
made of metallic and non-metallic elements, so a composite material.

Ceramic materials are usually fabricated by the application of heat (at high temper-
atures) upon processed clays and other natural crude materials (especially in powder
form) to shape a rigid solid product. Ceramic final products that reasonably utilize rocks
and minerals as a starting point must endure certain processing in order to command the
particle size; potion purity; particle size repartition; and finally, the heterogeneity of the
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mixture. These important characteristics play a major role in the total properties of the
completed ceramics. From a chemical point of view, ceramic materials are mainly metallic
and non-metallic oxides. In conclusion, the clays from which they are obtained are part
of the large category of alumino-silicates, substances present in a high percentage in the
Earth’s crust [2]. Combustion results in a crystalline internal structure, with covalent and
electrovalent (ionic) chemical bonds between the constituent atoms and molecules, but we
do not wish to go into such details here.

Worth knowing is also the fact that, when uranium dioxide (UO2), recognized as
nuclear fuel, is stuffed with supplementary ions of oxygen in the meshes of the network,
it can form nonstoichiometric compounds (e.g., UO2+x,), of which the composition may
change with the function of exterior environmental conditions, among which we enu-
merate temperature itself and the partial pressure of oxygen. The fracture comportment
of a sintered ceramic UO2 substance has been studied in light of microstructural (micro
porosity, grain size, etc.) parameters, with everything being in the function of the most
adequate composition delivered and the final architecture. Utilizing SEM images as an
investigation method, the fracture properties have been evaluated and compared for differ-
ent microstructural conditions present in the same sample of solid ceramic materials and in
a sintered UO2 pellet specimen. As a general conclusion, we can consider that the fracture
strength in the low-density area was superior in contrast to the that of the high-density
area. Among other things, this was assigned to fissure-type deflection and bifurcation at
the grain boundary, expected as owed to the porosity presence. This paper realizes an
investigation of the uranium dioxide SEM pictures by utilizing the time series evaluation
procedures and fractal analysis, a natural prolongation of a usual research executed before
but on ductile materials [5–8].

Being justified by recent developments in inferential statistical analysis procedures
for chaotic modular processes and by the new concept of spatial chaos, we introduce
a continuation of deterministic boarding of the structural microscopic study of ceramic
integral materials.

The work in this paper is highlighted in four sections. The first section introduces the
background of the use of uranium dioxide (UO2) as nuclear fuel and ceramic materials in
general. The second section focuses on providing theoretical support regarding the fractal
dimension, lacunarity, and time (spatial) series. The third section introduces the results
obtained and elaborates on them in a discussion. Finally, the paper concludes in the fourth
and last section devoted to the conclusions.

2. Theoretical Background in Brief
2.1. Fractal Dimension and Lacunarity

The fractal-image-specific feature highlighted here is the fractal dimension, condi-
tioned by the following formula:

D = lim
ε→0

(
lnN
lnε

)
(1)

where N is the cell number and ε is the cell size [9,10].
The lacunarity numerical value is computed in accordance with the following formula:

Λ =

(
σ

µ

)2
(2)

when σ is the standard deviation of the mass and µ is also the mass average value out
of the total picture [11,12]. To estimate the fractal dimension, it is necessary to compose
a graphic and afresh; to calculate the lacunarity, the graphical algorithm of least squares
must be utilized [13,14].
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2.2. Time (Spatial) Series

Let T be a dynamic system in the classical sense. More precisely, T is said to be such a
mathematical object (in fact a system) if there exists a map f : X→ X, such that

T : N × X → X, T(n, x) = ( f ◦ f ◦ . . . ◦ f )(x) = f n(x) (3)

Let F: X→ R be a map with real determinations, which can be considered a mathe-
matical measure of physical state space in Lagrange sense. If the variables t, τ ∈ S can be
appreciated as being fixed (τ is named time delay) and x ∈ X is a stationary state, then a
repeated measurement succession

F(x), F(T(t + τ, x)), F(T(t + 2τ, x)), F(T(t + 3τ, x)), . . . , F(T(t + (d− 1)τ, x)) (4)

can be named as a time series (beginning with (t, x)) correlated to T [15,16].
For the determined state x ∈ X, a correlated time (spatial) series with the discrete

dynamical system (see definition above) is written as

F(x), F( f (x)), . . . , F
(

f n−1(x)
)

(5)

By definition, we call being an attractor (or attraction group) for the system T a
mathematical object that has the following qualities:

(1) K ⊂ X is a nonempty set;
(2) K is closed;
(3) K is invariant, i.e., T(x) ⊂ X, for all x ∈ K.

Moreover, it is stated that there is a vicinity such that

lim
t→∞

d(T(t, x), K) = 0, for all x ∈ U (6)

Takens Embedding Theorem [17] is the principal outcome that theoretically permits
attractor reconstruction for a physical dynamical system, which begins from the numerical
data of one algebraic time series. Thus, if K is a dense invariant set of T and if b is the
box-counting fractal dimension of K, then the map

H : K → R2b+1 (7)

is described by

H(x) = F(T(t, x)), F(T(t− τ, x)), . . . , F(T(t− 2bτ, x)) (8)

The function defined above is generically injective. Analytically speaking, a property
is called generic if the mentioned quality on a set that comprises a countable intersection
of open dense sets is true [18,19]. A spatial series is, by definition, a suite of observations
made on an orderly variable with regard to two structural coordinates. However, in such
data, usually, the necessary statistical independence is absent. Regarding spatial series in
statistics, we must think about random spatial series and how such a data series works
mathematically. A spatial series, but mostly a random spatial series, is an assembly of
casual variables F(x1, x2, . . . , xn), called random variables, a set of functions depending on
certain spatial coordinates (x1, x2, . . . , xn).

We try to construct a statistical series of the second order, in other words, a series
for which (x1, x2, . . . , xn) argument fluctuates only on an ordinary Cartesian grid/lattice.
Utilizing the appropriations of the linear (Hilbert) space connected to the series of data, the
notions of novelty and a complete nondeterministic series are highlighted [15].

Regarding the comportment of a time (spatial) series (in other words, the quality of
randomness), this one can be investigated by calculating the autocorrelation function value,
which is an estimate of the influence of past states on the future state [16,17]. As far as
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that goes, a discrete dynamical system T interpreted by the map f : X→X, the autocor-
relation function formula associated with the spatial series F(x), F( f (x)), . . . , F( f p(x)) is
determined as follows:

C(n) =
∑

p−n
i=0

(
F ◦ f i −m

)
(x) ·

(
F ◦ f i+n −m

)
(x)

∑
p−n
i=0

(
F ◦ f i

)2
(x)

(9)

where m is the time-average function:

m =
∑

p
i=0

(
F ◦ f i)(x)

p + 1
(10)

2.3. SEM Picture Exploration

Chaotic statistical comportment has been proven in numerous physical, chemical, eco-
nomic, and biological natural processes. Today, just two statistical chaos physics concepts
are unanimously accepted. The primal conception is the temporal chaos for which any
function of variables in phase space are time-dependent. The second conception, the spatial
statistical chaos concept, indicates a chaos state of these data with respect to spatial coor-
dinates. This philosophical vision opens the way for accession to nonlinear deterministic
procedures/technics of spatiotemporal phenomena [16].

Even though fundamental elements of ceramic thermo-mechanical comportment
are recognized, the nature, interplay, and multitude of physical, chemical, and ambient
variables implicated in the engendering of a true microstructure cannot be exactly defined.
Therefore, it seems legitimate to adopt a viable viewpoint and to consider the micro
fractures as various textures, in fact veritable ‘black boxes’, which have been caused by
two independent processes, respectively, a stochastic process (in a large sense) or another
process related to matter manifestation in the format of deterministic spatial chaos [20]. As
a primary check, if the studied sample could be an expression of deterministic chaos, we
can be mastering methods of classical time series analysis found at disposition, which refer
to an estimation of the power spectrum and autocorrelation function, in principle. To come
into possession of particular characteristics of the system, it is necessary for the attractor
reconstruction techniques to be applied, which allows for estimations of the Lyapunov
exponent and of the correlation dimension.

For the study of UO2 SEM pictures, we used computer programming initially created
for metallic or alloy materials but subsequently excellently adapted to ceramic materials,
a software application that generates a time series associated with the image, then recon-
structs the associated attractor, and finally computes its autocorrelation dimension [21].
The procedure for investigating a SEM picture (micrograph) is debuted by loading an
image bitmap version in the computer software application used. The first step in our
consideration is to generate the weighted fractal dimensions map (WFDM) through which
the potential modified structures themselves are revealed (conformable to a precedent arti-
cle [15]). The second step to follow is to produce a real spatial series for a picture-selected
zone, as follows: the initial picture is cut into slices that are approximatively 12–16 pixels
deep; by placing all these fragments/pieces together, we procure an entire tape/strip. The
spatial series s(t) is acquired by calculating the mean value of the grey level for every pixel
column within the tape. The investigation of these nonlinear data suites starts with the
attractor reconstruction by embedding the spatial series in an upper dimensional phase
space. We establish a reasonable time delay τ > 0 from the beginning and then, continuing,
for a determined embedding dimension d, we take into account the collection/set

s(t), s(t + τ), s(t + 2τ), . . . , s(t + (d− 1)τ) (11)

which is assimilated to a formal point in a pseudo phase space and immediately constructed
(the series sampling procedure).
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In the end, we obtain the attractor by connecting these points that are conformable to
their succession. The attractor integral correlation C(r), as a distance function, is the expec-
tation that any two points from a phase space is separated by a Euclidian interval/distance
less than or equal to r. It can now be assumed that C(r) is a power-type function of r, of
which the exponent designated by D is mostly assimilated with the autocorrelation dimen-
sion. The value of D is close to the regression line slope related to autocorrelation function
C(r). This method of calculation is reiterated for different embedding dimension values.
We close this routine action with the autocorrelation dimension plot; with a function of the
embedding dimension value; and finally, by calculating its regression line slope [22–27].

3. Results and Discussion

Further on, we offer an example of the procedure to investigate the SEM pictures of
a UO2 ceramic material [23]. We emphasise/mention that the sorting of the micrographs
with the referenced areas was executed as stated by the WFDM method [15]. Conforming
to the mentioned procedure, three sets of characteristic images are studied as much as
possible [25,26].

Step 1. Study of the entire picture.
We study the images enclosed in a yellow rectangle, practically the entire picture.

In Figure 1, the original SEM image and an entire selected area are presented, while in
Figure 2, the graphical attractor reconstruction, in two and three dimensions, is shown.
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Figure 1. Original image and a selected area.

Figure 2 shows the attractor reconstruction [20] for the rectangle with yellow sides
of normal area along with a considerable area with microcracks and prominent breakage,
conformable to Figure 1. Both attractor reconstructions are presented. In embedding
dimension 2, some points are observed, and in embedding dimension 3, some broken lines
are noticed [16,17].

First, we survey the spatial series generated by the entire picture (Figure 3).



Fractal Fract. 2022, 6, 595 6 of 19Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 2. Attractor reconstruction. 

First, we survey the spatial series generated by the entire picture (Figure 3). 

 
Figure 3. The time series generated by the selected area in Figure 1. 

In Figure 3, the continuous green line placed horizontally represents the series aver-
age value over the entire time considered. 

According to the algorithm, further on, we will study a modified area (Figure 4) and 
gravity poles are determined (Figure 5). 

 
Figure 4. The selection of the modified area (according to WFDM). 

Figure 2. Attractor reconstruction.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 2. Attractor reconstruction. 

First, we survey the spatial series generated by the entire picture (Figure 3). 

 
Figure 3. The time series generated by the selected area in Figure 1. 

In Figure 3, the continuous green line placed horizontally represents the series aver-
age value over the entire time considered. 

According to the algorithm, further on, we will study a modified area (Figure 4) and 
gravity poles are determined (Figure 5). 

 
Figure 4. The selection of the modified area (according to WFDM). 

Figure 3. The time series generated by the selected area in Figure 1.

In Figure 3, the continuous green line placed horizontally represents the series average
value over the entire time considered.

According to the algorithm, further on, we will study a modified area (Figure 4) and
gravity poles are determined (Figure 5).
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Figure 5. The gravity poles of the modified area.

From Figure 6, we can determine the slope of the autocorrelation dimension versus
the embedding dimension for the modified area.
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Figure 6. The autocorrelation dimension versus the embedding dimension for the modified area.

The graphic of the entire area autocorrelation, in Figure 6, representing the correlation
dimension versus the embedding dimension, shows the slope computation. The correlation
dimension versus the embedding dimension slope is 0.1022.

In Figure 7, the primary processing of the selected image 1 is depicted. This suite
contains a set of three images, more specifically, from left to right, the original image
(the portion in the yellow border), the grayscale version, as well as the grayscale version
without luminance.

In Figure 8, the secondary processing of the selected image 1, including the binarized
version and the application of the mask, are presented.
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Figure 8. Secondary processing of the selected image 1: (a) binarized version; (b) application of the
mask. A threshold of 25 was used for binarization.

Following the numerical evaluations with the appropriate software of the selected
image, the values of fractal dimension D = 1.8220, standard deviation s = ±

√
σ2 = ±0.3440,

and lacunarity Λ = 0.0357 were obtained, as in Table 1.

Table 1. Calculation of fractal parameters.

Name Fractal Dimension Standard Deviation Lacunarity

Image 1 1.8220 ±0.3440 0.0357

Figure 9 (see below) represents the three-dimensional graph of the voxel representation
for image 1.
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Figure 10. The first distinct zone selection.

In Figure 10, we selected one distinct zone, the yellow rectangular frame zone, consid-
ered with different structures from a first visual analysis.

Figure 11 shows the attractor reconstruction [20] for the rectangle with yellow sides
of normal area along with a considerable area with microcracks and prominent breakage,
conformable to Figure 10. Both attractor reconstructions are presented. In embedding
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dimension 2, some points are observed, and in embedding dimension 3, some broken lines
are noticed [16,17].
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Further on, in Figure 12, the selection of the modified area with the application of
WFDM for Figure 10 is presented. Staying on the same subject, the gravity poles of the
modified area for Figure 10 are showcased in Figure 13.
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Figure 14. The time series generated by the selected modified area for Figure 10.

In Figure 14, the continuous green line placed horizontally represents the series average
value over the entire time considered.

From Figure 15, we can determine the slope of the autocorrelation dimension versus
the embedding dimension for the modified area (WFDM for Figure 10).
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The graphic of the modified area (WFDM for Figure 10) autocorrelation, in Figure 15,
representing the correlation dimension versus the embedding dimension, shows the slope
computation. The correlation dimension versus the embedding dimension slope is 0.1455.

In Figure 16, the primary processing of the selected image 2 is depicted. This suite
contains a set of three images, more specifically, from left to right, the original image
(the portion in the yellow border), the grayscale version, as well as the grayscale version
without luminance.
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In Figure 17, the secondary processing of the selected image 2, including the binarized
version and the application of the mask, are presented.
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Following the numerical evaluations with the appropriate software of the selected
image, the values of fractal dimension D = 1.7751, standard deviation s = ±

√
σ2 = ±0.3363,

and lacunarity Λ = 0.0359 were obtained, as in Table 2.
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Table 2. Calculation of fractal parameters.

Name Fractal Dimension Standard Deviation Lacunarity

Image 2 1.7751 ±0.3363 0.0359

Figure 18 (see below) represents the three-dimensional graph of the voxel representa-
tion for image 2.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 13 of 19 
 

 

Table 2. Calculation of fractal parameters. 

Name Fractal Dimension Standard Deviation Lacunarity 
Image 2 1.7751 ±0.3363 0.0359 

Figure 18 (see below) represents the three-dimensional graph of the voxel represen-
tation for image 2. 

 
Figure 18. Voxels representation for image 2. 

Step 3. The study of the second chosen zone image according to Figure 19. 

 
Figure 19. Image and a selected area for the second distinct zone. 

Figure 20 shows the attractor reconstruction [20] for the rectangle with yellow sides 
of a normal area along with a considerable area with microcracks and prominent break-
age, conformable to Figure 19. Both attractor reconstructions are presented. In embedding 

Figure 18. Voxels representation for image 2.

Step 3. The study of the second chosen zone image according to Figure 19.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 13 of 19 
 

 

Table 2. Calculation of fractal parameters. 

Name Fractal Dimension Standard Deviation Lacunarity 
Image 2 1.7751 ±0.3363 0.0359 

Figure 18 (see below) represents the three-dimensional graph of the voxel represen-
tation for image 2. 

 
Figure 18. Voxels representation for image 2. 

Step 3. The study of the second chosen zone image according to Figure 19. 

 
Figure 19. Image and a selected area for the second distinct zone. 

Figure 20 shows the attractor reconstruction [20] for the rectangle with yellow sides 
of a normal area along with a considerable area with microcracks and prominent break-
age, conformable to Figure 19. Both attractor reconstructions are presented. In embedding 

Figure 19. Image and a selected area for the second distinct zone.



Fractal Fract. 2022, 6, 595 14 of 19

Figure 20 shows the attractor reconstruction [20] for the rectangle with yellow sides of
a normal area along with a considerable area with microcracks and prominent breakage,
conformable to Figure 19. Both attractor reconstructions are presented. In embedding
dimension 2, some points are observed, and in embedding dimension 3, some broken lines
are noticed [16,17].
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Figure 20. Attractor reconstruction.

Further on, in Figure 21, the selection of the modified area with the application of
WFDM for Figure 19 is presented. Staying on the same subject, the gravity poles of the
modified area for Figure 19 are showcased in Figure 22.

Second, we study the time series generated by the picture associated with the selected
modified area in Figure 23.

From Figure 23, we can determine the slope of the autocorrelation dimension versus
the embedding dimension for the modified area (WFDM for Figure 19).

Fractal Fract. 2022, 6, x FOR PEER REVIEW 14 of 19 
 

 

dimension 2, some points are observed, and in embedding dimension 3, some broken lines 
are noticed [16,17]. 

 
Figure 20. Attractor reconstruction. 

Further on, in Figure 21, the selection of the modified area with the application of 
WFDM for Figure 19 is presented. Staying on the same subject, the gravity poles of the 
modified area for Figure 19 are showcased in Figure 22. 

 
Figure 21. The selection of the modified area (WFDM) for Figure 19. Figure 21. The selection of the modified area (WFDM) for Figure 19.



Fractal Fract. 2022, 6, 595 15 of 19
Fractal Fract. 2022, 6, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 22. The gravity poles of the modified area for Figure 19. 

Second, we study the time series generated by the picture associated with the selected 
modified area in Figure 23. 

 
Figure 23. The time series generated by the selected modified area for Figure 19. 

From Figure 23, we can determine the slope of the autocorrelation dimension versus 
the embedding dimension for the modified area (WFDM for Figure 19). 

In Figure 23, the continuous green line placed horizontally represents the series av-
erage value over the entire time considered. 

The graphic of the modified area (WFDM for Figure 19) autocorrelation, in Figure 24, 
representing the correlation dimension versus the embedding dimension, shows the slope 
computation. The correlation dimension versus the embedding dimension slope is 0.1304. 

Figure 22. The gravity poles of the modified area for Figure 19.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 22. The gravity poles of the modified area for Figure 19. 

Second, we study the time series generated by the picture associated with the selected 
modified area in Figure 23. 

 
Figure 23. The time series generated by the selected modified area for Figure 19. 

From Figure 23, we can determine the slope of the autocorrelation dimension versus 
the embedding dimension for the modified area (WFDM for Figure 19). 

In Figure 23, the continuous green line placed horizontally represents the series av-
erage value over the entire time considered. 

The graphic of the modified area (WFDM for Figure 19) autocorrelation, in Figure 24, 
representing the correlation dimension versus the embedding dimension, shows the slope 
computation. The correlation dimension versus the embedding dimension slope is 0.1304. 

Figure 23. The time series generated by the selected modified area for Figure 19.

In Figure 23, the continuous green line placed horizontally represents the series average
value over the entire time considered.

The graphic of the modified area (WFDM for Figure 19) autocorrelation, in Figure 24,
representing the correlation dimension versus the embedding dimension, shows the slope
computation. The correlation dimension versus the embedding dimension slope is 0.1304.
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In Figure 25, the primary processing of the selected image 3 is depicted. This suite
contains a set of three images, more specifically, from left to right, the original image
(the portion in the yellow border), the grayscale version, as well as the grayscale version
without luminance.
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In Figure 26, the secondary processing of the selected image 3, including the binarized
version and the application of the mask, is presented.
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Following the numerical evaluations with the appropriate software of the selected
image, the values of fractal dimension D = 1.8103, standard deviation s = ±

√
σ2 = ±0.3508,

and lacunarity Λ = 0.0375 were obtained, as in Table 3.

Table 3. Calculation of fractal parameters.

Name Fractal Dimension Standard Deviation Lacunarity

Image 3 1.8103 ±0.3508 0.0375
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Figure 27 (see below) represents the three-dimensional graph of the voxel representa-
tion for image 3.
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Final Discussions

The substance of the work refers to the fact that the deformation of ceramics is different
from that of metals and alloys, being small compared to that of metals, which means
that they are fragile substances, unlike metals and alloys, which are ductile substances,
characterized by consistent deformation at the same stress. In addition, the break develops
at different levels of the loading load (tension); that is, the break in ceramics is made at
a high level of stress, with an order of magnitude higher than the break in metals and
alloys. We will continue to detail the differences in deformation and fracturing behaviour
for ceramics and their connection with the fractal dimension of the image and its lacunarity.

We will present a mini explanation of the writing of this study below. The paper
proposes a quantitative analysis of the SEM images of the fracture surface of UO2, using
the fractal dimension of the image and its lacunarity. This information, obtained through
the fractal analysis, is closely related to highlighting the type of fracture (brittle in our case)
and the microcracks produced in the material. As can be seen, there is a direct connection
with the microdeformations present on the image in the area without significant tearing
of the material and a directly proportional increase in the lacunarity in the area with the
rupture produced.

The method was explained above, but we also want to make a presentation of the
things performed to put the method into operation. We have examined the fracture surfaces
of two distinct areas with different microstructures to test for fractal behaviour. The zones
are also differentiated by a simple visual observation, as they have distinct aspects due to
the fact that one of the zones is unaffected by the breaking process, while the second zone
is distinct due to the fact that it is a specific breaking zone.

A slit island analysis was used to determine the fractal dimension, D, of successively
sectioned fracture surfaces. We found a correlation between increasing the fractional
part of the fractal dimension and increasing toughness. In other words, as the toughness
increases, the fracture surface increases in roughness. However, more than just a measure
of roughness, the applicability of fractal geometry to a fracture implies a mechanism for
generation of the fracture surface. The results presented here imply that brittle fracture is a
fractal process; this means that we should be able to determine processes on the atomic
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scale by observing the macroscopic scale by finding the generator shape and the scheme
for generation inherent in the fractal process. In addition, we attempt to relate the fractal
dimension to fracture toughness. We also show that, in general, the fractal dimension
increases with increasing fracture toughness.

4. Conclusions

The SEM micrographs of the fracture surface for a ceramic UO2 material, using the
fractal analysis technique and time (spatial) series, have been investigated.

For the SEM picture analysis, a software application that generates a time series asso-
ciated with the image, and then reconstructs the attractor and computes its autocorrelation
dimension was developed.

The present study was carried out on a statistically sufficient number of SEM micro-
graphs, treated according to the procedure of modified areas. To avoid augmentation in
the article size, only one integral SEM picture has been presented from which one normal
area (first zone) and another one corresponding to a modified area (second zone) have been
selected.

The fractal dimension of the entire picture is D = 1.8220 ± 0.3440 and lacunarity is
Λ = 0.0357, and for the first zone (normal area), fractal dimension is D = 1.7751 ± 0.3363
and lacunarity is Λ = 0.0359. For the second zone (modified area), the fractal dimension
D = 1.8103 ± 0.3508 and lacunarity Λ = 0.0375 were obtained.

The average of the autocorrelation dimension for entire picture is 0.1023. The average
of the autocorrelation dimension for the normal area of the first zone is 0.1455. The average
of the autocorrelation dimension for the modified area of the second zone is 0.1304.
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