Next Article in Journal
Modal Shifted Fifth-Kind Chebyshev Tau Integral Approach for Solving Heat Conduction Equation
Next Article in Special Issue
Common Fixed Point for Meir–Keeler Type Contraction in Bipolar Metric Space
Previous Article in Journal
Zener Model with General Fractional Calculus: Thermodynamical Restrictions
Previous Article in Special Issue
Discussion on the Approximate Controllability of Hilfer Fractional Neutral Integro-Differential Inclusions via Almost Sectorial Operators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Derivatives with Generalized Slit-Strips-Type Integral Boundary Conditions and Impulses

1
School of Sciences and Arts, Suqian University, Suqian 223800, China
2
Department of Mathematics, University of Peshawar, Peshawar 25120, Pakistan
3
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(10), 618; https://doi.org/10.3390/fractalfract6100618
Submission received: 29 August 2022 / Revised: 26 September 2022 / Accepted: 12 October 2022 / Published: 21 October 2022
(This article belongs to the Special Issue New Trends on Fixed Point Theory)

Abstract

:
In the current paper, we analyzed the existence and uniqueness of a solution for a coupled system of impulsive hybrid fractional differential equations involving ψ -Caputo fractional derivatives with generalized slit-strips-type integral boundary conditions. We also study the Ulam–Hyers stability for the considered system. For the existence and uniqueness of the solution, we use the Banach contraction principle. With the help of Schaefer’s fixed-point theorem and some assumptions, we also obtain at least one solution of the mentioned system. Finally, the main results are verified with an appropriate example.

1. Introduction

Extensive applications and significant contribution leads the popularity of fractional calculus, and operators of arbitrary order gives us more realistic and useful mathematical modeling of many phenomena (see [1,2,3]). In different fields of science and engineering, fractional-order nonlinear boundary value problems appear with different aspects. In recent studies the main focus is on the existence, uniqueness and stability of nonlinear arbitrary order differential equations with boundary conditions [4,5,6,7,8].
Coupled nonlinear fractional differential equations (FDEs), finds their uses in different applied and scientific models such as disease models [9,10], ecological models [11], synchronization of chaotic systems [12], etc. In recent years Hybrid differential equations of fractional-order is also very important area of research [13,14,15,16,17,18,19]. Ahmad et al. studied a new idea of slit-strips type conditions, which has very fundamental uses in acoustics [20] and imaging via strip-detectors [21].
In [22], the authors studied the following problem with slit-strips type condition:
c D 0 p x ( z ) = f 1 ( z , x ( z ) ) ,   m 1 < p m ,   z [ 0 , 1 ] , m N , x ( 0 ) = 0 , x ( 0 ) = 0 , . . . , x n 2 ( 0 ) = 0 , x ( ξ ) = a 1 0 η 1 x ( s ) d s + a 2 ξ 1 1 x ( s ) d s ,   0 < η 1 < ξ < ξ 1 < 1 ,
where c D 0 p denotes the Caputo fractional derivative (CFD) of order p, f 1 is a given function and a 1 , a 2 R .
In 2017, Ahmad et al. [23] studied a coupled system of nonlinear FDEs
c D 0 α 1 x ( z ) = f 1 ( z , x ( z ) , y ( z ) ) ,   z [ 0 , 1 ] ,   1 < α 1 2 , c D 0 β 1 y ( z ) = f 2 ( z , x ( z ) , y ( z ) ) ,   z [ 0 , 1 ] ,   1 < β 1 2 ,
supplemented with the coupled and uncoupled boundary conditions of the form:
x ( 0 ) = 0 ,       x ( ξ ) = d 1 0 η y ( s ) d s + d 2 ξ 1 1 y ( s ) d s ,   0 < η < ξ < ξ 1 < 1 , y ( 0 ) = 0 ,       y ( ξ ) = d 1 0 η x ( s ) d s + d 2 ξ 1 1 x ( s ) d s ,   0 < η < ξ < ξ 1 < 1 , x ( 0 ) = 0 ,       x ( ξ ) = d 1 0 η x ( s ) d s + d 2 ξ 1 1 x ( s ) d s ,   0 < η < ξ < ξ 1 < 1 , y ( 0 ) = 0 ,       y ( ξ ) = d 1 0 η y ( s ) d s + d 2 ξ 1 1 y ( s ) d s ,   0 < η < ξ < ξ 1 < 1 ,
where c D 0 α 1 and c D 0 β 1 denote the CFD of order α 1 and β 1 respectively, f 1 , f 2 : [ 0 , 1 ] × R × R R are given continuous functions and d 1 , d 2 are real constants.
In 2019, Bashir Ahmad et al. [24] studied a coupled system of hybrid nonlinear FDEs
c D 0 γ 1 [ u ( z ) h 1 ( z , u ( z ) , v ( z ) ) ] = θ 1 ( z , u ( z ) , v ( z ) ) ,     z [ 0 , 1 ] ,     1 < γ 1 2 , c D 0 δ 1 [ v ( z ) h 2 ( z , u ( z ) , v ( z ) ) ] = θ 2 ( z , u ( z ) , v ( z ) ) ,     z [ 0 , 1 ] ,     1 < δ 1 2 ,
equipped with coupled slit-strips type integral boundary conditions:
u ( 0 ) = 0 ,     u ( η 1 ) = ω 1 0 ξ 1 v ( s ) d s + ω 2 ξ 2 1 v ( s ) d s ,         0 < ξ 1 < η 1 < ξ 2 < 1 , v ( 0 ) = 0 ,     v ( η 1 ) = ω 1 0 ξ 1 u ( s ) d s + ω 2 ξ 2 1 u ( s ) d s ,         0 < ξ 1 < η 1 < ξ 2 < 1 ,
where c D 0 γ 1 and c D 0 δ 1 denotes the CFD of orders γ 1 and δ 1 respectively, θ i , h i : [ 0 , 1 ] × R × R R are continuous functions with h i ( 0 , u ( 0 ) , v ( 0 ) ) = 0 , i = 1 , 2 and ω 1 , ω 2 are real constants.
In this article, motivated from the aforementioned work, we study the coupled system of impulsive hybrid FDEs with generalized slit-strips type integral boundary conditions:
c D z k , z α 1 ; ψ [ x ( z ) f 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) ] = g 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) ,       z ( z k , z k + 1 ] ,       k = 0 , 1 , , p , c D z k , z β 1 ; ψ [ y ( z ) f 2 ( z , y ( z ) , c D z k , z β 1 ; ψ y ( z ) ) ] = g 2 ( z , y ( z ) , c D z k , z β 1 ; ψ y ( z ) ) ,         z ( z k , z k + 1 ] ,       k = 0 , 1 , , p ,   x ( 0 ) = 0 ,     x ( η ) = a 1 z k δ 2 k x ( τ ) d τ + a 2 δ 2 k + 1 z k + 1 x ( τ ) d τ ,         z k < δ 2 k < η < δ 2 k + 1 < z k + 1 , y ( 0 ) = 0 ,     y ( η ) = a 1 z k δ 2 k y ( τ ) d τ + a 2 δ 2 k + 1 z k + 1 y ( τ ) d τ ,         z k < δ 2 k < η < δ 2 k + 1 < z k + 1 , Δ x ( z k ) = x ( z k + ) x ( z k ) = I k ( x ( t k ) ) ,         Δ x ( z k ) = x ( z k + ) x ( z k ) = J k ( x ( z k ) ) ,         k = 1 , 2 , , p , Δ y ( z k ) = y ( z k + ) y ( z k ) = I k * ( y ( z k ) ) ,         Δ y ( z k ) = y ( z k + ) y ( z k ) = J k * ( y ( z k ) ) ,         k = 1 , 2 , , p ,
where c D z k , z α 1 ; ψ and c D z k , z β 1 ; ψ denote the ψ -CFDs with α 1 , β 1 ( 1 , 2 ] , and J = [ 0 , Z ] with Z > 0 , f 1 , g 1 , f 2 , g 2 : J × R × R R are given continuous functions with f 1 ( 0 , x ( 0 ) , c D z k , z α 1 ; ψ x ( 0 ) ) = 0 , f 2 ( 0 , y ( 0 ) , c D z k , z β 1 ; ψ y ( 0 ) ) = 0 and a 1 , a 2 are real constants.
The main novelty of our paper is that, to the best of our knowledge, no one have studied the impulsive systems with slit strip boundary conditions. Here we introduced the generalized form of this boundary condition for each interval of the impulsive systems. In the problem (1), the integral boundary condition describes that the contribution due to finite strips of arbitrary lengths occupying the positions ( z k , δ 2 k ) and ( δ 2 k + 1 , z k + 1 ) on the intervals ( z k , z k + 1 ] , k = 0 , 1 , , p , is related to the value of the unknown function at a nonlocal point η on each impulsive interval ( z k < δ 2 k < η < δ 2 k + 1 < z k + 1 ) , k = 0 , 1 , , p located at an arbitrary position in the aperture (slit)—the region of the boundary off the strips. Examples of such boundary conditions include scattering by slits silicon strips detectors for scanned multi-slit X-ray imaging, acoustic impedance of baffled strips radiators, diffraction from an elastic knife-edge adjacent to a strip, sound fields of infinitely long strips, dielectric-loaded multiple slits in a conducting plane, lattice engineering [25,26,27,28,29,30,31,32,33].

2. Preliminaries and Notations

To overcome the vast number of Definitions of fractional derivatives and integrals [2], we can for instance consider general operators, from which choosing special kernels and some form of differential operator, we obtain the classical fractional integrals and derivatives. For example, for the kernel k ( x , t ) = x t and the differential operator d/dx, we obtain the Riemann-Liouville fractional derivative, and for k ( x , t ) = ln ( x t ) and the differential x d d x , we obtain the Hadamard fractional derivative. But, in this case, most of the fundamental laws of the derivative operator can not be obtained, due to the arbitrariness of the kernel. The problems that arise from this approach are the natural limitations to the study of the basic properties of the fractional operators. To overcome this issue, Almedia [34] considered the special case when the kernel is of the type k ( x , t ) = ψ ( x ) ψ ( t ) and the derivative operator is of the form 1 ψ ( x ) d d x . Although the kernel is still unknown, involving the function ψ , he deduced some properties for the fractional operator known as ψ -Caputo fractional derivative. Here we recall few definitions and lemmas for ψ -Caputo fractional derivative.
Definition 1
(see [34]). The left-sided ψ-Riemann-Liouville (RL) fractional integral of order α 1 ( > 0 ) for an integrable function h ( z ) : [ 0 , 1 ] R with respect to another increasing differentiable function ψ : [ a , b ] R such that ψ ( z ) ≠ 0 for all z ∈ [a,b] is defined by
I a + α 1 ; ψ h ( z ) = 1 Γ ( α 1 ) a z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 h ( s ) d s
where Γ is the Euler Gamma function.
Definition 2
(see [34]). Let n N and ψ(z), h(z) C n ( [ a , b ] , R ) be two functions such that ψ ( z ) is increasing and ψ ( z ) ≠ 0 for all z[a,b]. The left-sided ψ-RL fractional derivative of a function h(z) of order α 1 is defined by
D a + α 1 ; ψ h ( z ) = ( 1 ψ ( z ) d d z ) n I a + n α 1 ; ψ h ( z ) = 1 Γ ( n α 1 ) ( 1 ψ ( z ) d d z ) n a z ψ ( s ) ( ψ ( z ) ψ ( s ) ) n α 1 1 h ( s ) d s
where n = [ α 1 ] + 1 and [ α 1 ] denotes the integer part of the real number α 1 .
Definition 3
(see [34]). Let n 1 < α 1 < n , n N and ψ(z), h(z) ∈ C n ( [ a , b ] , R ) be two functions such that ψ ( z ) is increasing and ψ ( z ) 0 for all z[a,b]. The left-sided ψ-CFD of a function h(z) of order α 1 is defined by
c D a + α 1 ; ψ h ( z ) = D a + α 1 ; ψ [ h ( z ) l = 0 n 1 h ψ [ l ] ( a ) l ! ( ψ ( z ) ψ ( a ) ) l ] ,
where h ψ [ l ] ( z ) = ( 1 ψ ( z ) d d z ) l h ( z ) and n = [ α 1 ] + 1 for α 1 N , n = α 1 for α 1 N .
Further if h(z) C n ( [ a , b ] , R ) and α 1 N , then
c D a + α 1 ; ψ h ( z ) = I a + n α 1 ; ψ ( 1 ψ ( z ) d d z ) n h ( z ) = 1 Γ ( n α 1 ) a z ψ ( s ) ( ψ ( z ) ψ ( s ) ) n α 1 1 h ψ [ n ] ( s ) d s .
Thus if α 1 = n N , then c D a + α 1 ; ψ h ( z ) = h ψ [ n ] ( z ) .
Lemma 1
(see [34]). Let α 1 > 0 , and the following holds:
If h ( z ) C ( [ a , b ] , R ) , then c D a + α 1 ; ψ I a + α 1 ; ψ h ( z ) = h ( z ) ,   z [ a , b ] .
If h(z) C n ( [ a , b ] , R ) , n 1 < α 1 < n , then
I a + α 1 ; ψ c D a + α 1 ; ψ h ( z ) = h ( z ) l = 0 n 1 c l ( ψ ( z ) ψ ( a ) ) l ,       z [ a , b ] ,
where c l = h ψ [ l ] ( a ) l ! .
Lemma 2
(Schaefer’s fixed point theorem [35]). Let τ : E E be a completely continuous operator (i.e a map that restricted to any bounded set in E is compact). Let S ( τ ) = { x E : x = ν τ ( x ) ,   for   some   0 < ν < 1 } . Then either the set S ( τ ) is unbounded or τ has at least one fixed point.
Definition 4
(see [36]). A differential equation
d x d z = f ( z , x )
is said to be Ulam-Hyers stable, if there exists a constant l f R + , such that for every ϵ > 0 and any solution y ( z ) of the inequality:
| d y d z f ( z , y ) | ϵ ,
there exists a solution x 1 ( z ) of (2), such that,
| y ( z ) x 1 ( z ) | l f ϵ .

3. Main Results

For z k J k , such that 0 = z 0 < z 1 < z 2 < < z p = Z and J = J 0 J 1 J p , where J 0 = ( 0 , z 1 ] ,   J 1 = ( z 1 , z 2 ] , , J p = [ z p , z p + 1 ] and J = J { z 0 , z 1 , z 2 , , z p } . We define the space X = { x : J R x P C ( [ J , R ] ) , such that the   right   limits   x ( z k + ) ,   x ( z k + )     and   left   limits   x ( z k ) ,   x ( z k )   exists   and   Δ x ( z k ) = x ( z k + ) x ( z k ) ,   Δ x ( z k ) = x ( z k + ) x ( z k ) ,   k = 1 , 2 , , p } . Then clearly, X is a Banach space equipped with the norm x ( z ) = max z J | x ( z ) | . Similarly, define the space Y = { y : J R y P C ( [ J , R ] ) , right   limits   y ( z k + ) ,   y ( z k + )   left   limits   y ( z k ) ,   y ( z k )   exists   and   Δ y ( z k ) = y ( z k + ) y ( z k ) ,   Δ y ( z k ) = y ( z k + ) y ( z k )   k = 1 , 2 , , p } . Then clearly, Y is a Banach space equipped with the norm y ( z ) = max z J | y ( z ) | .
Lemma 3.
The solution x(z) ∈ P C ( J , R ) of the impulsive FDEs with slit-strips type integral boundary condition
c D z k , z α 1 ; ψ [ x ( z ) f 1 ( z ) ] = g 1 ( z ) ,   z J ,   z z k ,       1 < α 1 2 ,       k = 0 , 1 , , p , x ( 0 ) = 0 ,   x ( η ) = a 1 z k δ 2 k x ( τ ) d τ + a 2 δ 2 k + 1 z k + 1 x ( τ ) d τ , Δ x ( z k ) = x ( z k + ) x ( z k ) = I k ( x ( z k ) ) ,   Δ x ( z k ) = x ( z k + ) x ( z k ) = J k ( x ( z k ) ) ,   k = 1 , 2 , , p ,
is given by
x ( z ) = f 1 ( z ) + 1 Γ ( α 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + 1 Δ [ f 1 ( η ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + I i x ( z i ) + ψ ( η ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) a 1 z k δ 2 k ( f 1 ( τ ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + I i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) ) d τ a 2 δ 2 k + 1 z k + 1 ( f 1 ( τ ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + I i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p 1 Γ ( α 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + i = 1 p I i x ( z i ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ,   f o r   z ( z k , z k + 1 ] ,   k = 1 , 2 , , p ,
where
Δ = a 1 z k δ 2 k ( ψ ( τ ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) ) d τ + a 2 δ 2 k + 1 z k + 1 ( ψ ( τ ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) ) d τ ( ψ ( η ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) ) .
Proof. 
Let
c D z k , z α 1 ; ψ [ x ( z ) f 1 ( z ) ] = g 1 ( z ) .
Then applying Lemma 1 to the differential Equation (3), for any z J 0 , there exist constants c 0 ,   c 1 R , such that
x ( z ) = f 1 ( z ) + 1 Γ ( α 1 ) z 0 z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + c 0 + c 1 ( ψ ( z ) ψ ( z 0 ) ) .
Using initial condition x ( 0 ) = 0 , Equation (4) yields that
c 0 = 0 .
Therefore, Equation (4) takes the form
x ( z ) = f 1 ( z ) + 1 Γ ( α 1 ) z 0 z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + c 1 ( ψ ( z ) ψ ( z 0 ) ) .
Furthermore, we obtain
x ( z ) = f 1 ( z ) + 1 Γ ( α 1 1 ) z 0 z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + c 1 ψ ( z ) .
For z ( z 1 , z 2 ] , there are d 0 ,   d 1 R such that
x ( z ) = f 1 ( z ) + 1 Γ ( α 1 ) z 1 z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + d 0 + d 1 ( ψ ( z ) ψ ( z 1 ) ) , x ( z ) = f 1 ( z ) + 1 Γ ( α 1 1 ) z 1 z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + d 1 ψ ( z ) .
Hence it follows that
x ( z 1 ) = f 1 ( z ) + 1 Γ ( α 1 ) z 0 z 1 ψ ( s ) ( ψ ( z 1 ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + c 1 ( ψ ( z 1 ) ψ ( z 0 ) ) , x ( z 1 + ) = f 1 ( z ) + d 0 , x ( z 1 ) = f 1 ( z ) + 1 Γ ( α 1 1 ) z 0 z 1 ψ ( s ) ( ψ ( z 1 ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + c 1 ψ ( z 1 ) , x ( z 1 + ) = f 1 ( z ) + d 1 ψ ( z 1 ) .
Using
Δ x ( z 1 ) = x ( z 1 + ) x ( z 1 ) = I 1 x ( z 1 ) , Δ x ( z 1 ) = x ( z 1 + ) x ( z 1 ) = J 1 x ( z 1 ) ,
we obtain
d 0 = 1 Γ ( α 1 ) z 0 z 1 ψ ( s ) ( ψ ( z 1 ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + c 1 ( ψ ( z 1 ) ψ ( z 0 ) ) + I 1 x ( z 1 ) , d 1 = 1 ψ ( z 1 ) Γ ( α 1 1 ) z 0 z 1 ψ ( s ) ( ψ ( z 1 ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + c 1 + 1 ψ ( z 1 ) J 1 x ( z 1 ) .
Thus
x ( z ) = f 1 ( z ) + 1 Γ ( α 1 ) z 1 z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + 1 Γ ( α 1 ) z 0 z 1 ψ ( s ) ( ψ ( z 1 ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + c 1 ( ψ ( z 1 ψ ( z 0 ) ) + I 1 x ( z 1 ) + c 1 ( ψ ( z ) ψ ( z 1 ) ) + ψ ( z ) ψ ( z 1 ) ψ ( z 1 ) Γ ( α 1 1 ) z 0 z 1 ψ ( s ) ( ψ ( z 1 ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + ψ ( z ) ψ ( z 1 ) ψ ( z 1 ) J 1 x ( z 1 ) ,     z ( z 1 , z 2 ] .
Similarly, we have
x ( z ) = f 1 ( z ) + 1 Γ ( α 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + c 1 ( ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p 1 Γ ( α 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + i = 1 p I i x ( z i ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ,   f o r   z ( z k , z k + 1 ] ,   k = 1 , 2 , , p .
Finally, after applying x ( η ) = a 1 z k δ 2 k x ( τ ) d τ + a 2 δ 2 k + 1 z k + 1 x ( τ ) d τ , to (5) and calculating the value of c 1 , we obtain
c 1 = 1 Δ [ f 1 ( η ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + I i x ( z i ) + ψ ( η ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) a 1 z k δ 2 k ( f 1 ( τ ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + I i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) ) d τ a 2 δ 2 k + 1 z k + 1 ( f 1 ( τ ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + I i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) ) d τ ] ,
where
Δ = a 1 z k δ 2 k ( ψ ( τ ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) ) d τ + a 2 δ 2 k + 1 z k + 1 ( ψ ( τ ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) ) d τ ( ψ ( η ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) ) .
Put the value of c 1 in Equation (5), we get Equation (4). □

4. Existence and Uniqueness Results for the Problem (1)

In this section we study the existence of solution for the considered problem. Here we consider some hypothesis, which will be used in our results.
( G 1 )
For each zJ and x 1 , x 2 X , there exist positive constants M f 1 , N f 1 such that
| f 1 ( z , x 1 ( z ) , c D z k , z α 1 ; ψ x 1 ( z ) ) f 1 ( z , x 2 ( z ) , c D z k , z α 1 x 2 ( z ) ) | M f 1 | x 1 ( z ) x 2 ( z ) | + N f 1 | c D z k , z α 1 ; ψ x 1 ( z ) c D z k , z α 1 ; ψ x 2 ( z ) | .
There exist positive constants L g 1 , K g 1 such that
| g 1 ( z , x 1 ( z ) , c D z k , z α 1 ; ψ x 1 ( z ) ) g 1 ( z , x 2 ( z ) , c D z k , z α 1 ; ψ x 2 ( z ) ) | L g 1 | x 1 ( z ) x 2 ( z ) | + K g 1 | c D z k , z α 1 ; ψ x 1 ( z ) c D z k , z α 1 ; ψ x 2 ( z ) | .
( G 2 )
For each zJ and y 1 , y 2 Y , there exist positive constants M f 2 , N f 2 such that
| f 2 ( z , y 1 ( z ) , c D z k , z β 1 ; ψ y 1 ( z ) ) f 2 ( z , y 2 ( z ) , c D z k , z β 1 ; ψ y 2 ( z ) ) | M f 2 | y 1 ( z ) y 2 ( z ) | + N f 2 | c D z k , z β 1 ; ψ y 1 ( z ) c D z k , z β 1 ; ψ y 2 ( z ) | .
There exist positive constants L g 2 , K g 2 such that
| g 2 ( z , y 1 ( z ) , c D z k , z β 1 ; ψ y 1 ( z ) ) g 2 ( z , y 2 ( z ) , c D z k , z β 1 ; ψ y 2 ( z ) ) | L g 2 | y 1 ( z ) y 2 ( z ) | + K g 2 | c D z k , z β 1 ; ψ y 1 ( z ) c D z k , z β 1 ; ψ y 2 ( z ) | .
( G 3 )
For every x 1 , x 2 X and there exist constants A 1 , A 2 > 0 such that
| I k ( x 1 ( z k ) ) I k ( x 2 ( z k ) ) | A 1 | x 1 ( z k ) x 2 ( z k ) | ,
| J k ( x 1 ( z k ) ) J k ( x 2 ( z k ) ) | A 2 | x 1 ( z k ) x 2 ( z k ) | .
For every y 1 , y 2 Y and there exist constants A 3 , A 4 > 0 such that
| I k * ( y 1 ( z k ) ) I k * ( y 2 ( z k ) ) | A 3 | y 1 ( z k ) y 2 ( z k ) | ,
| J k * ( y 1 ( z k ) ) J k * ( y 2 ( z k ) ) | A 4 | y 1 ( z k ) y 2 ( z k ) | .
( G 4 )
There exist constants θ 0 , θ 1 and θ 2 such that
| f 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) | θ 0 ( z ) + θ 1 ( z ) | x ( z ) | + θ 2 ( z ) | c D z k , z α 1 ; ψ x ( z ) | ,
with sup z J θ 0 ( z ) = θ 0 🟉 , sup z J θ 1 ( z ) = θ 1 🟉 and sup z J θ 2 ( z ) = θ 2 🟉 .
There exist constants θ 3 , θ 4 and θ 5 such that
| g 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) | θ 3 ( z ) + θ 4 ( z ) | x ( z ) | + θ 5 ( z ) | c D z k , z α 1 ; ψ x ( z ) | ,
with sup z J θ 3 ( z ) = θ 3 🟉 , sup z J θ 4 ( z ) = θ 4 🟉 and sup z J θ 5 ( z ) = θ 5 🟉 .
( G 5 )
For each x ( z ) R there exist constants A 1 , N 1 > 0 and A 2 , N 2 > 0 such that the functions I k , J k : R R are continuous and satisfy the inequalities:
| I k x ( z k ) | A 1 | x ( z ) | + N 1 ,         | J k x ( z k ) | A 2 | x ( z ) | + N 2 ,   k = 1 , 2 , , p .
For each y ( z )   Y there exist constants A 3 , N 3 > 0 and A 4 , N 4 > 0 such that the functions I k * , J k * : R R are continuous and satisfy the inequalities:
| I k * y ( z k ) | A 3 | y ( z ) | + N 3 ,       | J k * v ( z k ) | A 4 | y ( z ) | + N 4 ,   k = 1 , 2 , , p .
Let us define an operator P : X × Y X × Y such that
P ( x , y ) ( z ) = ( P 1 ( x , y ) ( z ) , P 2 ( x , y ) ( z ) ) ,
where
P 1 ( x , y ) ( z ) = f 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) + 1 Γ ( α 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + 1 Δ [ f 1 ( η , x ( η ) , c D z k , z α 1 ; ψ x ( η ) ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + I i x ( z i ) + ψ ( η ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) a 1 z k δ 2 k ( f 1 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + I i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) ) d τ a 2 δ 2 k + 1 z k + 1 ( f 1 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + I i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p 1 Γ ( α 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p I i x ( z i ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ,
P 2 ( x , y ) ( z ) = f 2 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) + 1 Γ ( β 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) β 1 1 g 2 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + 1 Δ [ f 2 ( η , x ( η ) , c D z k , z α 1 ; ψ x ( η ) ) + 1 Γ ( β 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) β 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ( 1 Γ ( β 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 1 g 2 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( β 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 2 g 2 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + I i * y ( z i ) + ψ ( η ) ψ ( z i ) ψ ( z i ) J i * y ( z i ) ) b 1 z k δ 2 k ( f 2 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) + 1 Γ ( β 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) β 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ( 1 Γ ( β 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 1 g 2 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( β 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 2 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + I i * y ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i * y ( z i ) ) ) d τ b 2 δ 2 k + 1 z k + 1 ( f 2 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) + 1 Γ ( β 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) β 1 1 g 2 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ( 1 Γ ( β 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 1 g 2 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( β 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 2 g 2 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + I i * y ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i * y ( z i ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p 1 Γ ( β 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 1 g 2 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) Γ ( β 1 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 2 g 2 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p I i * y ( z i ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) J i * y ( z i ) .
Our first result is stated as follows.
Theorem 1.
Assume that the conditions ( G 1 ) ( G 3 ) are satisfied, and
Z * = max { Z 1 , Z 2 } < 1 ,
where Z 1 and Z 2 are provided in the proof, then the coupled system (1) has a unique solution.
Proof. 
Let ( x , y ) , ( x ¯ , y ¯ )   X × Y then:
| P 1 ( x , y ) ( z ) P 1 ( x ¯ , y ¯ ) ( z ) | | f 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) f 1 ( z , x ¯ ( z ) , c D z k , z α 1 ; ψ x ¯ ( z ) ) | + 1 Γ ( α 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 ( | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | ) d s + 1 | Δ | [ | f 1 ( η , x ( η ) , c D z k , z α 1 ; ψ x ( η ) ) f 1 ( η , x ¯ ( η ) , c D z k , z α 1 ; ψ x ¯ ( η ) ) | + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + | I i x ( z i ) I i x ¯ ( z i ) | + ψ ( η ) ψ ( z i ) ψ ( z i ) | J i x ( z i ) J i x ¯ ( z i ) | ) + | a 1 | z k δ 2 k ( | f 1 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) f 1 ( τ , x ¯ ( τ ) , c D z k , z α 1 ; ψ x ¯ ( τ ) ) | + 1 Γ ( α 1 ) × z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + | I i x ( z i ) I i x ¯ ( z i ) | + ψ ( τ ) ψ ( z i ) ψ ( z i ) | J i x ( z i ) J i x ¯ ( z i ) | ) ) d τ + | a 2 | δ 2 k + 1 z k + 1 ( | f 1 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) f 1 ( τ , x ¯ ( τ ) , c D z k , z α 1 ; ψ x ¯ ( τ ) ) | + 1 Γ ( α 1 ) × z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + | I i x ( z i ) I i x ¯ ( z i ) | + ψ ( τ ) ψ ( z i ) ψ ( z i ) | J i x ( z i ) J i x ¯ ( z i ) | ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p 1 Γ ( α 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) g 1 ( s , x ¯ ( s ) , c D z k , z α 1 ; ψ x ¯ ( s ) ) | d s + i = 1 p | I i x ( z i ) I i x ¯ ( z i ) | + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) | J i x ( z i ) J i x ¯ ( z i ) | .
| P 1 ( x , y ) ( z ) P 1 ( x ¯ , y ¯ ) ( z ) | M f 1 x x ¯ + N f 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + 1 | Δ | [ M f 1 x x ¯ + N f 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + + ( ψ ( η ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + A 1 | x ( z i ) x ¯ ( z i ) | + ψ ( η ) ψ ( z i ) ψ ( z i ) A 2 | x ( z i ) x ¯ ( z i ) | ) + | a 1 | z k δ 2 k ( M f 1 x x ¯ + N f 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + A 1 | x ( z 1 ) x ¯ ( z i ) | + ψ ( τ ) ψ ( z i ) ψ ( z i ) A 2 | x ( z i ) x ¯ ( z i ) | ) ) d τ + | a 2 | δ 2 k + 1 z k + 1 ( ( M f 1 x x ¯ + N f 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + A 1 | x ( z i ) x ¯ ( z i ) | + ψ ( τ ) ψ ( z i ) ψ ( z i ) A 2 x x ¯ ) ) d τ ] | ψ ( z ) ψ ( z k ) | + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α Γ ( α 1 + 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 ψ ( z i ) Γ ( α 1 ) ( L g 1 x x ¯ + K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + i = 1 p A 1 | x ( z i ) x ¯ ( z i ) | + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) A 2 | x ( z i ) x ¯ ( z i ) |
| P 1 ( x , y ) ( z ) P 1 ( x ¯ , y ¯ ) ( z ) | M f 1 x x ¯ + N f 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) L g 1 x x ¯ + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ) + ( M f 1 | Δ | x x ¯ + N f 1 | Δ | c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 x x ¯ + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 x x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | L g 1 x x ¯ + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p A 1 | Δ | x x ¯ + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | A 2 x x ¯ + | a 1 | | Δ | ( δ 2 k z k ) M f 1 x x ¯ + | a 1 | | Δ | ( δ 2 k z k ) N f 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 x x ¯ + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 x x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 x x ¯ + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 × c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + p A 1 | Δ | | a 1 | ( δ 2 k z k ) x x ¯ + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) A 2 x x ¯ + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) M f 1 x x ¯ + | a 2 | ( z k + 1 δ 2 k + 1 ) | Δ | N f 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 x x ¯
+ ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 x x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 × c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + p A 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) x x ¯ + i = 1 p A 2 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) x x ¯ ) ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α Γ ( α 1 + 1 ) L g 1 x x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) L g 1 x x ¯ + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + p A 1 x x ¯ + A 2 i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) x x ¯ .
| P 1 ( x , y ) ( z ) P 1 ( x ¯ , y ¯ ) ( z ) | ( M f 1 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) L g 1 + ( M f 1 | Δ | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 + + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | L g 1 + p A 1 | Δ | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | A 2 + | a 1 | | Δ | ( δ 2 k z k ) M f 1 + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + p A 1 | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) A 2 + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) M f 1
+ ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 + p A 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p A 2 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) ψ ( τ ) ψ ( z i ) ψ ( z i ) ) ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α Γ ( α 1 + 1 ) L g 1 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) L g 1 + p A 1 + A 2 i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) ) x x ¯ + ( N f 1 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) K g 1 + ( N f 1 | Δ | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | K g 1 + | a 1 | | Δ | ( δ 2 k z k ) N f 1 + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + | a 2 | ( z k + 1 δ 2 k + 1 ) | Δ | N f 1 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 ) ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) K g 1 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) K g 1 ) c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ .
Let
Ω 1 = M f 1 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) L g 1 + ( M f 1 | Δ | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 + + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | L g 1 + p A 1 | Δ | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | A 2 + | a 1 | | Δ | ( δ 2 k z k ) M f 1 + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + p A 1 | Δ | | a 1 | ( δ 2 k z k ) + A 2 i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) M f 1 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 + p A 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + A 2 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) ) ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α Γ ( α 1 + 1 ) L g 1 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) L g 1 + p A 1 + A 2 i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) )
and
Ω 2 = N f 1 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) K g 1 + ( N f 1 | Δ | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | K g 1 + | a 1 | | Δ | ( δ 2 k z k ) N f 1 + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + | a 2 | ( z k + 1 δ 2 k + 1 ) | Δ | N f 1 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 ) ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) K g 1 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) K g 1 .
Thus we have,
P 1 ( x , y ) P 1 ( x ¯ , y ¯ ) Ω 1 x x ¯ + Ω 2 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ .
But
c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) ( 1 ψ ( z ) d d z ) M f 1 + L g 1 1 ( ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) ( 1 ψ ( z ) d d z ) N f 1 + K g 1 ) x x ¯ .
Then,
P 1 ( x , y ) P 1 ( x ¯ , y ¯ ) Ω 1 + Ω 2 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) ( 1 ψ ( z ) d d z ) M f 1 + L g 1 1 ( ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) ( 1 ψ ( z ) d d z ) N f 1 + K g 1 ) x x ¯ .
Provided that,
( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) ( 1 ψ ( z ) d d z ) N f 1 + K g 1 < 1 .
Similarly,
P 2 ( x , y ) P 2 ( x ¯ , y ¯ ) Ω 3 + Ω 4 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) ( 1 ψ ( z ) d d z ) M f 2 + L g 2 1 ( ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) ( 1 ψ ( z ) d d z ) N f 2 + K g 2 ) y y ¯ .
Provided that,
( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) ( 1 ψ ( z ) d d z ) N f 2 + K g 2 < 1 .
Where
Ω 3 = M f 2 + ( ψ ( z ) ψ ( z k ) ) β 1 Γ ( β 2 + 1 ) L g 2 + ( M f 2 | Δ | + ( ψ ( η ) ψ ( z k ) ) β 2 Γ ( β 2 + 1 ) | Δ | L g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 2 Γ ( β 2 + 1 ) | Δ | L g 2 + + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 2 1 ψ ( z i ) Γ ( β 2 ) | Δ | L g 2 + p A 1 | Δ | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | A 2 + | a 2 | | Δ | ( δ 2 k z k ) M f 2 + ( ψ ( τ ) ψ ( z k ) ) β 2 Γ ( β 2 + 1 ) | Δ | | a 2 | ( δ 2 k z k ) L g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 2 Γ ( β 2 + 1 ) | Δ | | a 2 | ( δ 2 k z k ) L g 2 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) β 2 1 ψ ( z i ) Γ ( β 2 ) | Δ | | a 2 | ( δ 2 k z k ) L g 2 + A 1 | Δ | | a 2 | ( δ 2 k z k ) + i = 1 ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 2 | ( δ 2 k z k ) A 2 + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) M f 2 + ( ψ ( η ) ψ ( z k ) ) β 2 Γ ( β 2 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 2 Γ ( β 2 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 2 + A 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + A 2 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) ) ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α Γ ( β 2 + 1 ) L g 2 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 2 1 ψ ( z i ) Γ ( β 2 ) L g 2 + p A 1 + A 2 i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) )
Ω 4 = N f 2 + ( ψ ( z ) ψ ( z k ) ) β 2 Γ ( β 2 + 1 ) K g 2 + ( N f 2 | Δ | + ( ψ ( η ) ψ ( z k ) ) β 2 Γ ( β 2 + 1 ) | Δ | K g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 2 Γ ( β 2 + 1 ) | Δ | K g 2 + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 2 1 ψ ( z i ) Γ ( β 2 ) | Δ | K g 2 + | a 2 | | Δ | ( δ 2 k z k ) N f 2 + ( ψ ( τ ) ψ ( z k ) ) β 2 Γ ( β 2 + 1 ) | Δ | | a 2 | ( δ 2 k z k ) K g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 2 Γ ( β 2 + 1 ) | Δ | | a 2 | ( δ 2 k z k ) K g 2 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) β 2 1 ψ ( z i ) Γ ( β 2 ) | Δ | | a 2 | ( δ 2 k z k ) K g 2 + | a 2 | ( z k + 1 δ 2 k + 1 ) | Δ | N f 2 + ( ψ ( η ) ψ ( z k ) ) β 2 Γ ( β 2 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 2 Γ ( β 2 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 2 ) ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 2 Γ ( β 2 + 1 ) K g 2 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 2 1 ψ ( z i ) Γ ( β 2 ) K g 2 .
Let
Z 1 = Ω 1 + Ω 2 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) ( 1 ψ ( z ) d d z ) M f 1 + L g 1 1 ( ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) ( 1 ψ ( z ) d d z ) N f 1 + K g 1 ) .
Then we obtain
P 1 ( x , y ) P 1 ( x ¯ , y ¯ ) Z 1 x x ¯ .
Similarly,
P 2 ( x , y ) P 2 ( x ¯ , y ¯ ) Z 2 y y ¯ ,
where
Z 2 = Ω 3 + Ω 4 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) ( 1 ψ ( z ) d d z ) M f 2 + L g 2 1 ( ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) ( 1 ψ ( z ) d d z ) N f 2 + K g 2 ) .
As it is assumed that
max { Z 1 , Z 2 } = Z * < 1 .
So we have
P ( x , y ) P ( x ¯ , y ¯ ) Z * ( x x ¯ + y y ¯ ) .
Then from above inequality we can say that P is a contraction mapping and by Banach contraction principle P has a unique fixed point. □
Theorem 2.
Assume that the conditions ( G 1 ) ( G 5 ) are satisfied, then the coupled system (1) has at least one solution.
Proof. 
To prove that the coupled system (1) has at least one solution, we use the Schaefer’s fixed point theorem. As f 1 , g 1 , I , J are continuous functions, so P 1 is continuous. Also from the continuity of f 2 , g 2 and I * , J * the operator P 2 is continuous. This shows that P is continuous.
Consider a set:
Q r = { ( x , y ) X × Y : ( x , y ) r } .
For any z [ 0 , Z ] , we have
| P 1 ( x , y ) ( z ) | | f 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) | + 1 Γ ( α 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + 1 | Δ | [ | f 1 ( η , x ( η ) , c D z k , z α 1 ; ψ x ( η ) ) | + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + | I i x ( z i ) | + ψ ( η ) ψ ( z i ) ψ ( z i ) | J i x ( z i ) | ) + | a 1 | z k δ 2 k ( | f 1 ( τ , x ( τ ) , c D z k , τ α 1 ; ψ x ( τ ) ) | + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + | I i x ( z i ) | + ψ ( τ ) ψ ( z i ) ψ ( z i ) | J i x ( z i ) | ) ) d τ + | a 2 | δ 2 k + 1 z k + 1 ( | f 1 ( τ , x ( τ ) , c D z k , τ α 1 ; ψ x ( τ ) ) | + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + | I i x ( z i | ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) | J i x ( z i | ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p ( 1 Γ ( α 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + ψ ( z ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + | I i x ( z i ) | + ψ ( z ) ψ ( z i ) ψ ( z i ) | J i x ( z i ) | )
θ 0 ( z ) + θ 1 ( z ) | x ( z ) | + θ 2 ( z ) | c D z k , z α 1 , ψ x ( z ) | + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z ) + θ 4 ( z ) | x ( z ) | + θ 5 ( z ) | c D z k , z α 1 , ψ x ( z ) | ) + 1 | Δ | [ θ 0 ( η ) + θ 1 ( η ) | x ( η ) | + θ 2 ( η ) | c D z k , η α 1 , ψ x ( η ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( η ) + θ 4 ( η ) | x ( η ) | + θ 5 ( η ) | c D z k , η α 1 , ψ x ( η ) | ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + ψ ( η ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + A 1 | x ( z ) | + N 1 + ψ ( η ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) + | a 1 | z k δ 2 k ( θ 0 ( τ ) + θ 1 ( τ ) | x ( η ) | + θ 2 ( τ ) | c D z k , τ α 1 , ψ x ( τ ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( η ) + θ 4 ( η ) | x ( η ) | + θ 5 ( η ) | c D z k , η α 1 , ψ x ( η ) | ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) ) d τ + | a 2 | δ 2 k + 1 z k + 1 ( θ 0 ( τ ) + θ 1 ( τ ) | x ( η ) | + θ 2 ( τ ) | c D z k , τ α 1 , ψ x ( τ ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( η ) + θ 4 ( η ) | x ( η ) | + θ 5 ( η ) | c D z k , η α 1 , ψ x ( η ) | ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) )
From ( G 4 ) and (3), we have
| c D z k , z α 1 ; ψ x ( z ) | θ 3 * + ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) θ 0 * 1 ( θ 5 * + ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) θ 2 * ) + ( θ 4 * + ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) θ 1 * ) 1 ( θ 5 * + ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) θ 2 * ) | x ( z ) |
Let
A 1 = θ 3 * + ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) θ 0 * 1 ( θ 5 * + ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) θ 2 * )
and
A 2 = ( θ 4 * + ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) θ 1 * ) 1 ( θ 5 * + ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) θ 2 * ) .
Then
| c D z k , z α 1 ; ψ x ( z ) | A 1 + A 2 | x ( z ) | .
Let | x ( z ) | r 1 , then we get
| c D z k , z α 1 ; ψ x ( z ) | A 1 + A 2 r 1 .
Using the above estimates, we get
θ 0 * + θ 1 * r 1 + θ 2 * ( A 1 + A 2 r 1 ) + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + 1 | Δ | [ θ 0 * + θ 1 * r 1 + θ 2 * ( A 1 + A 2 r 1 ) + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) + ψ ( η ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + A 1 r 1 + N 1 + ψ ( η ) ψ ( z i ) ψ ( z i ) ( A 2 r 1 + N 2 ) ) + | a 1 | z k δ 2 k ( θ 0 * + θ 1 * r 1 + θ 2 * ( A 1 + A 2 r 1 ) + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + A 1 r 1 + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 r 1 + N 2 ) ) ) d τ
+ | a 2 | δ 2 k + 1 z k + 1 ( θ 0 * + θ 1 * r 1 + θ 2 * ( A 1 + A 2 r 1 ) + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + A 1 r 1 + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 r 1 + N 2 ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 r 1 ) ) + A 1 r 1 + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 r 1 + N 2 ) ) .
Therefore,
P 1 ( x , y ) ( z ) X ϝ 1 .
In the same way, we can prove that
P 2 ( x , y ) ( z ) Y ϝ 2 .
Let max { ϝ 1 , ϝ 2 } = ϝ . Then we have
P ( x , y ) ( z ) U × Y ϝ .
The above inequality shows that the operator P is bounded. Now we need to show that the operator P is equicontinuous. For this let ω 1 , ω 2 J k such that ω 1 < ω 2 where k = 0 , 1 , 2 , , p .
Let ( x , y ) Q r , and then we have
| P 1 ( x , y ) ( ω 2 ) P 1 ( x , y ) ( ω 1 ) | | f 1 ( ω 2 , x ( ω 2 ) , c D z k , z α 1 ; ψ x ( ω 2 ) ) f 1 ( ω 1 , x ( ω 1 ) , c D z k , z α 1 ; ψ x ( ω 1 ) ) | + 1 Γ ( α 1 ) | z k ω 2 ψ ( s ) ( ψ ( ω 2 ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s z k ω 1 ψ ( s ) ( ψ ( ω 1 ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s | + 1 Δ [ | f 1 ( η , x ( η ) , c D z k , z α 1 ; ψ x ( η ) ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + I i x ( z i ) + ψ ( η ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) | + | a 1 | z k δ 2 k | | ( f 1 ( τ ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + I i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) ) | d τ + | a 2 | δ 2 k + 1 z k + 1 | ( f 1 ( τ ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) d s + I i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) ) | d τ ] | | ( ψ ( ω 2 ) ψ ( z k ) ) ( ψ ( ω 1 ) ψ ( z k ) ) | + i = 1 p | ( ψ ( ω 2 ) ψ ( z i ) ) ( ψ ( ω 1 ) ψ ( z i ) ) | ψ ( z i ) Γ ( α 1 1 ) z i 1 z i | ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + i = 1 p | ( ψ ( ω 2 ) ψ ( z i ) ) ( ψ ( ω 1 ) ψ ( z i ) ) | ψ ( z i ) J i x ( z i ) .
From above inequality, if ω 1 ω 2 , we deduce that
| P 1 ( x , y ) ( ω 2 ) P 1 ( x , y ) ( ω 1 ) | 0 .
In the same way we can prove that
| P 2 ( x , y ) ( ω 2 ) P 2 ( x , y ) ( ω 1 ) | 0 .
Hence, by the Arzila-Ascoli theorem P 1 and P 2 are completely continuous. This shows that P is completely continuous.
Now let us define a set:
G = { ( x , y ) X × Y ; ( x , y ) = λ P ( x , y ) ; 0 < λ < 1 } .
we prove that the set G is bounded.
For zJ and ( x , y ) G then ( x , y ) = λ P ( x , y ) i.e., x ( z ) = λ P 1 ( x , y ) and y ( z ) = λ P 2 ( x , y ) . Now
| x ( z ) | = | λ P 1 ( x , y ) | λ { | f 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) | + 1 Γ ( α 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + 1 | Δ | [ | f 1 ( η , x ( η ) , c D z k , z α 1 ; ψ x ( η ) ) | + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + I i x ( z i ) + ψ ( η ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) + | a 1 | z k δ 2 k ( | f 1 ( τ , x ( τ ) , c D z k , τ α 1 ; ψ x ( τ ) ) | + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + I i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) ) ) d τ + | a 2 | δ 2 k + 1 z k + 1 ( | f 1 ( τ , x ( τ ) , c D z k , τ α 1 ; ψ x ( τ ) ) | + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + | I i x ( z i | ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) | J i x ( z i | ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p ( 1 Γ ( α 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 | g 1 ( s , x ( s ) , c D z k , z α 1 ; ψ x ( s ) ) | d s + ψ ( z ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s ) d s + | I i x ( z i ) | + ψ ( z ) ψ ( z i ) ψ ( z i ) | J i x ( z i ) | ) }
λ { θ 0 ( z ) + θ 1 ( z ) | x ( z ) | + θ 2 ( z ) | c D z k , z α 1 , ψ x ( z ) | + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z ) + θ 4 ( z ) | x ( z ) | + θ 5 ( z ) | c D z k , z α 1 , ψ x ( z ) | ) + 1 | Δ | [ θ 0 ( η ) + θ 1 ( η ) | x ( η ) | + θ 2 ( η ) | c D z k , η α 1 , ψ x ( η ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( η ) + θ 4 ( η ) | x ( η ) | + θ 5 ( η ) | c D z k , η α 1 , ψ x ( η ) | ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + ψ ( η ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + A 1 | x ( z ) | + N 1 + ψ ( η ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) + | a 1 | z k δ 2 k ( θ 0 ( τ ) + θ 1 ( τ ) | x ( τ ) | + θ 2 ( τ ) | c D z k , τ α 1 , ψ x ( τ ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( η ) + θ 4 ( η ) | x ( η ) | + θ 5 ( η ) | c D z k , η α 1 , ψ x ( η ) | ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) ) d τ + | a 2 | δ 2 k + 1 z k + 1 ( θ 0 ( τ ) + θ 1 ( τ ) | x ( η ) | + θ 2 ( τ ) | c D z k , τ α 1 , ψ x ( τ ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( η ) + θ 4 ( η ) | x ( η ) | + θ 5 ( η ) | c D z k , η α 1 , ψ x ( η ) | ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 ( z i ) + θ 4 ( z i ) | x ( z i ) | + θ 5 ( z i ) | c D z i 1 , z i α 1 , ψ x ( z i ) | ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) }
Using (4.3), we have
| x ( z ) | λ { θ 0 * + θ 1 * | x ( z ) | + θ 2 * ( A 1 + A 2 | x ( z ) | ) + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 | x ( z ) | ) ) + 1 | Δ | [ θ 0 * + θ 1 * | x ( η ) | + θ 2 * ( A 1 + A 2 | x ( η ) ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | | + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + ψ ( η ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * x ( η ) + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + A 1 x ( z ) + N 1 + ψ ( η ) ψ ( z i ) ψ ( z i ) ( A 2 x ( z ) + N 2 ) ) + | a 1 | z k δ 2 k ( θ 0 * + θ 1 * | x ( τ ) | + θ 2 * ( A 1 + A 2 | x ( τ ) | ) + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) ) d τ + | a 2 | δ 2 k + 1 z k + 1 ( θ 0 * + θ 1 * | x ( τ ) | + θ 2 * ( A 1 + A 2 | x ( τ ) | ) + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( ( A 1 + A 2 | x ( η ) | ) ) ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) } .
By further simplification, we get that
| x ( z ) | λ { θ 0 * + θ 1 * | x ( z ) | + θ 2 * ( A 1 + A 2 | x ( z ) | ) + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 | x ( z ) | ) ) + 1 | Δ | [ θ 0 * + θ 1 * | x ( η ) | + θ 2 * ( ( A 1 + A 2 | x ( η ) | ) ) + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * r 1 + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | | + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + ψ ( η ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * x ( η ) + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + A 1 x ( z ) + N 1 + ψ ( η ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) + | a 1 | z k δ 2 k ( θ 0 * + θ 1 * | x ( τ ) | + θ 2 * A 1 + A 2 | x ( τ ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) ) d τ + | a 2 | δ 2 k + 1 z k + 1 ( θ 0 * + θ 1 * | x ( τ ) | + θ 2 * A 1 + A 2 | x ( τ ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * | x ( η ) | + θ 5 * ( A 1 + A 2 | x ( η ) | ) ) + A 1 | x ( z ) | + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 | x ( z ) | + N 2 ) ) } .
Let us assume that M * < 1 , where
M * = λ [ θ 1 * + θ 2 * A 2 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 4 * + θ 5 * A 2 ) + 1 | Δ | [ θ 1 * + θ 2 * A 2 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 4 * + θ 5 * A 2 ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 4 * + θ 5 * A 2 ) + ( ψ ( η ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) ( θ 4 * + θ 5 * A 2 ) + A 1 + ψ ( η ) ψ ( z i ) ψ ( z i ) ( A 2 ) ) + | a 1 | z k δ 2 k ( θ 1 * | x ( τ ) | + θ 2 * A 2 | x ( τ ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 4 * + θ 5 * A 2 ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 4 * + θ 5 * A 2 ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 4 * + θ 5 * A 2 ) + A 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) A 2 ) ) ( δ 2 k z k ) + | a 2 | δ 2 k + 1 z k + 1 ( θ 1 * | x ( τ ) | + θ 2 * A 2 | x ( τ ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 4 * + θ 5 * A 2 ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 4 * + θ 5 * A 2 ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 4 * + θ 5 * A 2 ) + A 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) ( A 2 ) ) ) ( z k + 1 δ 2 k + 1 ) ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 4 * + θ 5 * A 2 ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 4 * + θ 5 * A 2 ) + A 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) A 2 ) ] .
Then we have
x ( z ) λ 1 M * { θ 0 * + θ 2 * A 1 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 5 * A 1 ) + 1 | Δ | [ θ 0 * + θ 2 * ( A 1 ) + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 5 * A 1 + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 5 * A 1 ) + ψ ( η ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 4 * x ( η ) + θ 5 * A 1 ) + N 1 + ψ ( η ) ψ ( z i ) ψ ( z i ) N 2 ) + | a 1 | ( θ 0 * + θ 2 * A 1 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 5 * ( A 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 5 * A 1 ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 5 * A 1 ) + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) N 2 ) ) δ 2 k z k + | a 2 | ( θ 0 * + θ 2 * A 1 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 5 * A 1 ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 5 * A 1 ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 5 * A 1 ) + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) N 2 ) ) z k + 1 δ 2 k + 1 ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p ( ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) ( θ 3 * + θ 5 * A 1 ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) × ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 Γ ( α 1 ) ( θ 3 * + θ 5 * A 1 ) + N 1 + ψ ( τ ) ψ ( z i ) ψ ( z i ) N 2 ) } .
Thus there exists a positive constant ϝ 1 , such that
x X ϝ 1 .
In the same way, we can prove that there exists ϝ 1 , such that
y Y ϝ 2 .
Let max { ϝ 1 , ϝ 2 } = ϝ . Then we have
( x , y ) U × Y ϝ .
Thus the set G is bounded, and by the Schaefer’s fixed point theorem, the operator P has at least one fixed point, i.e., the problem (1) has at least one solution. □

5. Ulam’s Stability Results

Using Definition 4, in this section we give the Ulam-Hyers stability of the problem (3).
Theorem 3.
If assumptions ( G 1 ) , ( G 2 ) are satisfied, then the coupled system (1) is Ulam-Hyers stable.
Proof. 
Let ( x , y ) X × Y be an approximate solution of the inequality:
| c D z k , z α 1 ; ψ [ x ( z ) f 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) ] g 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) | < ϵ 1 ,     z ( z k , z k + 1 ] , | Δ x ( z k ) I k ( x ( z k ) ) | < ϵ 1 ,     k = 1 , 2 , , p , | Δ x ( z k ) J k ( x ( z k ) ) | < ϵ 1 . | c D z k , z β 1 ; ψ [ y ( z ) f 2 ( z , y ( z ) , c D z k , z β 1 ; ψ y ( z ) ) ] g 2 ( z , y ( z ) , c D z k , z β 1 ; ψ y ( z ) ) | < ϵ 2 , | Δ y ( z k ) I k * ( y ( z k ) ) | < ϵ 2 ,         | Δ y ( z k ) J k * ( y ( z k ) ) | < ϵ 2 ,     k = 1 , 2 , , p .
From the inequality (9), we have
c D z k , z α 1 ; ψ [ x ( z ) f 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) ] = g 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) + φ ( z ) , z ( z k , z k + 1 ] ,     k = 0 , 1 , 2 , , p . Δ x ( z k ) = I k ( x ( z k ) ) + φ k ( z ) ,     k = 1 , 2 , , p , Δ x ( z k ) = J k ( x ( z k ) ) + φ k ( z ) . c D z k , z β 1 ; ψ [ y ( z ) f 2 ( z , y ( z ) , c D z k , z β 1 ; ψ y ( z ) ) ] = g 2 ( z , y ( z ) , c D z k , z β 1 ; ψ y ( z ) ) + ϕ ( z ) , z ( z k , z k + 1 ] ,     k = 0 , 1 , 2 , , p , Δ y ( z k ) = I k * ( y ( z k ) ) + ϕ k ( z ) ,       k = 1 , 2 , , p , Δ y ( z k ) = J k * ( y ( z k ) ) + ϕ k ( z ) .
The x and y parts of the solution ( x , y ) of problem (10) are equivalent to
x ( z ) = f 1 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) + 1 Γ ( α 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + 1 Γ ( α 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) α 1 1 φ ( s ) d s + 1 Δ [ f 1 ( η , x ( η ) , c D z k , z α 1 ; ψ x ( η ) ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) α 1 1 × g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) α 1 1 φ ( s ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + 1 Γ ( α 1 ) × z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 φ ( s ) d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 × g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 φ ( s ) d s + I i x ( z i ) + φ i ( z ( i ) ) + ψ ( η ) ψ ( z i ) ψ ( z i ) J i x ( z i ) + ψ ( η ) ψ ( z i ) ψ ( z i ) φ ( z i ) ) a 1 z k δ 2 k ( f 1 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) + 1 Γ ( α 1 ) z k τ ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + 1 Γ ( α 1 ) z k τ ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 φ ( s ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + I i x ( z i ) + φ i ( z ( i ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) φ ( z i ) ) ) d τ a 2 δ 2 k + 1 z k + 1 ( f 1 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + 1 Γ ( α 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) α 1 1 φ ( s ) d s + i = 1 p ( 1 Γ ( α 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + I i x ( z i ) + φ i ( z ( i ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i x ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) φ ( z i ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p 1 Γ ( α 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 1 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) Γ ( α 1 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) α 1 2 g 1 ( s , x ( s ) , c D z k , s α 1 ; ψ x ( s ) ) d s + i = 1 p I i x ( z i ) + i = 1 p φ i ( z ( i ) ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) J i x ( z i ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) φ i ( z ( i ) ) ,
y ( z ) = f 2 ( z , x ( z ) , c D z k , z α 1 ; ψ x ( z ) ) + 1 Γ ( β 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) β 1 1 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + 1 Γ ( β 1 ) z k z ψ ( s ) ( ψ ( z ) ψ ( s ) ) β 1 1 ϕ ( s ) d s + 1 Δ [ f 2 ( η , x ( η ) , c D z k , z α 1 ; ψ x ( η ) ) + 1 Γ ( β 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) β 1 1 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + 1 Γ ( β 1 ) z k η ψ ( s ) ( ψ ( η ) ψ ( s ) ) β 1 1 ϕ ( s ) d s + i = 1 p ( 1 Γ ( β 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 1 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + 1 Γ ( β 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 1 ϕ ( s ) d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( β 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 2 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + ψ ( η ) ψ ( z i ) ψ ( z i ) Γ ( β 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 2 ϕ ( s ) d s + I i * y ( z i ) + ϕ i ( z ( i ) ) + ψ ( η ) ψ ( z i ) ψ ( z i ) J i * y ( z i ) + ψ ( η ) ψ ( z i ) ψ ( z i ) ϕ ( z i ) ) a 1 z k δ 2 k ( f 2 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) + 1 Γ ( β 1 ) z k τ ψ ( s ) ( ψ ( τ ) ψ ( s ) ) β 1 1 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + 1 Γ ( β 1 ) z k τ ψ ( s ) ( ψ ( τ ) ψ ( s ) ) β 1 1 ϕ ( s ) d s + i = 1 p ( 1 Γ ( β 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 1 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( β 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 2 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + I i * y ( z i ) + ϕ i ( z ( i ) ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i * y ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) ϕ ( z i ) ) ) d τ a 2 δ 2 k + 1 z k + 1 ( f 2 ( τ , x ( τ ) , c D z k , z α 1 ; ψ x ( τ ) ) + 1 Γ ( β 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) β 1 1 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s 1 Γ ( β 1 ) z k η ψ ( s ) ( ψ ( τ ) ψ ( s ) ) β 1 1 ϕ ( s ) d s + i = 1 p ( 1 Γ ( β 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 1 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + ψ ( τ ) ψ ( z i ) ψ ( z i ) Γ ( β 1 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 2 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + I i * y ( z i ) + ϕ i ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) J i * y ( z i ) + ψ ( τ ) ψ ( z i ) ψ ( z i ) ϕ ( z i ) ) ) d τ ] ( ψ ( z ) ψ ( z k ) ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) + i = 1 p 1 Γ ( β 1 ) z i 1 z i ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 1 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) Γ ( β 1 1 ) z i 1 z 1 ψ ( s ) ( ψ ( z i ) ψ ( s ) ) β 1 2 g 2 ( s , y ( s ) , c D z k , s β 1 ; ψ y ( s ) ) d s + i = 1 p I i * y ( z i ) + i = 1 p ϕ i ( z ( i ) ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) J i * y ( z i ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) ϕ ( z i ) ,
Now let ( x , y ) be the solution of (3) and ( x 1 , y 1 ) be the solution of (5.2), then
| x ( z ) x ¯ ( z ) | M f 1 x x ¯ + N f 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) L g 1 x x ¯ + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | φ ( s ) | + ( M f 1 | Δ | x x ¯ + N f 1 | Δ | c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 x x ¯ + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( η ) ψ ( z k ) ) α 1 | Δ | Γ ( α 1 + 1 ) | φ ( s ) | + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 x x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 | Δ | Γ ( α 1 + 1 ) | φ ( s ) | + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | L g 1 x x ¯ + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | ϕ ( z ) | + i = 1 p A 1 | Δ | | x ( z i ) x ¯ ( z i ) | + i = 1 p 1 | Δ | | ϕ ( z ) | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | A 2 | x ( z i ) x ¯ ( z i ) | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | | ϕ ( z ) | + | a 1 | | Δ | ( δ 2 k z k ) M f 1 x x ¯ + | a 1 | | Δ | ( δ 2 k z k ) N f 1 + | c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + | a 1 | | Δ | ( δ 2 k z k ) | ϕ ( z ) | + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 x x ¯
+ ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) | ϕ ( z ) | + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 x x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) | ϕ ( z ) | + i = 1 p ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 x x ¯ + i = 1 p ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 × c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) | ϕ ( z ) | + i = 1 p A 1 | Δ | | a 1 | ( δ 2 k z k ) | x ( z i ) x ¯ ( z i ) | + i = 1 p 1 | Δ | | a 1 | ( δ 2 k z k ) | ϕ ( z ) | + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) A 2 | x ( z i ) x ¯ ( z i ) | + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) | ϕ ( z ) | + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) M f 1 x x ¯ + | a 2 | ( z k + 1 δ 2 k + 1 ) | Δ | N f 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) | ϕ ( z ) | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 x x ¯
+ ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) | ϕ ( z ) | + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 x x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 × c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) | ϕ ( z ) | + i = 1 p A 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) | x ( z i ) x ¯ ( z i ) | + i = 1 p 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) | ϕ ( z i ) | + i = 1 p A 2 ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) x x ¯ + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) | ϕ ( z i ) | ) ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α Γ ( α 1 + 1 ) L g 1 x x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | ϕ ( z ) | + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) L g 1 x x ¯ + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) K g 1 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | ϕ ( z ) | + p A 1 x x ¯ + p | ϕ ( z ) | + i = 1 p A 2 ψ ( z ) ψ ( z i ) ψ ( z i ) x x ¯ + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) | ϕ ( z ) | .
| x ( z ) x ¯ ( z ) | ( M f 1 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) L g 1 + ( M f 1 | Δ | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 + + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | L g 1 + i = 1 p A 1 | Δ | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | A 2 + | a 1 | | Δ | ( δ 2 k z k ) M f 1 + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + p A 1 | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) A 2 + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) M f 1 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 + p A 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + A 2 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) ψ ( τ ) ψ ( z i ) ψ ( z i ) ) ψ ( z ) ψ ( z k ) i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α Γ ( α 1 + 1 ) L g 1 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) L g 1 + p A 1 + A 2 i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) ) x x ¯
+ ( N f 1 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) K g 1 + ( N f 1 | Δ | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | K g 1 + | a 1 | | Δ | ( δ 2 k z k ) N f 1 + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + | a 2 | ( z k + 1 δ 2 k + 1 ) | Δ | N f 1 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 ) ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) K g 1 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) K g 1 ) c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ + ( ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) + ( ψ ( η ) ψ ( z k ) ) α 1 | Δ | Γ ( α 1 + 1 ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 | Δ | Γ ( α 1 + 1 ) + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | + | a 1 | | Δ | ( δ 2 k z k ) + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) ) ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) . ) ϵ 1
Assume that,
Ω 5 = M f 1 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) L g 1 + ( M f 1 | Δ | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | L g 1 + + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | L g 1 + i = 1 p A 1 | Δ | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | A 2 + | a 1 | | Δ | ( δ 2 k z k ) M f 1 + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 1 + p A 1 | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) A 2 + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) M f 1 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 1 + p A 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + A 2 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) ) ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α Γ ( α 1 + 1 ) L g 1 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) L g 1 + p A 1 + A 2 i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) .
Ω 6 = N f 1 + ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) K g 1 + ( N f 1 | Δ | + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | K g 1 + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | K g 1 + | a 1 | | Δ | ( δ 2 k z k ) N f 1 + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 1 + | a 2 | ( z k + 1 δ 2 k + 1 ) | Δ | N f 1 + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 1 ) ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) K g 1 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) K g 1 .
Ω 7 = ( ψ ( z ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) + ( ψ ( η ) ψ ( z k ) ) α 1 | Δ | Γ ( α 1 + 1 ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 | Δ | Γ ( α 1 + 1 ) i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | + | a 1 | | Δ | ( δ 2 k z k ) + ( ψ ( τ ) ψ ( z k ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) + ( ψ ( η ) ψ ( z k ) ) α 1 Γ ( α 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) ) ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α 1 Γ ( α 1 + 1 ) + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) α 1 1 ψ ( z i ) Γ ( α 1 ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) .
Ω 8 = M f 2 + ( ψ ( z ) ψ ( z k ) ) β 1 Γ ( β 1 + 1 ) L g 2 + ( M f 2 | Δ | + ( ψ ( η ) ψ ( z k ) ) β 1 Γ ( β 1 + 1 ) | Δ | L g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) | Δ | L g 2 + + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 1 1 ψ ( z i ) Γ ( β 1 ) | Δ | L g 2 + i = 1 p A 1 | Δ | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | A 2 + | a 1 | | Δ | ( δ 2 k z k ) M f 2 + ( ψ ( τ ) ψ ( z k ) ) β 1 Γ ( β 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 2 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) β 1 1 ψ ( z i ) Γ ( β 1 ) | Δ | | a 1 | ( δ 2 k z k ) L g 2 + p A 1 | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) A 2 + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) M f 2 + ( ψ ( η ) ψ ( z k ) ) β 1 Γ ( β 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) L g 2 + p A 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + A 2 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) ) ψ ( z ) ψ ( z k ) i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) α Γ ( β 1 + 1 ) L g 2 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 1 1 ψ ( z i ) Γ ( β 1 ) L g 2 + p A 1 + A 2 i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) .
Ω 9 = N f 2 + ( ψ ( z ) ψ ( z k ) ) β 1 Γ ( β 1 + 1 ) K g 2 + ( N f 2 | Δ | + ( ψ ( η ) ψ ( z k ) ) β 1 Γ ( β 1 + 1 ) | Δ | K g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) | Δ | K g 2 + i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 1 1 ψ ( z i ) Γ ( β 1 ) | Δ | K g 2 + | a 1 | | Δ | ( δ 2 k z k ) N f 2 + ( ψ ( τ ) ψ ( z k ) ) β 1 Γ ( β 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 2 + ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) β 1 1 ψ ( z i ) Γ ( β 1 ) | Δ | | a 1 | ( δ 2 k z k ) K g 2 + | a 2 | ( z k + 1 δ 2 k + 1 ) | Δ | N f 2 + ( ψ ( η ) ψ ( z k ) ) β 1 Γ ( β 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 2 + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) K g 2 ) ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) K g 2 + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 1 1 ψ ( z i ) Γ ( β 1 ) K g 2 .
Ω 10 = ( ψ ( z ) ψ ( z k ) ) β 1 Γ ( β 1 + 1 ) + ( ψ ( η ) ψ ( z k ) ) β 1 | Δ | Γ ( β 1 + 1 ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 | Δ | Γ ( β 1 + 1 ) i = 1 p ψ ( η ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 1 1 ψ ( z i ) Γ ( β 1 ) | Δ | + i = 1 p ψ ( η ) ψ ( z i ) ψ ( z i ) | Δ | + | a 1 | | Δ | ( δ 2 k z k ) + ( ψ ( τ ) ψ ( z k ) ) β 1 Γ ( β 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ( ψ ( τ ) ψ ( z i ) ) ( ψ ( z i ) ψ ( z i 1 ) ) β 1 1 ψ ( z i ) Γ ( β 1 ) | Δ | | a 1 | ( δ 2 k z k ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 1 | ( δ 2 k z k ) + | a 2 | | Δ | ( z k + 1 δ 2 k + 1 ) + ( ψ ( η ) ψ ( z k ) ) β 1 Γ ( β 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p 1 | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) + i = 1 p ψ ( τ ) ψ ( z i ) ψ ( z i ) | Δ | | a 2 | ( z k + 1 δ 2 k + 1 ) ) ψ ( z ) ψ ( z k ) + i = 1 p ( ψ ( z i ) ψ ( z i 1 ) ) β 1 Γ ( β 1 + 1 ) + i = 1 p ψ ( z ) ψ ( z i ) ( ψ ( z i ) ψ ( z i 1 ) ) β 1 1 ψ ( z i ) Γ ( β 1 ) + i = 1 p ψ ( z ) ψ ( z i ) ψ ( z i ) .
x x ¯ Ω 5 x x ¯ + Ω 6 c D z k , z α 1 ; ψ x c D z k , z α 1 ; ψ x ¯ ( z ) + Ω 7 ϵ 1 .
Since
c D z k , z α 1 ; ψ x ( z ) c D z k , z α 1 ; ψ x ¯ ( z ) ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z M f 1 + L g 1 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z N f 1 K g 1 ) x x ¯ .
So we have,
x x ¯ Ω 5 x x ¯ + Ω 6 ( ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z M f 1 + L g 1 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z N f 1 K g 1 ) × x x ¯ + Ω 7 ϵ 1 ,
x x ¯ Ω 7 1 ( Ω 5 + Ω 6 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z M f 1 + L g 1 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z N f 1 K g 1 ) ) ϵ 1 .
Where we assumed that
Ω 5 + Ω 6 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z M f 1 + L g 1 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z N f 1 K g 1 ) < 1 .
Similarly we have,
y y ¯ Ω 10 1 ( Ω 8 + Ω 9 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z M f 2 + L g 2 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z N f 2 K g 2 ) ) ϵ 2
where we assumed that
Ω 8 + Ω 9 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z M f 2 + L g 2 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z N f 2 K g 2 ) < 1 .
Let
max { ϵ 1 , ϵ 2 } = ϵ ,
then
x x ¯ + y y ¯ Ω 7 1 Ω 5 Ω 6 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z M f 1 + L g 1 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z N f 1 K g 1 ) ϵ + Ω 10 1 Ω 8 Ω 9 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z M f 2 + L g 2 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z N f 2 K g 2 ) ϵ .
x x ¯ + y y ¯ [ Ω 7 1 Ω 5 Ω 6 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z M f 1 + L g 1 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z N f 1 K g 1 ) + Ω 10 1 Ω 8 Ω 9 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z M f 2 + L g 2 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z N f 2 K g 2 ) ] ϵ .
Let
Θ = [ Ω 7 1 Ω 5 Ω 6 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z M f 1 + L g 1 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) 1 ψ ( z ) d d z N f 1 K g 1 ) + Ω 10 1 Ω 8 Ω 9 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z M f 2 + L g 2 ( 1 ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) 1 ψ ( z ) d d z N f 2 K g 2 ) ] .
Hence, we have
( x , y ) ( x ¯ , y ¯ ) X × Y Θ ϵ .
Thus system (1) is Ulam-Hyers stable. □

6. Example

In this portion, we discuss an example related to our main results.
Example 1.
c D 5 3 ; x [ x ( z ) ( cos z | x ( z ) | 450 ( 1 + | x ( z ) | ) + | c D 5 3 ; x x ( z ) | 460 ( 1 + | c D 5 3 ; x x ( z ) | ) ) ] = 3 7 + 4 + | x ( z ) | 1600 ( 1 + | x ( z ) | ) + | c D 5 3 ; x x ( z ) | 1650 + | c D 5 3 ; x x ( z ) | , z [ 0 , 1 ] ,   z 4 5 .
c D 5 3 ; y [ y ( z ) ( cos z | y ( z ) | 450 ( 1 + | y ( z ) | ) + | c D 5 3 ; y y ( z ) | 460 ( 1 + | c D 5 3 ; y y ( z ) | ) ) ] = 5 7 + | sin y ( z ) | 1200 ( 1 + | sin y ( z ) | ) + 1 1250 | cos c D 5 3 ; y y ( z ) | . z [ 0 , 1 ] , z 5 6 .
x ( 0 ) = 0 ,           x ( 1 4 ) = 0 1 4 x ( τ ) d τ + 1 3 4 5 x ( τ ) d τ .
y ( 0 ) = 0 ,           y ( 1 4 ) = 0 1 4 y ( τ ) d τ + 1 3 5 6 y ( τ ) d τ .
I 1 x ( 4 5 ) = 1 230 + | x ( z ) | ,           J 1 x ( 4 5 ) = 1 260 + | c D 5 3 ; x x ( z ) | .
I 1 * y ( 5 6 ) = 1 250 + | y ( z ) | ,           J 1 * y ( 5 6 ) = 1 300 + | c D 5 3 ; y y ( z ) | .
We see in the proposed problem, that α 1 = β 1 = 5 3 , and z j 4 5 , where j = 1, 2, ..., 60.
For z [ 0 , 1 ] and x 1 ( z ) , x 2 ( z ) , y 1 ( z ) , y 2 ( z ) R , we have,
| f 1 ( z , x 1 ( z ) , c D 5 3 ; x x 1 ( z ) ) f 1 ( z , x 2 ( z ) , c D 5 3 ; x x 2 ( z ) ) | 1 450 | x 1 ( z ) x 2 ( z ) | + 1 460 | c D 5 3 ; x x 1 ( z ) c D 5 3 ; x x 2 ( z ) | .
| g 1 ( z , x 1 ( z ) , c D 5 3 ; x x 1 ( z ) ) g 1 ( z , x 2 ( z ) , c D 5 3 ; x x 2 ( z ) ) | 1 1600 | x 1 ( z ) x 2 ( z ) | + 1 1650 | c D 5 3 ; x x 1 ( z ) c D 5 3 ; x x 2 ( z ) | .
| f 2 ( z , y 1 ( z ) , c D 5 3 ; y y 1 ( z ) ) f 2 ( z , y 2 ( z ) , c D 5 3 ; y y 2 ( z ) ) | 1 450 | y 1 ( z ) y 2 ( z ) | + 1 460 | c D 5 3 ; y y 1 ( z ) c D 5 3 ; y y 2 ( z ) | .
| g 2 ( z , y 1 ( z ) , c D 5 3 ; y y 1 ( z ) ) g 2 ( z , y 2 ( z ) , c D 5 3 ; y y 2 ( z ) ) | 1 1200 | y 1 ( z ) y 2 ( z ) | + 1 1250 | c D 5 3 ; y y 1 ( z ) c D 5 3 ; y y 2 ( z ) | .
| I x 1 ( z ) ( z i ) I x 2 ( z ) ( z i ) | 1 130 | x 1 ( z ) x 2 ( z ) | ,     | J x 1 ( z ) ( z i ) J x 2 ( z ) ( z i ) | 1 160 | x 1 ( z ) x 2 ( z ) | .
| I * y 1 ( z ) ( z j ) I * y 1 ( z ) ( z j ) | 1 150 | y 1 ( z ) y 2 ( z ) | ,     | J * y 1 ( z ) ( z j ) J * y 2 ( z ) ( z j ) | 1 200 | y 1 ( z ) y 2 ( z ) | .
From above inequalities, we obtain that M f 1 = 1 450 , N f 1 = 1 460 , L g 1 = 1 1600 , K g 1 = 1 1650 , M f 2 = 1 450 , N f 2 = 1 460 , L g 2 = 1 1200 , K g 2 = 1 1250 , μ 1 = 1 130 , μ 2 = 1 160 , μ 3 = 1 150 , μ 4 = 1 200 .
Since
Z 1 = ( Ω 0 M f 1 + Ω 1 L g 1 + Ω 2 ) + ( Ω 0 N f 1 + Ω 1 K g 1 + Ω 2 ) ( ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) ( 1 ψ ( z ) d d z ) M f 1 + L g 1 1 ( ( ψ ( z ) ψ ( z k ) ) 1 α 1 Γ ( α 1 ) ( 1 ψ ( z ) d d z ) N f 1 + K g 1 ) ) ,
Z 2 = ( Ω 0 M f 2 + Ω 3 L g 2 + Ω 4 ) + ( Ω 0 N f 2 + Ω 3 K g 2 + Ω 4 ) ( ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) ( 1 ψ ( z ) d d z ) M f 2 + L g 2 1 ( ( ψ ( z ) ψ ( z k ) ) 1 β 1 Γ ( β 1 ) ( 1 ψ ( z ) d d z ) N f 2 + K g 2 ) ) .
On calculating Z 1 and Z 2 we have Z 1 = 0.40370658619 < 1 and Z 2 = 0.51479638 < 1 . Then max { Z 1 , Z 2 } < 1 , and the coupled system (1) has unique solution.
Also on calculating Θ = 8.92827998857 , and ϵ = 0.00214 , we get Θ ϵ = 0.01910651917 > 0 . Therefore, the coupled system (1) is Ulam-Hyers stable.

7. Conclusions

In this article, we studied the existence and uniqueness property of the coupled system of impulsive hybrid fractional differential equations with slit-strips integral boundary conditions. We utilized the Schaefer’s fixed point theorem for the existence of at least one solution of the problem (1). For the uniqueness of the solution of problem (1) we used Banach contraction principle. Also we studied the Ulam-Hyers stability of the proposed problem (1). Finally the we provide an example for the support of the results. Our obtained results can be utilized in the impulsive problems involving the scattering by slits silicon strips detectors for scanned multi-slit X-ray imaging, the acoustic impedance of baffled strips radiators, diffraction from an elastic knife-edge adjacent to a strip, sound fields of infinitely long strips, dielectric-loaded multiple slits in a conducting plane, lattice engineering. The Ulam-Hyers stability means that for any approximation in specific region we will get to the exact distinction, so the obtained results can be utilized in numerical analysis and approximation theory of the related impulsive problems.

Author Contributions

Conceptualization, Z.L., I.A., J.X. and A.Z.; formal analysis, Z.L., I.A., J.X. and A.Z.; writing—original draft preparation, Z.L., I.A., J.X. and A.Z.; writing—review and editing, Z.L., I.A., J.X. and A.Z.; funding acquisition, Z.L., I.A., J.X. and A.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the Suqian Sci&Tech Program (grant No. K202134), Natural Science Foundation of Chongqing (grant No. cstc2020jcyj-msxmX0123), Technology Research Foundation of Chongqing Educational Committee (grant No. KJQN202000528), the Key Laboratory Open Issue of School of Mathematical Science, Chongqing Normal University (grant No. CSSXKFKTM202003).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  2. Kilbas, A.A.; Trujillo, J.J. Differential equations of fractional order, methods, results and problem. Appl. Anal. 2013, 78, 153–192. [Google Scholar] [CrossRef]
  3. Debnath, L. A brief historical introduction to fractional calculus. Internat. J. Math. Ed. Sci. Tec. 2004, 35, 487–501. [Google Scholar] [CrossRef]
  4. Wang, G.; Ahmad, B.; Zhang, L. Impulsive anti–periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74, 792–804. [Google Scholar] [CrossRef]
  5. Wang, J.; Zada, A.; Li, W. Ulams–Type Stability of First–Order Impulsive Differential Equations with Variable Delay in Quasi–Banach Spaces. Int. J. Non. Sci. Num. Sim. 2018, 19, 553–560. [Google Scholar] [CrossRef]
  6. Zada, A.; Ali, W.; Farina, S. Ulam–Hyers stability of nonlinear differential equations with fractional integrable impulsis. Math. Meth. Appl. Sci. 2017, 40, 5502–5514. [Google Scholar] [CrossRef]
  7. Zada, A.; Ali, S.; Li, Y. Ulam–type stability for a class of implicit fractional differential equations with non–instantaneous integral impulses and boundary condition. Adv. Differ. Equ. 2017, 2017, 317. [Google Scholar] [CrossRef] [Green Version]
  8. Rizwan, R.; Zada, A.; Wang, U. Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses. Adv. Differ. Equ. 2019, 2019, 85. [Google Scholar] [CrossRef]
  9. Carvalho, A.; Pinto, C.M.A. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Cont. 2017, 5, 168–186. [Google Scholar] [CrossRef]
  10. Ding, Y.; Wang, Z.; Ye, H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Cont. Syst. Technol. 2012, 20, 763–769. [Google Scholar] [CrossRef]
  11. Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-touic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
  12. Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D. LMI-based stabilization of a class of fractional order chaotic systems. Nonlin. Dynam. 2013, 72, 301–309. [Google Scholar] [CrossRef]
  13. Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Existence results for a system of coupled hybrid fractional differential equations. Sci. World J. 2014, 2014, 426438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Ahmad, B.; Ntouyas, S.K.; Tariboon, J. A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations. Acta Math. Sci. 2016, 36, 1631–1640. [Google Scholar] [CrossRef]
  15. Karthikeyan, P.; Arul, R. Existence of solutions for Hadamard fractional hybrid differential equations with impulsive and nonlocal conditions. J. Fract. Calc. Appl. 2018, 9, 232–240. [Google Scholar]
  16. Karthikeyan, P.; Buvaneswari, K. A note on coupled fractional hybrid differential equations involving Banach algebra. Malaya J. Mat. 2018, 6, 843–849. [Google Scholar] [CrossRef] [Green Version]
  17. Ferraoun, S.; Dahmani, Z. Existence and stability of solutions of a class of hybrid fractional differential equations involving RL-operator. J. Interdiscip. Math. 2020, 23, 885–903. [Google Scholar] [CrossRef]
  18. Abbas, M.I.; Ragusa, M.A. On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function. Symmetry 2021, 13, 264. [Google Scholar] [CrossRef]
  19. Sutar, S.T.; Kishor, D.K. On nonlinear hybrid fractional differential equations with Atangana-Baleanu-Caputo derivative. Chaos Solitons Fractals 2021, 143, 110557. [Google Scholar] [CrossRef]
  20. Mellow, T.; Karkkainen, L. On the sound fields of infinitely long strips. J. Acoust. Soc. Am. 2011, 130, 153–167. [Google Scholar] [CrossRef] [Green Version]
  21. Lundqvist, M. Silicon Strip Detectors for Scanned Multi-Slit X-Ray Imaging; Kungl Tekniska Hogskolan: Stockholm, Switzerland, 2003. [Google Scholar]
  22. Ahmad, B.; Agarwal, R.P. Some new versions of fractional boundary value problems with slit-strips conditions. Bound. Value Probl. 2014, 2014, 175. [Google Scholar] [CrossRef]
  23. Ahmad, B.; Ntouyas, S.K. A coupled system of nonlocal fractional differential equations with coupled and uncoupled slit-strips type integral boundary conditions. J. Math. Sci. 2017, 226, 175–196. [Google Scholar] [CrossRef]
  24. Ahmad, B.; Kerthikeyan, P.; Buvaneswari, K. Fractional differential equations with coupled slit-strips type integral boundary conditions. AIMS Math. 2019, 4, 1596–1609. [Google Scholar] [CrossRef]
  25. Hurd, R.A.; Hayashi, Y. Low-frequency scattering by a slit in a conducting plane. Radio Sci. 1980, 15, 1171–1178. [Google Scholar] [CrossRef]
  26. Otsuki, T. Diffraction by multiple slits. J. Opt. Soc. Am. A 1990, 7, 646–652. [Google Scholar] [CrossRef]
  27. Asghar, S.; Hayat, T.; Ahmad, B. Acoustic diffraction from a slit in an infinite absorbing sheet. Jpn. J. Ind. Appl. Math. 1996, 13, 519–532. [Google Scholar] [CrossRef]
  28. Lipshitz, S.P.; Scott, T.C.; Salvy, B. On the acoustic impedance of baffled strip radiators. J. Audio Eng. Soc. 1995, 43, 573–580. [Google Scholar]
  29. Ahmad, B.; Hayat, T.; Asghar, S. Diffraction of a plane wave by an elastic knife-edge adjacent to a strip. Can. Appl. Math. 2001, 9, 303–316. [Google Scholar]
  30. Lee, D.J.; Lee, S.J.; Lee, W.S.; Yu, J.W. Diffraction by dielectric-loaded multiple slits in a conducting plane: TM case. Prog. Electromagn. Res. 2012, 131, 409–424. [Google Scholar] [CrossRef] [Green Version]
  31. Kawasaki, M. Exploration of electronic functionalities in metal oxides by combinatorial lattice engineering. Bull. Chem. Soc. Jpn. 2013, 86, 1341–1358. [Google Scholar] [CrossRef] [Green Version]
  32. Alam, M.; Zada, A.; Popa, I.L.; Kheiryan, A.; Rezapour, S.; Kaabar, M.K. A fractional differential equation with multi-point strip boundary condition involving the Caputo fractional derivative and its Hyers–Ulam stability. Bound. Value Probl. 2021, 2021, 73. [Google Scholar] [CrossRef]
  33. Subramanian, M.; Vidhya Kumar, A.R.; Nandha Gopal, T. Influence of coupled nonlocal slit-strip conditions involving Caputo derivative in fractional boundary value problem. Discontinuity Nonlinearity Complex. 2019, 8, 429–445. [Google Scholar]
  34. Almeida, R. A caputo fractional derivative of a function with respect to another function. Common. Nonlinear Sci. Numer. Sumer. 2014, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
  35. Zeidler, E. Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
  36. Ahmad, M.; Jiang, J.; Zada, A.; Ali, Z.; Fu, Z.; Xu, J. Hyers-Ulam-Mittag-Leffler Stability for a System of Fractional Neutral Differential Equations. Discret. Dyn. Nat. Soc. 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Lv, Z.; Ahmad, I.; Xu, J.; Zada, A. Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Derivatives with Generalized Slit-Strips-Type Integral Boundary Conditions and Impulses. Fractal Fract. 2022, 6, 618. https://doi.org/10.3390/fractalfract6100618

AMA Style

Lv Z, Ahmad I, Xu J, Zada A. Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Derivatives with Generalized Slit-Strips-Type Integral Boundary Conditions and Impulses. Fractal and Fractional. 2022; 6(10):618. https://doi.org/10.3390/fractalfract6100618

Chicago/Turabian Style

Lv, Zhiwei, Ishfaq Ahmad, Jiafa Xu, and Akbar Zada. 2022. "Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Derivatives with Generalized Slit-Strips-Type Integral Boundary Conditions and Impulses" Fractal and Fractional 6, no. 10: 618. https://doi.org/10.3390/fractalfract6100618

APA Style

Lv, Z., Ahmad, I., Xu, J., & Zada, A. (2022). Analysis of a Hybrid Coupled System of ψ-Caputo Fractional Derivatives with Generalized Slit-Strips-Type Integral Boundary Conditions and Impulses. Fractal and Fractional, 6(10), 618. https://doi.org/10.3390/fractalfract6100618

Article Metrics

Back to TopTop