Influence of Geotextile Materials on the Fractal Characteristics of Desiccation Cracking of Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Test Method and Image Processing
2.4. Crack Characteristics
3. Results
3.1. Fractal Characteristics of Soil Cracks Due to Geotextile Materials
3.2. Evaporation Characteristics of Soil Due to Geotextile Materials
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Qadad, A.; Shahrour, I.; Rouainia, M. Influence of the soil-atmosphere exchange on the hydric profile induced in soil-structure system. Nat. Hazards Earth Syst. Sci. 2012, 12, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Sen, Z. Water structures and climate change impact: A review. Water Resour. Manag. 2020, 34, 4197–4216. [Google Scholar] [CrossRef]
- Belloulid, M.O.; Hamdi, H.; Mandi, L.; Ouazzani, N. Solar greenhouse drying of wastewater sludges under arid climate. Waste Biomass Valoriz. 2017, 8, 193–202. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, C.; Cheng, Q.; Zeng, H.; Xu, J.; Tian, B.; Shi, B. Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors. Earth Sci. Rev. 2021, 216, 103586. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. Mater. Int. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zwiers, F.; Song, L.; Wan, H.; Hu, T.; Yin, H.; Ren, G. Rapid increase in the risk to extreme summer heat in Eastern China. Nat. Clim. Chang. 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Naviglio, D.; Formato, A.; Scaglione, G.; Montesano, D.; Pellegrino, A.; Villecco, F.; Gallo, M. Study of the grape cryo-maceration process at different temperatures. Foods 2018, 7, 107. [Google Scholar] [CrossRef]
- Xu, J.J.; Zhang, H.; Tang, C.S.; Cheng, Q.; Liu, B.; Shi, B. Automatic soil desiccation crack recognition using deep learning. Geotechnique 2022, 72, 337–349. [Google Scholar] [CrossRef]
- Li, D.; Yang, B.; Yang, C.; Zhang, Z.; Hu, M. Effects of salt content on desiccation cracks in the clay. Environ. Earth Sci. 2021, 80, 671. [Google Scholar] [CrossRef]
- Levatti, H.U. Numerical solution of desiccation cracks in clayey soils. Encyclopedia 2022, 2, 1036–1058. [Google Scholar] [CrossRef]
- Izzo, M.Z.; Miletić, M. Desiccation cracking behavior of sustainable and environmentally friendly reinforced cohesive soils. Polymers 2022, 14, 1318. [Google Scholar] [CrossRef] [PubMed]
- Ralaizafisoloarivony, N.; Degré, A.; Mercatoris, B.; Leonard, A.; Toye, D.; Charlier, R. Assessing soil crack dynamics and water evaporation during dryings of agricultural soil from reduced tillage and conventional tillage fields. Proceedings 2019, 30, 59. [Google Scholar] [CrossRef]
- Deng, Y.F.; Yue, X.B.; Cui, Y.J.; Shao, G.H.; Liu, S.Y.; Zhang, D.W. Effect of pore water chemistry on the hydro-mechanical behaviour of Lianyungang soft marine clay. Appl. Clay Sci. 2014, 95, 167–175. [Google Scholar] [CrossRef]
- Wang, L.; Li, G.; Li, X.; Guo, F.; Tang, S.; Lu, X.; Hanif, A. Influence of reactivity and dosage of MgO expansive agent on shrinkage and crack resistance of face slab concrete. Cem. Concr. Compos. 2022, 126, 104333. [Google Scholar] [CrossRef]
- Colombi, T.; Kirchgessner, N.; Iseskog, D.; Alexandersson, S.; Larsbo, M.; Keller, T. A time-lapse imaging platform for quantification of soil crack development due to simulated root water uptake. Soil Tillage Res. 2021, 205, 104769. [Google Scholar] [CrossRef]
- Guo, J.; Dai, Z.; Li, S.; Muhammad, N.; Gao, H. Study on creep characteristics of expansive soil in high-fill channel of south-to-north water transfer project. Adv. Civ. Eng. 2020, 2020, 8852131. [Google Scholar] [CrossRef]
- Dong, M.; Hu, H.; Guo, Q.; Gong, X.; Azzam, R.; Kong, M. Correlation of environmental parameters and the water saturation induced deterioration of earthen archaeological sites: The case of world heritage Liangzhu city, China. Heritage 2021, 4, 387–400. [Google Scholar] [CrossRef]
- Zhao, G.; Ren, K.; Ma, Q. Research on collapse failure process and mechanism of Earthen sites under the action of capillary water. Appl. Mech. Mater. 2013, 438–439, 1226–1231. [Google Scholar]
- Camillo, P.J.; Gurney, R.J. A resistance parameter for bare-soil evaporation models. Soil Sci. 1986, 141, 95–105. [Google Scholar] [CrossRef]
- Wilson, G.; Fredlund, D.; Barbour, S. Coupled soil-atmosphere modelling for soil evaporation. Can. Geotech. J. 1994, 31, 151–161. [Google Scholar] [CrossRef]
- Song, W. Experimental Investigation of Water Evaporation from Sand and Clay Using an Environmental Chamber. Ph.D. Thesis, Université Paris-Est, Paris, France, 2014. [Google Scholar]
- Liu, C.; Tang, C.S.; Shi, B.; Suo, W.B. Automatic quantification of crack patterns by image processing. Comput. Geosci. 2013, 57, 77–80. [Google Scholar] [CrossRef]
- Albrecht, B.; Benson, C. Effect of desiccation on compacted natural clays. J. Geotech. Geoenviron. Eng. 2001, 127, 67–75. [Google Scholar] [CrossRef]
- Konrad, J.; Ayad, R. A idealized framework for the analysis of cohesive soils undergoing desiccation. Can. Geotech. J. 1997, 34, 477–488. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Z.; Liu, B.; Zhao, F.; Tang, S.; Jin, M. Effects of fly ash dosage on shrinkage, crack resistance and fractal characteristics of face slab concrete. Fractal Fract. 2022, 6, 335. [Google Scholar] [CrossRef]
- Miller, C.; Mi, H.; Yesiller, N. Experimental analysis of desiccation crack propagation in clay liners. J. Am. Water Resour. Assoc. 1998, 34, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Velde, B. Structure of surface cracks in soil and muds. Geoderma 1999, 93, 101–124. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Zhao, F.; Huo, T.; Chen, E.; Tang, S. Comparison between the influence of finely ground phosphorous slag and fly ash on frost resistance, pore structures and fractal features of hydraulic concrete. Fractal Fract. 2022, 6, 598. [Google Scholar] [CrossRef]
- Kulatilake, P.H.S.W.; Wu, T.H. Estimation of mean trace length of discontinuities. Rock Mech. Rock Eng. 1984, 17, 215–232. [Google Scholar] [CrossRef]
- Mauldon, M. Estimating mean fracture trace length and density from observations in convex windows. Rock Mech. Rock Eng. 1998, 31, 201–216. [Google Scholar] [CrossRef]
- Mauldon, M.; Dunne, W.M.; Rohrbaugh, M.B., Jr. Circular scanlines and circular windows: New tools for characterizing the geometry of fracture traces. J. Struct. Geol. 2001, 23, 247–258. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.; Shi, Y.; Huang, Y.; Zhao, F.; Huo, T.; Tang, S. The influence of fly ash dosages on the permeability, pore structure and fractal features of face slab concrete. Fractal Fract. 2022, 6, 476. [Google Scholar] [CrossRef]
- Zhang, L.; Einstein, H.H. Estimating the intensity of rock discontinuities. Int. J. Rock Mech. Min. Sci. 2000, 37, 819–837. [Google Scholar] [CrossRef]
- Sturzenegger, M.; Stead, D.; Elmo, D. Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape. Eng. Geol. 2011, 119, 96–111. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Self-affine fractal sets, I: The basic fractal dimensions. In Fractals in Physics, Proceedings of the Sixth Trieste International Symposium on Fractals in Physics, Trieste, Italy, 9–12 July 1985; Elsevier: Amsterdam, The Netherlands, 1986; pp. 3–15. [Google Scholar]
- Mandelbrot, B.B. Self-affine fractal sets, II: Length and surface dimensions. In Fractals in Physics, Proceedings of the Sixth Trieste International Symposium on Fractals in Physics, Trieste, Italy, 9–12 July 1985; Elsevier: Amsterdam, The Netherlands, 1986; pp. 17–20. [Google Scholar]
Specimen No. | Interfacial Friction Condition | Interfacial Permeability Condition | Weight of Slurry (g) |
---|---|---|---|
S1 | Grease | Impervious | 300 |
S2 | Grease | Impervious | 300 |
S3 | Geomembranes | Impervious | 300 |
S4 | Geomembranes | Impervious | 300 |
S5 | Geotextiles | Permeable | 300 |
S6 | Geotextiles | Permeable | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Yuan, S.; Shen, Z.; Zhao, X. Influence of Geotextile Materials on the Fractal Characteristics of Desiccation Cracking of Soil. Fractal Fract. 2022, 6, 628. https://doi.org/10.3390/fractalfract6110628
Yang B, Yuan S, Shen Z, Zhao X. Influence of Geotextile Materials on the Fractal Characteristics of Desiccation Cracking of Soil. Fractal and Fractional. 2022; 6(11):628. https://doi.org/10.3390/fractalfract6110628
Chicago/Turabian StyleYang, Binbin, Shichong Yuan, Zhenzhou Shen, and Xiaoming Zhao. 2022. "Influence of Geotextile Materials on the Fractal Characteristics of Desiccation Cracking of Soil" Fractal and Fractional 6, no. 11: 628. https://doi.org/10.3390/fractalfract6110628
APA StyleYang, B., Yuan, S., Shen, Z., & Zhao, X. (2022). Influence of Geotextile Materials on the Fractal Characteristics of Desiccation Cracking of Soil. Fractal and Fractional, 6(11), 628. https://doi.org/10.3390/fractalfract6110628