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Abstract: In this paper, an adaptive grid method for a singularly perturbed Volterra integro-differential
equation is studied. Firstly, this problem is discretized by a new second-order finite difference scheme,
for which a truncation error analysis is conducted. Then, based on this truncation error bound and
the mesh equidistribution principle, we show that there is a mesh that provides an optimal error
bound of O(N−2), which is robust with respect to the perturbation parameter. Finally, based on an
approximation monitor function, an adaptive grid generation algorithm is constructed and some
numerical results are given to support our theoretical results.

Keywords: singularly perturbed; Volterra integro-differential equation; uniformly convergent; adap-
tive grid method

1. Introduction

In this paper, we consider an adaptive grid method for the following singularly
perturbed Volterra integrodifferential equation:





Lu(x) := εu′(x) + a(x)u(x) +
∫ x

0
K(x, s)u(s)ds = f (x), x ∈ (0, 1],

u(0) = A,
(1)

where 0 < ε� 1, A is a given constant, and a(x), K(x, s), and f (x) are sufficiently smooth
functions, which are independent of the parameter ε. It is assumed that there exists a
positive constant α such that a(x) ≥ α > 0. Under these conditions, the problem (1) has
a unique solution u(x) (see [1,2]), which typically exhibits a boundary layer at x = 0 as
ε→ 0. Thus, this type of problem is called singularly perturbed Volterra integrodifferential
equations (SPVIDEs), which often appear in physics [3], biology [4,5], and other areas [6].

Due to the presence of this perturbation parameter, standard finite difference and
finite-element methods on a uniform mesh for (1) may yield inaccurate numerical results.
Therefore, some special numerical methods for SPVIDEs have been discussed in studies
such as [1,7–14]. Among these methods, the authors in [7,10] developed some layer-adapted
mesh methods to solve SPVIDEs. Especially, Yanman and Amiraliyev [1] proposed a new
discretization scheme for problem (1), which was almost second-order uniform convergent
on the Shishkin mesh.

In addition to the layer-adaptive grid method mentioned above, the adaptive grid
method for singularly perturbed convection-diffusion problems has also attracted much
attention over the last decade, see [15,16] and the monograph [17]. For the adaptive grid
methods of SPVIDEs, Sumit et.al. [18] proposed a first-order uniform convergent adaptive
grid method for a nonlinear singularly perturbed Volterra integro-differential equation . To
the best of our knowledge, there are few second-order adaptive grid methods for SPVIDEs
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except for the Richardson extrapolation technique given in [19]. Based on the discretization
scheme proposed in [1], the authors in [20] developed an adaptive grid algorithm for a
singularly perturbed convection-diffusion equation. However, they did not carry out a
convergence analysis. Thus, it is very desirable to construct a second-order adaptive grid
method (not a hybrid discretization scheme) for singularly perturbed problems.

Motivated by [1,20], the aim of this paper is to design a new second-order adaptive
grid method for a singularly perturbed Volterra integro-differential equation. By virtue of a
truncation error analysis, a suitable monitor function is chosen to design an adaptive grid
based on the mesh equidistribution principle. Furthermore, we prove that our presented
adaptive grid method is second-order uniform-convergent with respect to the perturbation
parameter. Finally, several numerical results are given to confirm our theoretical findings.

Notation. Throughout the paper, C denotes a generic positive constant that is inde-
pendent of ε and the mesh parameter N. It may take different values in different places.
For any continuous function g(x), we use the notation gi = g(xi) and ‖g‖∞ = max

x∈[0,1]
|g(x)|.

2. Preliminary Results

We provide the following bounds for the derivatives of u(x) (see [21,22]), which will
be used in later analysis.

Lemma 1. Assuming K(x, s), f (x), a(x) are sufficiently smooth functions and there is a positive
constant α such that a(x) ≥ α > 0, then the solution u(x) of problem (1) has the following bounds:

|u(k)(x)| ≤ C
(

1 +
1
εk e−

αx
ε

)
, x ∈ [0, 1], k = 0, 1, 2. (2)

To obtain our numerical discretization scheme, we consider an arbitrary nonuniform
mesh ΩN ≡ {0 = x0 < x1 < · · · < xN = 1}, where N is a positive integer. For i = 1, · · · , N,
hi = xi − xi−1 represents the local mesh step.

Similar to reference [1], we provide the construction of our numerical scheme on Ω.

By multiplying both sides of the first equation of (1) by ϕi(x) = e−
ai(xi−x)

ε and integrating
on the interval [xi−1, xi], then multiplying both sides by χ−1

i h−1
i , the origin problem (1) can

be written into the following integral equation:

χ−1
i h−1

i

∫ xi

xi−1

Luϕi(x)dx = χ−1
i h−1

i

∫ xi

xi−1

f (x)ϕi(x)dx, (3)

where χi = h−1
i

∫ xi
xi−1

ϕi(x)dx = 1−e−aiρi
aiρi

and ρi =
hi
ε for i = 1 · · · , N.

Furthermore, for the differential part of Lu defined in (1), it follows from the left side
of Equation (3) that

χ−1
i h−1

i

∫ xi

xi−1

[
εu′(x) + a(x)u(x)

]
ϕi(x)dx = εθiD−ui + aiui

+ χ−1
i h−1

i

∫ xi

xi−1

[a(x)− a(xi)]ϕi(x)u(x)ds,
(4)

where θi =
aiρie−aiρi

1−e−aiρi
and D−ui =

ui−ui−1
hi

.
Next, by using the Newton interpolating formula to a(x) at points xi−1,xi and substi-

tuting it into Equation (4), we have

χ−1
i h−1

i

∫ xi

xi−1

[
εu′(x) + a(x)u(x)

]
ϕi(x)dx = εθiD−ui +

(
ai + hiδiD−ai

)
ui + R(1)

i , (5)
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where δi =
aiρi

1−e−aiρi
− 1

aiρi
, ai = a(xi) and

R(1)
i = χ−1

i h−1
i

∫ xi

xi−1

a′′(ηi)

2
(x− xi−1)(x− xi)ϕi(x)u(x)dx

− ax̄,iχ
−1
i h−1

i

∫ xi

xi−1

(x− xi)ϕi(x)
(∫ xi

x
u′(s)ds

)
dx, ηi ∈ [xi−1, xi].

(6)

Similarly, the right hand of (3) can be written as follows:

χ−1
i h−1

i

∫ xi

xi−1

f (x)ϕi(x)dx = f̄i + R(2)
i , (7)

where f̄i = fi + hiδiD− fi and

R(2)
i =

1
2

χ−1
i h−1

i

∫ xi

xi−1

f ′′(γi)(x− xi−1)(x− xi)ϕi(x)dx, γi ∈ [xi−1, xi]. (8)

Meanwhile, for the integral part of Lu, by using the trapezoidal formula with basis function
ϕi(x) and remainder term in integral form, we obtain

χ−1
i h−1

i

∫ xi

xi−1

ϕi(x)
(∫ x

0
K(x, s)u(s)ds

)
dx

=
i

∑
j=0

h̄jκi,juj + R(3)
i + R(4)

i ,
(9)

where

κi,j = κ(xi, xj) = K(xi, xj) + hiδi
∂K
∂x

(xi, xj),

h̄0 =
h1

2
, h̄j =

hj + hj+1

2
, j = 1, · · · , N − 1, h̄N =

hN
2

,

R(3)
i = χ−1

i h−1
i

∫ xi

xi−1

dxϕi(x)
∫ xi

xi−1

d2

dξ2

(∫ ξ

0
K(ξ, s)u(s)ds

)
(ξ − x)dξ,

R(4)
i =

1
2

i

∑
j=1

∫ xj

xj−1

(xj − ξ)(xj−1 − ξ)
d2

dξ2 κ(xi, ξ)u(ξ)dξ.

Finally, neglecting the truncation errors given in (5), (7), and (9), we obtain the finite
difference scheme of problem (1) as follows:





LNuN
i ≡ εθiD−uN

i + āiuN
i +

i
∑

j=0
h̄jκi,juN

j = f̄i, 1 ≤ i ≤ N,

uN
0 = A,

(10)

where uN
i is an approximation solution of u(x) at x = xi and āi = ai + (D−ai + Kii)hiδi.

Next, we provide a lemma (see lemma 4.1 in [22]), which will be used in the proof of
Lemma 3.

Lemma 2. Consider the following difference problem:

`Nvi = εvt,i + aivi = Fi, i = 0, 1, 2, · · · , N0. (11)

v0 = A. (12)
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Let |Fi| ≤ Fi and Fi be nondecreasing function. Then the solution of (11) and (12) satisfies

|vi| ≤ |A|+ α−1Fi, i = 0, 1, 2, · · · , N0. (13)

In order to derive the convergence result of the numerical solution
{

uN
i
}N

i=0, we
provide the following stability result.

Lemma 3. Assume that there is a constant α∗ such that āi + h̄iκ(xi, xi) ≥ α∗ > 0, i = 1, . . . , N.
Then, we have

max
0≤i≤N

∣∣∣uN
i

∣∣∣ ≤ C
(

max
0≤i≤N

∣∣ f̄i
∣∣+ A

)
. (14)

Proof. For each uN
i , i = 1, · · · , N, we first define the following difference operator:

`NuN
i := εθiD−uN

i + (āi + h̄iκi,i)uN
i . (15)

Then, by using Lemma 2, we have

|uN
i | ≤ α−1

∗
(
|uN

0 |+ |`NuN
i |
)

. (16)

It follows from the first equation of (10) that

`NuN
i = LNuN

i −
i−1

∑
j=0

h̄jκi,juN
j . (17)

Furthermore, since κ(x, s) is bounded, it yields

|`NuN
i | ≤

∣∣ f̄i
∣∣+ C

i−1

∑
j=0

h̄j|uN
j |, 1 ≤ i ≤ N. (18)

Combining with (16), we have

|uN
i | ≤

(
|uN

0 |+ α−1
∗ ‖ f ‖∞

)
+ α−1
∗

(
C

i−1

∑
j=1

h̄j|uN
j |
)

. (19)

Finally, applying Gronwall’s inequality to (19) yields

max
0≤i≤N

∣∣∣uN
i

∣∣∣ ≤ (A + α−1
∗ ‖ f ‖∞) exp

(
α−1
∗ C

i−1

∑
j=1

h̄j

)
, (20)

which completes the proof.

3. Truncation Error Analysis

Let zi = uN
i − ui be the error at xi in the computed solution. Then,

{
LNzi = Ri, i = 1, · · · , N,
z0 = 0,

(21)

where Ri = R(1)
i + R(2)

i + R(3)
i + R(4)

i is the local truncation error at nodal xi.
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Lemma 4. Assuming K(x, s), f (x), a(x) are sufficiently smooth functions and there is a positive
constant α such that a(x) ≥ α > 0, the truncation error Ri has the following bound:

max
1≤i≤N

|Ri| ≤ C


 max

1≤i≤N
h2

i + max
1≤i≤N

hi

∫ xi

xi−1

|u′(x)|dx + max
1≤j≤N

(∫ xj

xj−1

ε−1e−
αx
2ε dx

)2

.

Proof. From Lemma 3.1 of [1], we can easily obtain

|R(1)
i |+ |R

(2)
i |+ |R

(3)
i | ≤ Chi

(
hi +

∫ xi

xi−1

|u′(x)|dx
)

. (22)

For R(4)
i , we have

|R(4)
i | ≤ C

(
i

∑
j=1

h3
j +

i

∑
j=1

∫ xj

xj−1

(xj − ξ)(ξ − xj−1)
∣∣u′(ξ) + u′′(ξ)

∣∣dξ

)

≤ C max
1≤j≤N

h2
j + max

1≤j≤N

∫ xj

xj−1

|u′(ξ)|(ξ − xj−1)dξ

+ max
1≤j≤N

∫ xj

xj−1

ε−2e−
αx
ε (ξ − xj−1)dξ

≤ C max
1≤j≤N

h2
j + max

1≤j≤N
hj

∫ xj

xj−1

|u′(x)|dx + max
1≤j≤N

(∫ xj

xj−1

ε−1e−
αx
2ε dx

)2

,

(23)

where we have used the fact that

∫ b

a
φ(s)(s− a)ds ≤ 1

2

{∫ b

a
φ(s)1/2ds

}2

(24)

holds true for any positive monotonically decreasing function φ(s) on [a, b]. Furthermore,
combining (22) and (23), we complete the proof of this lemma.

4. Adaptive Grid and Convergence Analysis

Monitor functions are widely used by many researchers (see, e.g., [18,23–27]) to design
an adaptive grid algorithm that produces layer-resolving meshes in solving singularly
perturbed problems. As is stated in [26], if the monitor functions contain the exact solution
of the considered problem, these approaches are called semi-discretization adaptive grid
methods. For this purpose, we also study the semi-discretization adaptive grid method for
problem (1). Based on the truncation error estimation given in Lemma 4, we choose the
following monitor function M(x, u(x)):

M(x, u(x)) = 1 + |u′(x)|+ ε−1e−
αx
2ε , (25)

which is used to construct a grid {xi}N
i=0 satisfying

∫ xj

xj−1

M(x, u(x))dx =
1
N

∫ 1

0
M(x, u(x))dx, i = 1, 2, · · · , N. (26)

Here, Equation (26) is called the mesh equidistribution principle. It is worth noting
that the existence of the grid {xi}N

i=0 satisfying (26) can be found in [15], Theorem 3.1.
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Lemma 5. Let ΩN
= {xi}N

i=0 be a grid satisfying (26). Then, for i = 1, . . . , N, we have

hi ≤ CN−1, (27)∫ xi

xi−1

|u′(x)|dx ≤ CN−1, (28)
∫ xi

xi−1

ε−1e−
αx
2ε dx ≤ CN−1. (29)

Proof. It follows from Lemma 1 that
∫ 1

0

(
1 + |u′(x)|+ ε−1e−

αx
2ε

)
dx

≤ C
∫ 1

0

(
1 + ε−1e−

αx
ε + ε−1e−

αx
2ε

)
dx

≤ C
∫ 1

0

(
1 + ε−1e−

αx
ε

)
dx

= C
(

1 +
1
α

(
1− e−

α
ε

))

≤ C.

(30)

Then, based on the mesh equidistribution principle (26), we have

hi = xi − xi−1

≤
∫ xi

xi−1

(
1 + |u′(x)|+ ε−1e−

αx
2ε

)
dx

=
1
N

∫ 1

0

(
1 + |u′(x)|+ ε−1e−

αx
2ε

)
dx

≤ CN−1.

(31)

Furthermore, by (25) and (26), one has

∫ xi
xi−1
|u′(x)|dx <

∫ xi
xi−1

(
1 + |u′(x)|+ ε−1e−

αx
2ε

)
dx

≤ 1
N
∫ 1

0

(
1 + |u′(x)|+ ε−1e−

αx
2ε

)
dx

≤ CN−1.

(32)

Similarly, we can prove (29). The proof is completed.

Finally, based on the above preliminary results, we can derive the main theorem about
the convergence analysis of presented scheme (10) on an adaptive grid Ω̄N .

Theorem 1. Let ui be the exact solution of problem (1) and uN
i be the solution of (10) at the adaptive

grid ΩN
= {xi}N

i=0 satisfying (26). Then, we have

max
0≤i≤N

∣∣∣uN
i − u(xi)

∣∣∣ ≤ CN−2. (33)

Proof. Firstly, applying Lemma 3 to (21) yields

max
0≤i≤N

∣∣∣uN
i − u(xi)

∣∣∣ ≤ C max
1≤i≤N

|Ri|. (34)

Then, it follows from Lemmas 4 and 5 that
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max
0≤i≤N

∣∣∣uN
i − u(xi)

∣∣∣ ≤ C
[

max
1≤i≤N

h2
i + max

1≤i≤N
hi

∫ xi

xi−1

|u′(x)|dx

+ max
1≤i≤N

(∫ xi

xi−1

ε−1e−
αx
2ε dx

)2
]

≤ CN−2,

(35)

which completes the proof.

5. Numerical Results and Discussion

In Section 5.1, we shall first provide a grid generation algorithm based on the equidis-
tribution of the monitor function (25). Numerical results and discussion are presented by
two test examples in Section 5.2.

5.1. Mesh Generation Algorithm

Since the monitor function (25) includes the first-order derivative of the exact solution
u(x), it is difficult to obtain an adaptive grid {xi}N

i=0 by equidistributing the monitor
function (25). In practical computation, we choose the following approximating monitor
function

M̃i = 1 + |D−uN
i |+ ε−1e−

αxi
2ε , i = 1, · · · , N. (36)

Therefore, the key problem of our adaptive grid method is to find
{(

xi, uN
i
)}N

i=0, with
uN

i calculated from the discretization scheme ref. to Equation (10) on an adaptive grid
{xi}N

i=0, such that

hi M̃i =
1
N

N

∑
j=1

hj M̃j for i = 1, · · · , N. (37)

Finally, in order to obtain a grid {xi}N
i=0 and the corresponding numerical solution{

uN
i
}N

i=0 satisfying (37), we provide the following specific mesh-generation Algorithm 1,
which is similar to the algorithm given in [25], Section 5.1.
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Algorithm 1: Adaptive grid algorithm

Step 1. Provide an initial uniform mesh ΩN,(0)
=
{

x(0)i

}N

i=0
with N mesh

intervals. Choose a constant C0 > 1 that controls the algorithm terminates.

Step 2. For a given grid ΩN,(k)
=
{

x(k)i

}N

i=0
, k = 0, 1, · · · and the corresponding

computed solution
{

uN,(k)
i

}N

i=0
, set h(k)i = x(k)i − x(k)i−1 for each i and Φ(k)

0 = 0 and

Φ(k)
i =

i
∑

j=1
h(k)j M̃(k)

j for i = 1, · · · , N.

Step 3. Define C(k) := N
Φ(k)

N

max
1≤i≤N

h(k)i M̃(k)
i . If C(k) ≤ C0 holds true, then go to

Step 5. Otherwise go to Step 4.
Step 4. For i = 0, 1, · · · , N, let Y(k)

i = iΦ(k)
N /N and φ(k)(s) be a linear interpolation

function through knots
(

Φ(k)
i , x(k)i

)
. Then, generate a new mesh

ΩN,(k+1)
=
{

x(k+1)
i

}N

i=0
by x(k+1)

i = φ(k)
(

Y(k)
i

)
for i = 0, 1, · · · , N. Let k = k + 1

and return to Step 2.

Step 5. Take ΩN,∗
= ΩN,(k+1) as the final calculation mesh and{

uN,∗
i

}N

i=0
=
{

uN,(k+1)
i

}N

i=0
as the corresponding numerical solution. Then, stop

iteration process.

5.2. Numerical Experiments and Discussion

Example 1. The first test problem follows [1] is given by:

εu′ + 2u−
∫ x

0
(x− s)e1−xsu(s)ds = ex − x, x ∈ (0, 1],

u(0) = 1.

Since the exact solution of this problem is not available, the maximum errors and the
convergence rates can be evaluated as follows:

EN
ε = max

0≤i≤N
|uN

i − u2N
i |, (38)

rN
ε = log2

(
EN

ε

E2N
ε

)
, (39)

where uN
i is the numerical solution calculated on an adaptive grid ΩN

= {xi}N
i=0 and u2N

i

is the corresponding approximate solution on the mesh Ω2N , which is defined by

Ω2N
=
{

x i
2

: i = 0, 1, · · · , 2N
}

with xi+ 1
2
=

xi + xi+1

2
, xi ∈ ΩN , i = 0, 1, · · · , N − 1.

Here, we choose C0 = 1.5, α = 1 and apply the presented adaptive grid method to
solve Example 1 with different values of ε and N. The errors and rates of convergence
for the numerical solution are displayed in Table 1. Meanwhile, in order to illustrate the
computational efficiency of our presented adaptive grid algorithm, Table 1 also lists the
number of iterations Iter. Furthermore, to compare the performance of the presented
adaptive mesh with the Shishkin mesh (S-Mesh) and the method given in [20], some
numerical results are given in Table 2. The numerical results of Shishkin mesh approach is
come from [1].
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Table 1. Numerical results of our presented adaptive grid method for Example 1.

ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

10−1 EN
ε 1.69× 104 4.37× 10−5 1.11× 10−5 2.80× 10−6 7.04× 10−7 1.76× 10−7

rN
ε 1.95 1.98 1.99 1.99 2.00 -

Iter 1 1 1 1 1 1
10−2 EN

ε 1.74× 10−4 5.77× 10−5 1.68× 10−5 4.32× 10−6 1.13× 10−6 2.90× 10−7

rN
ε 1.60 1.78 1.96 1.93 1.97 -

Iter 2 2 1 1 1 1
10−3 EN

ε 1.38× 10−4 3.99× 10−5 1.16× 10−5 3.63× 10−6 1.61× 10−6 3.45× 10−7

rN
ε 1.79 1.78 1.69 1.64 1.75 -

Iter 3 2 2 2 2 1
10−4 EN

ε 1.30× 10−4 3.73× 10−5 1.00× 10−5 2.53× 10−6 6.90× 10−7 1.91× 10−7

rN
ε 1.80 1.89 1.99 1.87 1.85 -

Iter 3 3 2 2 3 2
10−5 EN

ε 1.29× 10−4 3.84× 10−5 9.61× 10−6 2.51× 10−6 6.33× 10−7 1.59× 10−7

rN
ε 1.75 1.99 1.94 1.99 1.99 -

Iter 4 4 3 3 2 2
10−6 EN

ε 1.39× 10−4 3.56× 10−5 9.85× 10−6 2.44× 10−6 6.28× 10−7 1.58× 10−7

rN
ε 1.97 1.85 2.01 1.96 1.99 -

Iter 5 4 4 3 3 3

Table 2. Comparison of numerical results with the other methods for Example 1.

N ε = 2−12 ε = 2−24

S-Mesh [1] Method [20] Our Method S-Mesh [1] Method [20] Our Method

64 4.90× 10−2 0.4× 10−4 1.31× 10−4 5.52× 10−2 0.4× 10−4 1.36× 10−4

1.81 1.92 1.74 1.82 2.03 1.95
128 1.37× 10−2 1.05× 10−5 3.94× 10−5 1.56× 10−2 0.97× 10−5 3.53× 10−5

1.84 1.87 2.01 1.86 1.97 1.95
256 3.90× 10−3 2.85× 10−6 9.80× 10−6 4.31× 10−3 2.47× 10−6 9.11× 10−6

1.93 1.79 1.84 1.93 2.04 1.88
512 1.02× 10−3 0.82× 10−6 2.74× 10−6 1.13× 10−3 0.6× 10−6 2.48× 10−6

1.98 1.65 1.81 1.99 1.99 2.07
1024 2.60× 10−4 2.62× 10−7 7.81× 10−7 2.84× 10−4 1.51× 10−7 5.91× 10−7

It can be observed from Table 1 that the numerical results obtained by the presented
adaptive grid method has high accuracy and second-order convergence rate, which sup-
ports the theoretical result given in Theorem 1. Moreover, it is shown from the number of
iteration Iter that the above grid generation algorithm is also very efficient. From Table 2,
we can see that the discretization scheme (10) computed on an adaptive mesh is more
accurate and efficient than that computed on the Shishkin mesh. Since the monitor function
in [20] is different from the monitor function in this paper, the results obtained by using the
method in [20] may be better than our results. However, it is difficult to get the convergence
analysis in [20].

In addition, in order to help readers have a deep understanding of adaptive grid
method, Figure 1a, which should be read from bottom to top, directly reflects the moving
process of the adaptive mesh for ε = 10−4 and N = 64. Meanwhile, Figure 1b provides the
corresponding graph of numerical solution. Obviously, it is shown that the solution of the
test problem has a boundary layer at x = 0, which is also clearly reflected in Figure 1.
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Table 2. Comparison of numerical results with Shishkin mesh for Example 1.

N ε = 2−12 ε = 2−24

S-mesh[1] method [20] our method S-mesh[1] method [20] our method

64 4.90e-2 0.4e-4 1.31e-4 5.52e-2 0.4e-4 1.36e-4
1.81 1.92 1.74 1.82 2.03 1.95

128 1.37e-2 1.05e-5 3.94e-5 1.56e-2 0.97e-5 3.53e-5
1.84 1.87 2.01 1.86 1.97 1.95

256 3.90e-3 2.85e-6 9.80e-6 4.31e-3 2.47e-6 9.11e-6
1.93 1.79 1.84 1.93 2.04 1.88

512 1.02e-3 0.82e-6 2.74e-6 1.13e-3 0.6e-6 2.48e-6
1.98 1.65 1.81 1.99 1.99 2.07

1024 2.60e-4 2.62e-7 7.81e-7 2.84e-4 1.51e-7 5.91e-7
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Figure 1. Evolution of the adaptive mesh and numerical solution of Example 1 with ε = 10−4 and
N = 64.

142

Example 2. The second test example in [1] is143

εu′ + u +
∫ x

0
xu(s)ds = − ε

(1 + x2)
+

1
1 + x

+ xε
(

1− e−
x
ε

)
+ x ln(1 + x), 0 < x ≤ 1,

u(0) = 2

Figure 1. Evolution of the adaptive mesh and numerical solution of Example 1 with ε = 10−4 and
N = 64. (a) Grid iteration process, (b) Numerical solution of u(x).

Example 2. The second test example in [1] is

εu′ + u +
∫ x

0
xu(s)ds = − ε

(1 + x2)
+

1
1 + x

+ xε
(

1− e−
x
ε

)
+ x ln(1 + x), 0 < x ≤ 1,

u(0) = 2

with the analytic solution u(x) = e−
x
ε + 1

1+x . Then, the maximum point-wise errors are
calculated by

EN
ε = max

0≤i≤N

∣∣∣uN
i − u(xi)

∣∣∣.

The rates of convergence are computed by using Equation (39). In order to solve this
test Example 2 by using our presented adaptive grid method, we first choose C0 = 1.1
and α = 1. Then, Table 3 provides the results obtained using our presented adaptive grid
method for ε = 10−2k, k = 1, 2, 3, 4, and N = 64, 128, 256, 512, 1024, 2048. In addition, the
comparison of numerical results with Shishkin mesh is listed in Table 4. For smaller values
of ε, one can see that the convergence rates of the presented adaptive grid are close to 2. For
larger values of N, the number of iterations Iter of our adaptive grid generation given in
Section 5.1 is also very small. Figure 2 provides the evolution of the above mesh-generation
algorithm and the corresponding graph of numerical solution with ε = 10−4, N = 64. It is
shown that the numerical solution of example 2 has a boundary lay at x = 0.
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Table 3. Numerical results of our presented adaptive grid method for Example 2.

ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

10−2 EN
ε 3.99× 10−4 1.41× 10−4 4.21× 10−5 1.10× 10−5 2.93× 10−6 7.53× 10−7

rN
ε 1.51 1.75 1.93 1.92 1.96 -

Iter 2 2 2 1 1 1
10−4 EN

ε 8.93× 10−5 2.23× 10−5 5.36× 10−6 1.34× 10−6 4.15× 10−7 1.98× 10−7

rN
ε 2.01 2.05 2.00 1.69 1.07 -

Iter 3 3 3 2 2 3
10−6 EN

ε 8.33× 10−5 2.47× 10−5 5.37× 10−6 1.34× 10−6 3.32× 10−7 8.33× 10−8

rN
ε 1.74 2.21 1.99 2.02 1.99 -

Iter 5 8 4 3 3 3
10−8 EN

ε 9.87× 10−5 2.46× 10−5 5.36× 10−6 1.33× 10−6 3.34× 10−7 8.21× 10−8

rN
ε 2.01 2.20 2.01 1.99 2.02 -

Iter 7 9 5 5 4 3

Table 4. Comparison of numerical results with the other methods for Example 2.

N ε = 2−12 ε = 2−24

S-Mesh [1] Method [20] Our Method S-Mesh [1] Method [20] Our Method

64 1.03× 10−2 0.32× 10−4 1.38× 10−4 1.07× 10−2 4.23× 10−5 8.22× 10−5

1.83 2.00 2.03 1.83 2.45 1.91
128 2.89× 10−3 0.79× 10−5 3.38× 10−5 1.02× 10−3 0.77× 10−5 2.18× 10−5

1.88 1.73 2.10 1.88 2.01 1.84
256 7.84× 10−4 2.39× 10−6 7.85× 10−6 8.21× 10−4 1.93× 10−6 6.09× 10−6

1.95 1.07 2.16 1.96 2.01 2.20
512 2.03× 10−4 1.14× 10−6 1.76× 10−6 2.11× 10−4 0.48× 10−6 1.32× 10−6

1.99 1.15 1.42 1.99 2.00 2.01
1024 5.10× 10−5 5.12× 10−7 6.59× 10−7 5.30× 10−5 1.19× 10−7 3.27× 10−7
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Figure 2. Grid iteration process and numerical solution with ε = 10−4 and N = 64 for Example 2.

6. Conclusions155

As far as we known, most of adaptive grid methods used to solve singularly perturbed problems,156

which contain a first-order derivative term, are only first-order accurate. For this reason, based on the157

fitted finite difference scheme proposed in [1], this paper mainly discussed a second-order adaptive158

grid method for a singularly perturbed first-order Volterra integro-differential equation. By using the159

truncation error analysis of the presented discretization scheme (10), we constructed a suitable monitor160

function which is used to design an adaptive grid. It is shown from the convergence analysis that our161

presented adaptive method is uniformly convergent and independent of the perturbation parameter162

in the discrete maximum norm.163
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6. Conclusions

As far as we known, most of adaptive grid methods used to solve singularly perturbed
problems, which contain a first-order derivative term, are only first-order accurate. For
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this reason, based on the fitted finite difference scheme proposed in [1], this paper mainly
discussed a second-order adaptive grid method for a singularly perturbed first-order
Volterra integrodifferential equation. By using the truncation error analysis of the presented
discretization scheme (10), we constructed a suitable monitor function, which is used to
design an adaptive grid. It is shown from the convergence analysis that our presented
adaptive method is uniformly convergent and independent of the perturbation parameter
in the discrete maximum norm.
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