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Abstract: In this paper, the synchronization of fractional-order uncertain delayed neural networks
with an event-triggered communication scheme is investigated. By establishing a suitable Lyapunov–
Krasovskii functional (LKF) and inequality techniques, sufficient conditions are obtained under which
the delayed neural networks are stable. The criteria are given in terms of linear matrix inequalities
(LMIs). Based on the drive–response concept, the LMI approach, and the Lyapunov stability theorem,
a controller is derived to achieve the synchronization. Finally, numerical examples are presented to
confirm the effectiveness of the main results.
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1. Introduction

Fractional calculus is a mathematical theory that has been studied and applied in
different fields for the past 300 years. Compared with traditional integer-order systems,
fractional-order (FO) derivatives provide an excellent tool for the description of memory
and inherent properties of various materials and processes, with applications in many areas,
such as heat conduction, electronics, and abnormal diffusion [1,2]. As a result, fractional
calculus has attracted increasing attention from physicists and engineers [3–7]. Moreover,
fractional calculus has been applied to numerous neural network models [8,9]. Hence,
the research on fractional neural networks (NNs) is important for practical applications,
and many important results on chaotic dynamics, stability analysis, stabilization, syn-
chronization, dissipativity, and passivity have been reported [10–16]. This popularity is
due to the fact that fractional calculus has the ability to include memory when describing
complex systems and gives a more precise characterization than the standard integer-order
approach. A key characteristic is that the FO derivatives require an infinite number of
terms, whereas the integer-order derivatives only indicate a finite series. Consequently, the
integer derivatives are local operators, whereas the FO derivative has the memory of all
past events.

In the real world, there are different types of uncertainty that can attenuate the perfor-
mance of the system and affect its stability. These uncertainties may result from parameter
variations and external disturbances. If a structural process is observed experimentally, it is
not possible to assign precise values to the observed events. This means data uncertainty
occurs, which may result from scale-dependent impacts that are not considered, which
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create inaccuracies in the estimations and incomplete sets of observations. In this manner,
the estimated results are more or less described by the data uncertainty that begins with
imprecision. In addition, the parameter uncertainties are unavoidable while displaying a
neural network, which creates unstable results. It is known that a precise physical model of
an engineering plant is difficult to build because of the uncertainties and noises. In actual
operation, due to the existence of some external or internal uncertain disturbances, system
states sometimes are not always fully accessible [17–26].

Generally speaking, an event-triggered control strategy is more appealing than the
traditional time-triggered one from an economic perspective, since the control input is
updated only when the predetermined triggering condition is reached. Since the event-
triggered control approach can reduce information exchange in systems, event-triggered
synchronization or consensus for fractional-order systems has received increasing attention
in recent years. Recently, there has been significant research on the event-triggered control
(ETC) strategy [27–29]. Compared to the time-driven consensus, the event-triggered con-
sensus is more realistic. The event-triggered controller introduced in the field of networked
control systems has the advantage of using limited communication network resources
efficiently. Recently, an event-triggered scheme (ETS) provided an effective way of de-
termining when the sampling action should be carried out and when the packet should
be transmitted. A number of researchers have recommended event-triggered control. To
deal with network congestion, the ETS has been proposed to improve data transmission
efficiency. In the past few years, event-triggered control has proved to be an efficient way to
reduce the transmitted data in the networks, which can relieve the burden of network band-
width. Thus event-triggered control strategies have been employed to study networked
systems [30–32].

In addition, in many practical applications, the system is expected to reach synchro-
nization as quickly as possible. Synchronization is an important phenomenon in the real
world, which exists widely in practical systems, as well as in nature. The problem of
achieving synchronization in a neural network is another research hotspot. Different kinds
of synchronization, such as pinning synchronization [33], local synchronization [34,35],
lag synchronization [36], and impulsive synchronization [37] have been considered in the
literature. Recently synchronization has also attracted attention in the field of complex
networks systems [38,39]. Synchronization techniques require communication among
nodes, which creates network congestion and wastes network resources. Moreover, the
treatment of the synchronization problem of fractional-order systems with input quantiza-
tion is quite limited in the literature. Numerous consequence have been described for the
synchronization-based event-triggered problem [40–42]. As collective behaviors, consensus
and synchronization are important in nature.

There is no doubt that the Lyapunov functional method provides an effective approach
to analyze the stability of integer-order nonlinear systems. The synchronization and stabi-
lization of fractional Caputo neural network (FCNNs) were proved by constructing a simple
quadratic Lyapunov function and calculating its fractional derivative. The contributions of
this article are listed below:

1. The synchronization of fractional-order uncertain delayed neural networks with an
event-triggered communication scheme is investigated.

2. A fractional integral, which is suitable for the considered fractional-order error
system, is proposed.

3. A Lyapunov–Krasovskii (L–K) functional is established, and the conditions corre-
sponding to asymptotic stability are derived for the design of an event-triggered controller
based on linear matrix inequalities (LMIs).

4. The derived conditions are expressed in terms of linear matrix inequalities (LMIs),
which can be checked numerically via the LMI toolbox very efficiently.

5. Numerical examples are provided to demonstrate the effectiveness and applicability
of the proposed stability results.
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The following notations are used in this paper. R and Rn denote the set of real
numbers and the n-dimensional real spaces, respectively; Rn×n denotes the set of n× n

matrices. I denotes the identity matrix of appropriate dimension. The super script “T ”
denotes the matrix transposition. “(−1)” represents the matrix inverse. X > 0 (X < 0)
means that X is positive definite (negative definite). I represents the identity matrix and
zero matrix with compatible dimensions. In symmetric block matrices or a long matrix
expression, we use an asterisk (*) to represent a term that is induced by symmetry. L2[0, ∞)
denotes the space of square-integrable vector functions over [0, ∞).

2. Preliminaries

In this section, we recall the basic definition and some properties concerning fractional-
order calculus. In addition, definition, remark, assumption and some lemmas are presented.

Definition 1 ([43]). The Caputo fractional derivative of order β for a function f(t) is defined as

Dβ f (t) =
1

Γ(m− β)

∫ t

0

f m(γ)

(t− γ)β−m+1 dγ,

where t ≥ 0, and m− 1 < β < m ∈ Z+. In particular, when β ∈ (0, 1),

Dβ f (t) =
1

Γ(1− β)

∫ t

0

f ′(γ)
(t− γ)β

dγ.

Lemma 1 ([44]). Let a vector-valued function $(t) ∈ Rn be differentiable. Then, for any t > 0,
one has

Dα($T(t)S $(t)) ≤ 2$T(t)S Dα$(t), 0 < α < 1.

Lemma 2 ([45]). For the given positive scalar λ > 0, l, r ∈ Rm and matrix D ,

lTDr ≤ λ−1

2
lTDDTl+

λ

2
rTr.

Lemma 3 ([46]). If N > 0, and the given matrices are S , Q, N , then[
Q S T

S −N

]
< 0,

if and only if

Q +S TN −1S < 0.

Lemma 4 ([47]). For a vector function Ξ : [t1, t2]→ Rn and any positive definite matrix P , we
have ( ∫ t2

t1

Ξ(s)ds
)T

P
( ∫ t2

t1

Ξ(s)ds
)
≤ (t2 − t1)

∫ t2

t1

ΞT (s)PΞ(s)ds.

Assumption 1. Let gi(·) be continuous and bounded; X −
s and X +

s are constants,

X −
s ≤

gs(r1)− gs(r2)

r1 − r2
≤ X +

s , s = 1, 2, . . . , n,

where r1, r2 ∈ R and r1 6= r2.

Remark 1. From the literature survey, it is clear that most of the results on fractional order neural
networks (FONNs) are derived with fractional-order Lyapunov stability criteria having quadratic
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terms. However, in this paper, we introduce the integral term D (−α+1)
∫ t
t−η e

T (s)R2e(s)ds in the
Lyapunov functional candidate, which is solved by utilizing the properties of Caputo fractional-order
derivatives and integrals. The Lyapunov functional is novel, as it contains the quadratic term. By
applying fractional-order derivatives in the error system of the FCNNs under suitable adaptive
update laws, a new sufficient condition can be derived in terms of solvable LMIs.

3. Main Results

Consider the following uncertain delayed neural network described by

Dαwi(t) = −(ri + ∆ri(t))wi(t) +
n

∑
j=1

(cij + ∆cij(t))hj(wj(t))

+
n

∑
j=1

(bij + ∆bij(t))hj(wj(t− σj(t)))

+
n

∑
j=1

(aij + ∆aij(t))
∫ t

t−η
wj(s)ds+ pi(t). (1)

Conveniently, we write the master system as

Dαw(t) = −(R + ∆R(t))w(t) + (C + ∆C (t))h(w(t)) + (B + ∆B(t))h(w(t− σ(t))

+ (A + ∆A (t))
∫ t

t−η
(w(s))ds+P(t), (2)

in which w(t) = (w1(t),w2(t), . . . ,wn(t))
T ∈ Rn, is the state vector associated with n

neurons, the diagonal matrix ri(t) = diag{r1(t), r2(t), . . . , rn(t)}, and C (t), B(t), and A (t)
are the known constant matrices of appropriate dimensions; the symbol ∆ denotes the
uncertain term, and ∆C (t), ∆B(t), and ∆A (t) are known matrices that represent the
time-varying parameter uncertainties. h(w(t)) is the neuron activation function.

Next, we consider the corresponding slave system as follows:

Dαvi(t) = −(ri + ∆ri(t))vi(t) +
n

∑
j=1

(cij + ∆cij(t))hj(vj(t))

+
n

∑
j=1

(bij + ∆bij(t))hj(vj(t− σj(t)))

+
n

∑
j=1

(aij + ∆aij(t))
∫ t

t−η
vj(s)ds+ pi(t) + hqi(t). (3)

The compact form of (3) is

Dαv(t) = −(R + ∆R(t))v(t) + (C + ∆C (t))h(v(t)) + (B + ∆B(t))h(v(t− σ(t))

+ (A + ∆A (t))
∫ t

t−η
v(s)ds+P(t) +H Q(t). (4)

Now, we introduce the e(t) = v(t)−w(t):

Dαe(t) = −(R + ∆R(t))e(t) + (C + ∆C (t))h(e(t)) + (B + ∆B(t))h(e(t− σ(t))

+ (A + ∆A (t))
∫ t

t−η
e(s)ds+H Q(t). (5)

The purpose of this paper is to design a controller Q(t) = K e(t), such that the slave
system (3) synchronizes with the master system (1), and K is the controller gain to be
determined.
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Without distributed delays in the system (1), it is easy to obtain the error system

Dαe(t) = −(R + ∆R(t))e(t) + (C + ∆C (t))h(e(t)) + (B + ∆B(t))h(e(t− σ(t))

+H K e(t). (6)

Theorem 1. The FNNs (1) and (3) are globally asymptotically synchronized under the event-
triggered control scheme, for the given scalars δ1, δ2, δ3, δ4, δ5, and µ1, and if there exist symmetric
positive definite matrices R1 > 0, R2 > 0, such that a feasible solution exists for the following
LMIs,

Ω =



Ω11 R1Jr R1Jc R1Jb R1C R1B 0
∗ −δ1I 0 0 0 0 0
∗ ∗ −δ2I 0 0 0 0
∗ ∗ ∗ −δ3I 0 0 0
∗ ∗ ∗ ∗ −δ4I 0 0
∗ ∗ ∗ ∗ ∗ −δ5I 0
∗ ∗ ∗ ∗ ∗ ∗ Ω66.


< 0, (7)

where

Ω11 = −2R1R + δ1L
T

r Lr + δ2φT L T
c Lcφ + δ4φT φ +R2 +R1H K ,

Ω66 = δ3φTL T
b Lbφ + δ5φTφ−R2(1− µ)

Proof. Now, let us define the Lyapunov–Krasovskii functional as follows:

V (t) = V1(t) + V2(t), (8)

where

V1(t) = eT (t)R1e(t),

V2(t) = D (−α+1)
∫ t

t−σ(t)
eT (s)R2e(s)ds.

By using Lemma 2, we have,

2eT (t)R1∆R(t)e(t) ≤ 2eT (t)R1JdK (t)Lde(t),

≤ δ−1
1 eT (t)R1JdJ

T
d RT

1 e(t)

+ δ1e
T (t)L T

r Lre(t), (9)

2eT (t)R1∆C (t)h(e(t)) ≤ 2eT (t)R1JcK (t)Lch(e(t)),

≤ δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t)

+ δ2e
T (t)φT L T

c Lcφe(t), (10)

2eT (t)R1∆B(t)h(e(t− σ(t))) ≤ 2eT (t)R1JbK (t)Lbh(e(t− σ(t))),

≤ δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t)), (11)

2eT (t)R1C h(e(t))) ≤ δ−1
4 eT (t)R1C C TRT

1 e(t)

+ δ4e
T (t)φT φe(t),

2eT (t)R1Bh(e(t− σ(t)))) ≤ δ−1
5 eT (t)R1BBTRT

1 e(t)

+ δ5e
T (t− σ(t))φT φe(t− σ(t)). (12)
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Then, with the support of Lemma 1 and the linearity nature of the Caputo fractional-
order derivative, the fractional derivative along the trajectories of the system state is
acquired as follows

DαV (t) ≤ 2eT (t)R1D
αe(t),

≤ 2eT (t)R1
[
− (R + ∆R(t))e(t) + (C + ∆C (t))h(e(t))

+ (B + ∆B(t))h(e(t− σ(t)) +H K e(t)
]
,

≤ −2eT (t)R1Re(t) + δ−1
1 eT (t)R1JdJ

T
d RT

1 e(t)

+ δ1e
T (t)L T

d Lde(t) + 2eT (t)R1C h(e(t))

+ δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t) + δ2e
T (t)φT L T

c Lcφe(t)

+ 2eT (t)R1Bh(e(t− σ(t))) + δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t))

+ δ−1
4 eT (t)R1C

TC RT
1 e(t) + δ4e

T (t)φTφe(t)

+ δ−1
5 eT (t)R1B

TBRT
1 e(t) + δ5e

T (t− σ(t))φTφe(t− σ(t))

+ eT (t)R2e(t)− eT (t− σ(t))R2e(t− σ(t))(1− µ). (13)

From (9)–(13), the following can be obtained.

DαV (t) ≤ ζT(t)Ωζ(t), (14)

where

ζ(t) = col[e(t), e(t− σ(t)))].

From the aforementioned part, we know that matrix inequality (7) guarantees Ω < 0.
Thereby, the master system (1) is synchronized with the slave system (3). The proof of

Theorem 1 is complete.

Theorem 2. The FNNs (1) and (3) are globally asymptotically synchronized, for given scalars
δ1, δ2, δ3, δ4, δ5, and σ, if there exist symmetric positive definite matrices R1 > 0, R2 > 0, such
that the following LMIs hold:

π =



π11 Jr Jc Jb C B 0
∗ −δ1I 0 0 0 0 0
∗ ∗ −δ2I 0 0 0 0
∗ ∗ ∗ −δ3I 0 0 0
∗ ∗ ∗ ∗ −δ4I 0 0
∗ ∗ ∗ ∗ ∗ −δ5I 0
∗ ∗ ∗ ∗ ∗ ∗ π66


< 0, (15)

where

π11 = −2R1X1 +X1δ1L
T

r LrX1 +X1δ2φT L T
c LcφX1

+X1δ4φT φX1 +X1R2X1 +H Y1,

π66 = δ3φTL T
b Lbφ + δ5φTφ−R2(1− µ), (16)

and the other parameters are the same as in Theorem 1; among them, the gain matrix is defined with
R−1

1 = X1.

Proof. We pre- and post-multiply Ω by {R−1
1 , I , I , I , I , I , I } and R−1

1 = X1
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Φ =



Φ11 Jr Jc Jb C B 0
∗ −δ1I 0 0 0 0 0
∗ ∗ −δ2I 0 0 0 0
∗ ∗ ∗ −δ3I 0 0 0
∗ ∗ ∗ ∗ −δ4I 0 0
∗ ∗ ∗ ∗ ∗ −δ5I 0
∗ ∗ ∗ ∗ ∗ ∗ Φ66


< 0, (17)

where

Φ11 = −2R1X1 +X1δ1L
T

r LrX1 +X1δ2φT L T
c LcφX1

+X1δ4φT φX1 +X1R2X1 +H K X1,

Φ66 = δ3φTL T
b Lbφ + δ5φTφ−R2(1− µ).

At the same time, the controller gain matrix K can be obtained as Y1 = K X1,

π =



π11 Jr Jc Jb C B 0
∗ −δ1I 0 0 0 0 0
∗ ∗ −δ2I 0 0 0 0
∗ ∗ ∗ −δ3I 0 0 0
∗ ∗ ∗ ∗ −δ4I 0 0
∗ ∗ ∗ ∗ ∗ −δ5I 0
∗ ∗ ∗ ∗ ∗ ∗ π66


< 0. (18)

Hence, (15) guarantees that

π < 0. (19)

Thereby, the master system (1) is synchronized with the slave system (3). The proof of
Theorem 2 is complete.

Remark 2. Specifically, when there are no uncertainties in the given system, the neural network
(6) reduces to

Dαe(t) = −Re(t) + C h(e(t)) +Bh(e(t− σ(t))

+A
∫ t

t−η
e(s)ds+H K e(t). (20)

Corollary 1. The scalars are δ4, δ5, η, ε, and σ, and if there exist symmetric positive definite
matrices R1 > 0, R2 > 0, a feasible solution exists for the following LMIs:

β < 0. (21)

Proof. Now, let us define the Lyapunov–Krasovskii functional as follows:

V (t) = V1(t) + V2(t), (22)

where

V1(t) = eT (t)R1e(t),

V2(t) = D (−α+1)
∫ t

t−σ(t)
eT (s)R2e(s)ds.
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By using Lemma 2, we have

2eT (t)R1C h(e(t))) ≤ δ−1
4 eT (t)R1C C TRT

1 e(t)

+ δ4e
T (t)φT φe(t), (23)

2eT (t)R1Bh(e(t− σ(t)))) ≤ δ−1
5 eT (t)R1BBTRT

1 e(t)

+ δ5e
T (t− σ(t))φT φe(t− σ(t)). (24)

Further, the above term is computed in view of the procedure in [47], and by employing
Lemma 2.1 in [47] and the Cauchy matrix inequality, we have

2eT (t)R1A (t)
∫ t

t−η
e(s))ds ≤ ηeT (t)R1A R−1

1 A TR1e(t)

+
1
η

( ∫ t

t−η
e(s))ds

)T

R1

( ∫ t

t−η
e(s))ds

)
,

≤ ηeT (t)R1A R−1
1 A TR1e(t)

+
1
η

( ∫ t

t−η
eT(s))R1e(s))ds

)
,

≤ ηeT (t)R1A R−1
1 A TR1e(t)

+
1
η

( ∫ 0

−η
eT(t+ s))R1e(t+ s))ds

)
, (25)

since V (t+ s, x(t+ s)) ≤ εV (t, x(t))

2eT (t)R1A (t)
∫ t

t−η
e(s))ds ≤ ηeT (t)R1A R−1

1 A TR1e(t) + ηεeT (t)R1e(t). (26)

Then, with the support of Lemma 1 and the linearity nature of the Caputo fractional-order
derivative, the fractional derivative along the trajectories of the system state is acquired as
follows

DαV (t) ≤ 2eT (t)R1D
αe(t),

≤ 2eT (t)R1
[
−Re(t) + C h(e(t)) +Bh(e(t− σ(t))

+ 2eT (t)R1A (t)
∫ t

t−η
e(s))ds+K e(t)

]
,

≤ −2eT (t)R1Re(t) + δ−1
4 eT (t)R1C

TC RT
1 e(t) + δ4e

T (t)φTφe(t)

+ δ−1
5 eT (t)R1B

TBRT
1 e(t) + δ5e

T (t− σ(t))φTφe(t− σ(t))

+ ηeT (t)R1A R−1
1 A TR1e(t) + ηεeT (t)R1e(t)

+ eT(t)R2e(t)− eT(t− σ(t))R2e(t− σ(t))(1− µ). (27)

From (23)–(27) and applying Lemma 4, we obtain

Θ =


Θ11 R1C R1B ηR1A 0
∗ −δ4I 0 0 0
∗ ∗ −δ5I 0 0
∗ ∗ ∗ ηR1 0
∗ ∗ ∗ ∗ δ5φTφ−R2

 < 0, (28)

Θ11 = −2R1R + ηεR1 +R2 +R1H K .

We pre- and post-multiply Θ by {R−1
1 , I , I , R−1

1 , I }



Fractal Fract. 2022, 6, 641 9 of 20

Ξ =


Ξ11 C B ηA X1 0
∗ −δ4I 0 0 0
∗ ∗ −δ5I 0 0
∗ ∗ ∗ −ηX1 0
∗ ∗ ∗ ∗ δ5φTφ−R2

, (29)

where Ξ11 = −2RX1 +X1δ4φTφX1 +X1ηε +X1R2X1 +H K X1

ς =


ς11 C B ηA X1 0
∗ −δ4I 0 0 0
∗ ∗ −δ5I 0 0
∗ ∗ ∗ −ηX1 0
∗ ∗ ∗ ∗ δ5φTφ−R2

, (30)

where ς11 = −2RX1 +X1δ4φTφX1 +X1ηε +X1R2X1 +H Y .
Thereby, the master system (1) is synchronized with the slave system (3).

4. Event-Triggered Control Scheme

In this section, we introduce an event generator in the controller node by using the
following judgment algorithm

[e((k+ j)h)− e(kh)]TΦ[e((k+ j)h)− e(kh)] ≤ ΣeT((k+ j)h)Φe((k+ j)h), (31)

where Φ is a positive definite matrix to be determined, k, j ∈ Z+ and kh denotes the release
instant, e((k+ j)h) = v((k+ j)−w((k+ j)h) is the error information at the instant (k+ j)h,
and σ ∈ [0, 1) is a given constant. Cases A and B relate to the following delayed differential
equation

Dαe(t) = −(R + ∆R(t))e(t) + (C + ∆C (t))h(e(t)) + (B + ∆B(t))h(e(t− σ(t))

+ (A + ∆A (t))
∫ t

t−η
h(e(s))ds+H K e(tkh), t ∈ [tkh+ τk, tk+1h+ τk+1). (32)

Case A: if tkh+ h+ τ̄ ≥ tk+1h+ τk+1, we can define τ(t) as

τ(t) = t− tkh, t ∈ [tkh+ τk, tk+1h+ τk+1).

It can be seen that

τt ≤ τ(t) ≤ (tk+1 − tk)h+ tk+1 ≤ h+ τ̄.

Case B: if tkh + h + τ̄ < tk+1h + τk+1, since tk ≤ τ̄, we can easily demonstrate that a
positive constant m exists such that tkh+mh+ τ̄ < tk+1h+ τk+1 ≤ tkh+ (m+ 1)h+ τ̄. For
the time intervals [tkh+ τk, tk+1h+ τk+1), we divide them as F0 = [tkh+ τk, tkh+ h+ τ̄),
Fi = [tkh+ ih+ τ̄, tkh+ ih+ h+ τ̄), and Fm = [tkh+mh+ τ̄, tk+1h+ τk+1), and we define
τ(t) as

τ(t) = t− tk(t)− ih, it ∈ Fi, i = 0, 1, . . . ,m.

It is easy to prove that 0 ≤ τk ≤ τ((t)) ≤ h+ τ̄ = τM, t ∈ [tkh+ τk, tk+1h+ τk+1). Finally,
we define

ek(t) = e(tkh)− e(tkh+ ih), t ∈ Fi, i = 0, 1, . . . , m. (33)

For case A, m = 0, we have ek(t) = 0 from (33). Based on the analysis above, the event
generator (31) can be rewritten as

eT
k (t)Φek((t)) ≤ ΣeT(t− τ(t))ΦeT(t− τ(t), t ∈ [tkh+ τk, tk+1h+ τk+1).
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Then, the system is reduced to

Dαe(t) = −Re(t) + C h(e(t)) +Bh(e(t− σ(t))

+A
∫ t

t−η
e(s)ds+H K e(t) +H K e(t− τ(t)). (34)

Theorem 3. For the given scalars δ1, δ2, δ3, δ4, δ5, µ1, and σ and the diagonal matrices L1, L2,
and L3, if there exist symmetric positive definite matrices R1 > 0, R2 > 0, then a feasible solution
exists for the following LMIs:

ξ < 0. (35)

Proof. Now, let us define the Lyapunov–Krasovskii functional as follows:

V (t) = V1(t) + V2(t), (36)

where

V1(t) = eT (t)R1e(t),

V2(t) = D (−α+1)
∫ t

t−σ(t)
eT (s)R2e(s)ds.

Using Lemma 2, we have

2eT (t)R1∆R(t)e(t) ≤ 2eT (t)R1JdK (t)Lde(t),

≤ δ−1
1 eT (t)R1JdJ

T
d RT

1 e(t)

+ δ1e
T (t)L T

r Lre(t), (37)

2eT (t)R1∆C (t)h(e(t)) ≤ 2eT (t)R1JcK (t)Lch(e(t)),

≤ δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t)

+ δ2e
T (t)φT L T

c Lcφe(t), (38)

2eT (t)R1∆B(t)h(e(t− σ(t))) ≤ 2eT (t)R1JbK (t)Lbh(e(t− σ(t))),

≤ δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t)). (39)

Then, with the support of Lemma 1 and the linearity nature of the Caputo fractional-
order derivative, the fractional derivative along the trajectories of the system state is
acquired as follows

DαV (t) ≤ 2eT (t)R1D
αe(t),

≤ 2eT (t)R1
[
− (R + ∆R(t))e(t) + (C + ∆C (t))h(e(t))

+ (B + ∆B(t))h(e(t− σ(t)) +H K e(t) +H K e(t− τ(t))
]
,

≤ −2eT (t)R1Re(t) + δ−1
1 eT (t)R1JdJ T

d RT
1 e(t) + δ1e

T (t)L T
d Lde(t)

+ 2eT (t)R1C h(e(t)) + δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t) + δ2e
T (t)φT L T

c Lcφe(t)

+ 2eT (t)R1Bh(e(t− σ(t))) + δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t))

+ eT (t)R2e(t)− eT (t− σ(t))R2e(t− σ(t))(1− µ). (40)
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From Assumption 1, we have[
e(t)

h(e(t))

]T[ −L1Γ2 L1Γ1
∗ −L1

][
e(t)

h(e(t))

]
≤ 0 (41)[

e(t− σ(t))
h(e(t− σ(t)))

]T[ −L2Γ2 L2Γ1
∗ −L2

][
e(t− σ(t))

h(e(t− σ(t)))

]
≤ 0 (42)[

e(t− τ(t))
h(e(t− τ(t)))

]T[ −L3Γ2 L3Γ1
∗ −L3

][
e(t− τ(t))

h(e(t− τ(t)))

]
≤ 0. (43)

From (37)–(43), we obtain

DαV (t) ≤ 2eT (t)R1D
αe(t),

≤ 2eT (t)R1
[
− (R + ∆R(t))e(t) + (C + ∆C (t))h(e(t))

+ (B + ∆B(t))h(e(t− σ(t)) +H K e(t) +H K e(t− τ(t))
]
,

≤ −2eT (t)R1Re(t) + δ−1
1 eT (t)R1JdJ

T
d RT

1 e(t) + δ1e
T (t)L T

d Lde(t)

+ 2eT (t)R1C h(e(t)) + δ−1
2 eT (t)R1JcJ

T
c RT

1 e(t) + δ2e
T (t)φT L T

c Lcφe(t)

+ 2eT (t)R1Bh(e(t− σ(t))) + δ−1
3 eT (t)R1JbJ T

b RT
1 e(t)

+ δ3e
T (t− σ(t))φT L T

b Lbφe(t− σ(t))

+ δ−1
4 eT (t)R1C

TC RT
1 e(t) + δ4e

T (t)φTφe(t)

+ δ−1
5 eT (t)R1B

TBRT
1 e(t) + δ5e

T (t− σ(t))φTφe(t− σ(t))

+ eT (t)R2e(t)− eT (t− σ(t))R2e(t− σ(t))

+

[
e(t)

h(e(t))

]T[ −L1Γ2 L1Γ1
∗ −L1

][
e(t)

h(e(t))

]
+

[
e(t− σ(t))

h(e(t− σ(t)))

]T[ −L2Γ2 L2Γ1
∗ −L2

][
e(t− σ(t))

h(e(t− σ(t)))

]
+

[
e(t− τ(t))

h(e(t− τ(t)))

]T[ −L3Γ2 L3Γ1
∗ −L3

][
e(t− τ(t))

h(e(t− τ(t)))

]
.

Then,

Λ =



Λ11 Λ12 0 Λ14 Λ15 0 Λ17 Λ18 Λ19
∗ Λ22 0 0 0 0 0 0 0
∗ ∗ Λ33 Λ34 0 0 0 0 0
∗ ∗ ∗ Λ44 0 0 0 0 0
∗ ∗ ∗ ∗ Λ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Λ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Λ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Λ99


< 0, (44)

where

Λ11 = −2R1R + δ1L
T

r Lr + δ2φT L T
c Lcφ +R2 + 2R1H K

−L1Γ2 −Φ, Λ12 = R1C +L1Γ1, Λ14 = R1B, Λ15 = R1H K ,

Λ17 = R1Jr, Λ18 = R1Jc, Λ19 = R1Jb, Λ22 = −L1, Λ33 = δ3φTL T
b Lbφ

−R2(1− µ)−L2Γ2, Λ34 = L2Γ1, Λ44 = −L2, Λ55 = ΣΦ−L3Γ2,

Λ56 = L3Γ1, Λ66 = −L3, Λ77 = −δ1I , Λ88 = −δ2I , Λ99 = −δ3I .
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We pre- and post-multiply Λ with {R−1
1 , I , I , I , R−1

1 , I , I , I , I }

Υ =



Υ11 Υ12 0 Υ14 Υ15 0 Υ17 Υ18 Υ19
∗ Υ22 0 0 0 0 0 0 0
∗ ∗ Υ33 Υ34 0 0 0 0 0
∗ ∗ ∗ Υ44 0 0 0 0 0
∗ ∗ ∗ ∗ Υ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Υ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Υ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Υ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Υ99


< 0, (45)

where

Υ11 = −2RX1 +X1δ1L
T

r LrX1 +X1δ2φT L T
c LcφX1 +X1R2X1

+ 2H K X1 −X1L1Γ2X1 −X1φX1, Υ12 = C +X1L1Γ1, Υ14 = B,

Υ15 = H K X1, Υ17 = Jr, Υ18 = Jc, Υ19 = Jb, Υ22 = −L1, Υ33 = δ3φTL T
b Lbφ

−R2(1− µ)−L2Γ2, Υ34 = L2Γ1, Υ44 = −L2, Υ55 = X1ΣΦX1 −X1L3Γ2X1,

Υ56 = L3Γ1, Υ66 = −L3, Υ77 = −δ1I , Υ88 = −δ2I , Υ99 = −δ3I .

At the same time, the controller gain matrix K can be obtained as Y1 = K X1

ξ =



ξ11 ξ12 0 ξ14 ξ15 0 ξ17 ξ18 ξ19
∗ ξ22 0 0 0 0 0 0 0
∗ ∗ ξ33 ξ34 0 0 0 0 0
∗ ∗ ∗ ξ44 0 0 0 0 0
∗ ∗ ∗ ∗ ξ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ξ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ξ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ξ99


< 0, (46)

where

ξ11 = −2RX1 +X1δ1L
T

r LrX1 +X1δ2φT L T
c LcφX1 +X1R2X1 + 2H Y

−X1L1Γ2X1 −X1φX1, ξ12 = C +X1L1Γ1, ξ14 = B, ξ15 = H Y , ξ17 = Jr,

ξ18 = Jc, ξ19 = Jb, ξ22 = −L1, ξ33 = δ3φTL T
b Lbφ−R2(1− µ)−L2Γ2,

ξ34 = L2Γ1, ξ44 = −L2, ξ55 = X1ΣΦX1 −X1L3Γ2X1, ξ56 = L3Γ1, ξ66 = −L3,

ξ77 = −δ1I , ξ88 = −δ2I , ξ99 = −δ3I .

DαV (t) ≤ ϕT(t)ξϕ(t), (47)

where

ϕ(t) = col[e(t), h(e(t)), e(t− σ(t)), h(e(t− σ(t)), e(t− τ(t)),

h(e(t− τ(t)))].

By the Lypunov stability theory analysis, the event-triggered synchronization of the
fractional-order uncertain neural networks’ error system (34) is globally asymptotic stable
if LMI (35) holds. This completes the proof.
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5. Numerical Example

Example 1. Consider the following uncertain neural networks (5) with time-varying delays de-
scribed by

Dαe(t) = −(R + ∆R(t))e(t) + (C + ∆C (t))h(e(t)) + (B + ∆B(t))h(e(t− σ(t))

+H Q(t), (48)

with the following parameters

C =


−1.5241 1.2489 1.6844 1.2946 1.8722
−1.2567 1.1247 1.4211 1.6522 1.2807
1.5427 1.1227 −1.4567 1.0425 1.1727
1.2514 −1.1077 1.2404 1.6507 1.2701
1.9472 −1.1174 −1.2567 1.9989 1.2486

,

B =


−1.4932 1.5968 1.2567 1.0567 1.2674
1.2942 1.9942 −1.6911 1.2849 1.5677
1.0977 1.4217 −1.2415 1.5661 1.5717
1.2567 −1.0741 1.2961 1.2247 1.2702
1.0047 1.2742 1.4274 1.6611 1.4428

,

H =


−1.5432 1.0968 1.2987 1.0097 1.9974
1.6542 1.5642 −1.3411 1.7649 1.5767
1.2377 1.3417 −1.9815 1.3461 1.5887
1.8767 −1.8741 1.6561 1.9847 1.2092
1.3247 1.2652 1.4094 1.6871 1.4488

,

R =


0.7289 0 0 0 0

0 0.7289 0 0 0
0 0 0.7289 0 0
0 0 0 0.7289 0
0 0 0 0 0.7289

, I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

Jr =


0.4428 0 0 0 0

0 0.4428 0 0 0
0 0 0.4428 0 0
0 0 0 0.4428 0
0 0 0 0 0.4428

,

Ld =


1.7782 0 0 0 0

0 1.7782 0 0 0
0 0 1.7782 0 0
0 0 0 1.7782 0
0 0 0 0 1.7782

,

Jc =


0.5242 0 0 0 0

0 0.5242 0 0 0
0 0 0.5242 0 0
0 0 0 0.5242 0
0 0 0 0 0.5242

.
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Lc =


2.8976 0 0 0 0

0 2.8976 0 0 0
0 0 2.8976 0 0
0 0 0 2.8976 0
0 0 0 0 2.8976

,

Lb =


1.8974 0 0 0 0

0 1.8974 0 0 0
0 0 1.8974 0 0
0 0 0 1.8974 0
0 0 0 0 1.8974

,

Jb =


0.2995 0 0 0 0

0 0.2995 0 0 0
0 0 0.2995 0 0
0 0 0 0.2995 0
0 0 0 0 0.2995

,

φ =


0.2494 0 0 0 0

0 0.2494 0 0 0
0 0 0.2494 0 0
0 0 0 0.2494 0
0 0 0 0 0.2494

.

Moreover, the activation functions are f(e(t)) = tanh(e(t)) and f(e(t− σ(t))) = sinh(e(t)).
Solving the LMI conditions provided in (7) based on the MATLAB toolbox returns the following

feasible solutions:

R1 =


0.0284 0.0154 0.0180 −0.0127 −0.0074
0.0154 0.0244 0.0120 0.0070 −0.0260
0.0180 0.0120 0.0209 −0.0054 −0.0102
−0.0127 0.0070 −0.0054 0.0904 −0.0873
−0.0074 −0.0260 −0.0102 −0.0873 0.1118

,

R2 =


36.6572 0.0000 0.0000 −0.0000 −0.0000
0.0000 36.6572 0.0000 0.0000 −0.0000
0.0000 0.0000 36.6572 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 36.6572 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 36.6572

.

The gain matrix of the designed controller can be obtained as:

K =


−9.2914 0.0000 0.0000 −0.0000 −0.0000
0.0000 −9.2914 0.0000 0.0000 −0.0000
0.0000 0.0000 −9.2914 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 −9.2914 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 −9.2914

.

δ1 = 20.2099, δ2 = 20.2097, δ3 = 20.2099, δ4 = 20.2099, and δ5 = 20.2099, which preserves
system (48) as synchronous.

Example 2. Consider the following uncertain neural networks with time-varying delays described
by

Dαe(t) = −(R + ∆R(t))e(t) + (C + ∆C (t))h(e(t)) + (B + ∆B(t))h(e(t− σ(t))

+H QK (t) (49)
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C =


−1.7841 1.2499 1.6876 1.9046 1.8092
−1.3367 1.3447 1.4541 1.6982 1.7807
1.2327 1.1447 −1.4897 1.0895 1.5627
1.8714 −1.7677 1.2094 1.9807 1.7801
1.3472 −1.8974 −1.6667 1.5689 1.2986

,

B =


−1.9832 1.5878 1.6767 1.0567 1.2674
1.3442 1.9482 −1.9811 1.2899 1.5097
1.9877 1.4977 −1.6615 1.5687 1.5787
1.6767 −1.6741 1.2977 1.2277 1.2982
1.9847 1.2892 1.8774 1.6666 1.4499

,

H =


−1.7632 1.0878 1.2897 1.7897 1.9674
1.9942 1.3342 −1.8711 1.7999 1.6767
1.9877 1.3817 −1.5615 1.7861 1.4587
1.6567 −1.6741 1.9561 1.8747 1.2702
1.6647 1.2652 1.4564 1.6771 1.6788

,

R =


0.2389 0 0 0 0

0 0.2389 0 0 0
0 0 0.2389 0 0
0 0 0 0.2389 0
0 0 0 0 0.2389

,

Jr =


0.7628 0 0 0 0

0 0.7628 0 0 0
0 0 0.7628 0 0
0 0 0 0.7628 0
0 0 0 0 0.7628

,

Ld =


1.9882 0 0 0 0

0 1.9882 0 0 0
0 0 1.9882 0 0
0 0 0 1.9882 0
0 0 0 0 1.9882

,

Jc =


0.9087 0 0 0 0

0 0.9087 0 0 0
0 0 0.9087 0 0
0 0 0 0.9087 0
0 0 0 0 0.9087

,

Lc =


2.5676 0 0 0 0

0 2.5676 0 0 0
0 0 2.5676 0 0
0 0 0 2.5676 0
0 0 0 0 2.5676

,
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Lb =


1.0987 0 0 0 0

0 1.0987 0 0 0
0 0 1.0987 0 0
0 0 0 1.0987 0
0 0 0 0 1.0987

,

Jb =


0.8765 0 0 0 0

0 0.8765 0 0 0
0 0 0.8765 0 0
0 0 0 0.8765 0
0 0 0 0 0.8765

,

φ =


0.2476 0 0 0 0

0 0.2476 0 0 0
0 0 0.2476 0 0
0 0 0 0.2476 0
0 0 0 0 0.2476

,

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

Moreover, the activation functions are f(e(t)) = tanh(e(t)) and f(e(t− σ(t))) = sinh(e(t)).
Solving the LMI conditions provided in (15) based on the MATLAB toolbox returns the following
feasible solutions:

X1 =


0.0346 0.0132 0.0158 −0.0124 −0.0074
0.0132 0.0310 0.0070 0.0006 −0.0156
0.0158 0.0070 0.0301 −0.0123 −0.0014
−0.0124 0.0006 −0.0123 0.1428 −0.1226
−0.0074 −0.0156 −0.0014 −0.1226 0.1419

,

R2 =


34.3231 0.0000 0.0000 −0.0000 −0.0000
0.0000 34.3231 0.0000 0.0000 −0.0000
0.0000 0.0000 34.3231 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 34.3231 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 34.3231

,

Y =


−10.4053 0.0000 0.0000 −0.0000 −0.0000

0.0000 −10.4053 0.0000 0.0000 −0.0000
0.0000 0.0000 −10.4053 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 −10.4053 −0.0000
−0.0000 −0.0000 −0.0000 −0.0000 −10.4053

.

The gain matrix of the designed controller can be obtained as:

K =


−5.0940 1.0518 1.7014 −1.6104 −1.5249
1.0518 −4.4548 0.0090 −1.0158 −1.3140
1.7014 0.0090 −4.7390 −0.8662 −0.7067
−1.6104 −1.0158 −0.8662 −4.3173 −3.9362
−1.5249 −1.3140 −0.7067 −3.9362 −4.3671

.

δ1 = 21.1589, δ2 = 21.1589, δ3 = 21.1567, δ4 = 21.1590, andδ5 = 21.1583, which preserves (49)
as synchronous.

Example 3. Consider the following neural networks (20), with the following parameters
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C =


−1.5041 1.0489 1.0844 1.9946 1.8762
−1.7567 1.5247 1.7211 1.4522 1.2877
1.0427 1.8227 −1.5567 1.9425 1.1877
1.6514 −1.0077 1.2904 1.6507 1.7601
1.9872 −1.6174 −1.6567 1.9989 1.0986

,

A =


−1.0941 1.9889 1.6544 1.2096 1.1722
−1.1567 1.6547 1.4871 1.6672 1.7807
1.5727 1.1347 −1.4987 1.0765 1.6727
1.2514 −1.8777 1.2094 1.6597 1.9701
1.9272 −1.8874 −1.6767 1.8089 1.9486

,

B =


−1.4872 1.5878 1.8767 1.6667 1.9074
1.8742 1.9452 −1.9911 1.9049 1.8877
1.0877 1.4987 −1.2315 1.7761 1.0917
1.0567 −1.3441 1.9861 1.0947 1.8902
1.6047 1.2872 1.4874 1.0911 1.0928

,

R =


0.1459 0 0 0 0

0 0.1459 0 0 0
0 0 0.1459 0 0
0 0 0 0.1459 0
0 0 0 0 0.1459

,

H =


−1.5782 1.0068 1.7687 1.0097 1.0974
1.6942 1.8742 −1.0911 1.6749 1.8767
1.6377 1.9817 −1.4515 1.9861 1.7687
1.8097 −1.8651 1.0961 1.0947 1.0992
1.3677 1.2698 1.4874 1.8671 1.9888

,

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, φ =


0.0987 0 0 0 0

0 0.0987 0 0 0
0 0 0.0987 0 0
0 0 0 0.0987 0
0 0 0 0 0.0987

.

Moreover, the activation functions are f(e(t)) = tanh(e(t)) and f(e(t− σ(t))) = sinh(e(t)).
Solving the LMI conditions provided in (21) based on the MATLAB toolbox returns the

following feasible solutions:

R1 =


0.6253 0.2376 0.3124 −0.1046 −0.2094
0.2376 0.4979 0.1106 −0.1841 −0.0731
0.3124 0.1106 0.4894 0.1397 −0.3460
−0.1046 −0.1841 0.1397 1.4658 −1.2618
−0.2094 −0.0731 −0.3460 −1.2618 1.5839

,

R2 =


29.0877 0.0002 0.0001 0.0005 −0.0009
0.0002 29.0933 −0.0006 0.0017 −0.0018
0.0001 −0.0006 29.0873 0.0002 −0.0008
0.0005 0.0017 0.0002 29.0905 −0.0026
−0.0009 −0.0018 −0.0008 −0.0026 29.0847

.

The gain matrix of the designed controller and trigger parameters can be obtained as follows:
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K =


−6.6909 0.0173 0.0082 0.0374 −0.0673
0.0173 −6.4671 −0.0464 0.1301 −0.1326
0.0082 −0.0464 −6.7093 0.0127 −0.0577
0.0374 0.1301 0.0127 −6.5897 −0.1818
−0.0673 −0.1326 −0.0577 −0.1818 −6.8241

.

δ4 = 4.3607 and δ5 = 4.5189. Therefore, preserves system (20) is synchronous.

6. Conclusions

In this paper, the synchronization problem was investigated for neural networks. It
is well known that the Lyapunov direct method is the most effective method to analyze
the stability of neural networks; the authors gave an important inequality on the Caputo
derivative of quadratic functions, which plays an important role in analyzing the stability
of fractional-order systems. By using Lyapunov functionals and analytical techniques,
we obtained some sufficient conditions, and we derived event triggering to guarantee
the synchronization of the delayed neural networks. We appled the Lyapunov functional
method and the LMI approach to establish the synchronization criteria for the fractional-
order nerual network matrix. A linear matrix inequality approach was developed to solve
the problem. Numerical examples were given to demonstrate the effectiveness of the
proposed schemes. Future work will focus on event-triggered control for fractional-order
systems with time-delay and measurement noises. In addition, more effective event-
triggered schemes such as an adaptive one, a dynamic one, and a hybrid one will also be
considered for the stability analysis of fractional-order systems.

Author Contributions: Conceptualization, M.H., M.S.A., T.F.I. and B.A.Y.; methodology, K.I.O., M.H.,
M.S.A., T.F.I. and B.A.Y.; software, M.H., M.S.A. and K.I.O.; validation, M.H., M.S.A., T.F.I. and K.M.;
formal analysis, K.I.O., M.H., M.S.A., T.F.I. and K.M.; investigation, M.H., T.F.I., B.A.Y. and K.I.O.
resources, M.H., M.S.A., T.F.I. and K.M.; writing—review and editing, M.H., M.S.A., T.F.I., B.A.Y.
and K.M.; visualization, M.H., M.S.A., T.F.I. and B.A.Y.; supervision, K.I.O., M.H., M.S.A., T.F.I. and
B.A.Y.; project administration, M.H., M.S.A., T.F.I. and K.M.; funding acquisition, M.S.A. and K.M.
All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King Khalid
University for funding this work through large groups (project under grant number RGP.2/47/43/1443).
Moreover, this research received funding support from the NSRF via the Program Management
Unit for Human Resources & Institutional Development, Research and Innovation [grant number
B05F650018].

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Podlubny, I. Fractional differential equations. In Mathematics in Science and Engineering; Academic Press: San Diego, CA, USA,

1999; Volume 198.
2. Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-Order systems and controls. In Advances in Industrial Control;

Springer: London, UK, 2010.
3. Wang, Y.; Gu, L.; Xu, Y.; Cao, X. Practical tracking control of robot manipulators with continuous fractional-order nonsingular

terminal sliding mode. IEEE Trans. Ind. Electron. 2016, 63, 6194–6204. [CrossRef]
4. Li, C.; Chen, G. Chaos and hyperchaos in the fractional-order rossler equations. Phys. A Stat. Mech. Its Appl. 2004, 341, 55–61.

[CrossRef]
5. Debnath, L.; Feyman, R.P. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003, 54,

3413–3442. [CrossRef]
6. Ding, Z.; Zeng, Z.; Zhang, H.; Wang, L.; Wang, L. New results on passivity of fractional-order uncertain neural networks.

Neurocomputing 2019, 351, 51–59. [CrossRef]
7. Rajivganthi, C.; Rihan, F.; Laxshmanan, S.; Rakkiappan, R.; Muthuumar, P. Synchronization of memristor-based delayed BAM

neural networks with fractional-order derivatives. Complexity 2016, 21, 412–426. [CrossRef]

http://doi.org/10.1109/TIE.2016.2569454
http://dx.doi.org/10.1016/j.physa.2004.04.113
http://dx.doi.org/10.1155/S0161171203301486
http://dx.doi.org/10.1016/j.neucom.2019.03.042
http://dx.doi.org/10.1002/cplx.21821


Fractal Fract. 2022, 6, 641 19 of 20

8. Bao, H.; Park, J.H.; Cao, J. Non-fragile state estimation for fractional-order delayed memristive BAM neural networks. Neural
Netw. 2019, 119, 190–199. [CrossRef] [PubMed]

9. Song, C.; Fei, S.; Cao, J.; Huang, C. Robust synchronization of fractional-order uncertain chaotic systems based on output feedback
sliding mode control. Mathematics 2019, 7, 599. [CrossRef]

10. Henderson, J.; Ouahab, A. Fractional functional differential inclusions with finite delay. Nonlinear Anal. 2009, 70, 2091–2105.
[CrossRef]

11. Tan, N.; Faruk, O.; Mine, M. Robust stability analysis of fractional order interval polynomials. ISA Trans. 2009, 48, 166–172.
[CrossRef]

12. Ahn, H.S.; Chen, Y. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 2008, 44,
2985–2988. [CrossRef]

13. Dzielinski, A.; Sierociuk, D. Stability of discrete fractional order state—Space system. J. Vib. Control 2008, 14, 1543–1556. [CrossRef]
14. Liao, Z.; Peng, C.; Li, W.; Wang, Y. Robust stability analysis for a class of fractional order systems with uncertain parameters. J.

Frankl. Inst. Eng. Appl. Math. 2011, 348, 1101–1113. [CrossRef]
15. Chilali, M.; Gahinet, P.; Apkarian, P. Robust pole placement in LMI regions. Inst. Electr. Electron. Eng. Autom. Control 1999, 44,

2257–2270. [CrossRef]
16. Tang, Y.; Wang, Z.; Fang, J. Pinning control of fractional-order weighted complex networks. Chaos 2009, 19, 013112 [CrossRef]
17. Luo, J.; Tian, W.; Zhong, S.; Shi, K.; Gu, X.M.; Wang, W. Improved delay-probability-dependent results for stochastic neural

networks with randomly occurring uncertainties and multiple delays. Int. J. Syst. Sci. 2018, 49, 2039–2059. [CrossRef]
18. Shi, K.; Tang, Y.; Liu, X.; Zhong, S. Secondary delay-partition approach on robust performance analysis for uncertain time-varying

Lurie nonlinear control system. Optim. Control Appl. Methods 2017, 38, 1208–1226. [CrossRef]
19. Syed Ali, M.; Balasubramaniam, P. Global exponential stability for uncertain stochastic fuzzy BAM neural networks with

time-varying delays. Chaos Solitons Fractals 2009, 42, 2191–2199. [CrossRef]
20. Zeng, D.; Shi, K.; Zhang, R.; Zhong, S. Novel mean square exponential stability criterion of uncertain stochastic interval type-2

fuzzy neural networks with multiple time-varying delays. In Proceedings of the 2017 36th Chinese Control Conference, Dalian,
China, 26–28 July 2017.

21. Syed Ali, M.; Esther Rani, M. Passivity analysis of uncertain stochastic neural networks with time-varying delays and Markovian
jumping parameters. Netw. Comput. Neural Syst. 2015, 26, 73–96. [CrossRef]

22. Shi, K.; Tang, Y.; Zhong, S.; Yin, C.; Huang, X.; Wang, W. Nonfragile asynchronous control for uncertain chaotic Lurie network
systems with Bernoulli stochastic process. Int. J. Robust Nonlinear Control 2018, 28, 1693–1714. [CrossRef]

23. Luo, J.; Tian, W.; Zhong, S.; Shi, K.; Wang, W. Non-fragile asynchronous event-triggered control for uncertain delayed switched
neural networks. Nonlinear Anal. Hybrid Syst. 2018, 29, 54–73. [CrossRef]

24. Saravanakumar, R.; Syed Ali, M.; Huang, H.; Cao, J.; Joo, Y.H. Robust H∞ state-feedback control for nonlinear uncertain systems
with mixed time-varying delay. Int. J. Control Autom. Syst. 2018, 16, 225–233. [CrossRef]

25. Chen, H.; Shi, K.; Zhong, S.; Liu, X. Error state convergence on master-slave generalized uncertain neural networks using robust
nonlinear H∞ Control theory. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 2042–2055. [CrossRef]

26. Saravanakumar, R.; Syed Ali, M.; Karimi, H.R. Robust H∞ control for a class of uncertain stochastic Markovian jump systems
(SMJSs) with interval and distributed time-varying delays. Int. J. Syst. 2017, 48 862–872. [CrossRef]

27. Zhang, X.M.; Han, Q.L.; Zhang, B.L. An overview and deep investigation on sampled-data-based event-triggered control and
filtering for networked systems. IEEE Trans. Inf. Theory 2017, 13, 4–16. [CrossRef]

28. Ge, X.H.; Han, Q.L.; Wang, Z.D. A threshold-parameter-dependent approach to designing distributed event-triggered H∞
consensus filters over sensor networks. IEEE Trans. Cybern. 2019, 49, 1148–1159. [CrossRef]

29. Syed Ali, M.; Vadivel, R.; Saravanakumar, R. Event-triggered state estimation for Markovian jumping impulsive neural networks
with interval time varying delays. Int. J. Control 2017, 92, 270–290.

30. Dimarogonas, D.V.; Frazzoli, E.; Johansson, K.H. Distributed event triggered control for multi-agent systems. IEEE Trans. Autom.
Control 2012, 57, 1291–1297. [CrossRef]

31. Xie, D.; Xu, S.; Li, Z. Event-triggered consensus control for second-order multi-agent systems. IET Control Theory Appl. 2015, 9,
667–680. [CrossRef]

32. Zhou, B.; Liao, X.; Huang, T. Leader-following exponential consensus of general linear multi-agent systems via event-triggered
control with combinational measurements, Appl. Math. Lett. 2015, 40, 35–39.

33. Qin, J.; Zheng, W.X.; Gao, H. On pinning synchronisability of complex networks with arbitrary topological structure. Int. J. Syst.
Sci. 2011, 42, 1559–1571. [CrossRef]

34. Chakravartula, S.; Indic, P.; Sundaram, B.; Killingback, T. Emergence of local synchronization in neuronal networks with adaptive
couplings. PLoS ONE 2017, 12, e0178975.

35. Liu, X.; Cao, J. Local synchronization of one-to-one coupled neural networks with discontinuous activations. Cogn. Neurodyn.
2011, 5, 13–20. [CrossRef] [PubMed]

36. Yang, Y.; Cao, J. Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects. Phys. A
Stat. Mech. Its Appl. 2007, 386, 492–502. [CrossRef]

37. He, W.; Qian, F.; Cao, J.; Han, Q.L. Impulsive synchronization of two nonidentical chaotic systems with time-varying delay. Phys.
Lett. A 2011, 498–504. [CrossRef]

http://dx.doi.org/10.1016/j.neunet.2019.08.003
http://www.ncbi.nlm.nih.gov/pubmed/31446237
http://dx.doi.org/10.3390/math7070599
http://dx.doi.org/10.1016/j.na.2008.02.111
http://dx.doi.org/10.1016/j.isatra.2009.01.002
http://dx.doi.org/10.1016/j.automatica.2008.07.003
http://dx.doi.org/10.1177/1077546307087431
http://dx.doi.org/10.1016/j.jfranklin.2011.04.012
http://dx.doi.org/10.1109/9.811208
http://dx.doi.org/10.1063/1.3068350
http://dx.doi.org/10.1080/00207721.2018.1483044
http://dx.doi.org/10.1002/oca.2326
http://dx.doi.org/10.1016/j.chaos.2009.03.138
http://dx.doi.org/10.3109/0954898X.2016.1145752
http://dx.doi.org/10.1002/rnc.3980
http://dx.doi.org/10.1016/j.nahs.2017.12.006
http://dx.doi.org/10.1007/s12555-017-9263-6
http://dx.doi.org/10.1109/TSMC.2018.2793559
http://dx.doi.org/10.1080/00207721.2016.1218092
http://dx.doi.org/10.1109/TII.2016.2607150
http://dx.doi.org/10.1109/TCYB.2017.2789296
http://dx.doi.org/10.1109/TAC.2011.2174666
http://dx.doi.org/10.1049/iet-cta.2014.0219
http://dx.doi.org/10.1080/00207721.2011.555014
http://dx.doi.org/10.1007/s11571-010-9132-y
http://www.ncbi.nlm.nih.gov/pubmed/22379492
http://dx.doi.org/10.1016/j.physa.2007.07.049
http://dx.doi.org/10.1016/j.physleta.2010.11.052


Fractal Fract. 2022, 6, 641 20 of 20

38. Pan, L.; Cao, J.; Hu, J. Synchronization for complex networks with Markov switching via matrix measure approach. Appl. Math.
Model. 2015, 39, 5636–5649. [CrossRef]

39. Du, C.; Liu L.; Shi, S. Synchronization of fractional-order complex chaotic system using active control method. In Proceedings of
the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York,
NY, USA, 10–12 October 2019; pp. 817–823.

40. Xu, Z.; He, W. Quantized synchronization of master-slave systems under event-triggered control against DoS attacks. In
Proceedings of the IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October
2020; pp. 3568–3573.

41. Du, S.; Dong, L.; Ho, D.W.C. Event-triggered control for output synchronization of heterogeneous network with input saturation
constraint. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China,
29 October–1 November 2017; pp. 5785–5790.

42. Yang, Y.; Long, Y. Event-triggered sampled-data synchronization of complex networks with time-varying coupling delays. Adv.
Differ. Equ. 2020, 312, 2020. [CrossRef]

43. Lundstrom, B.; Higgs, M.; Spain, W.; Fairhall, A. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 2008,
11, 1335–1342. [CrossRef]

44. Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Commun. Nonlinear
Sci. Numer. Simul. 2014, 19, 2951–2957. [CrossRef]

45. Zhang, S.; Yu, Y.; Yu, J. LMI conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. 2017, 28,
2423–2433. [CrossRef]

46. Boyd, B.; Ghoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadephia, PA,
USA, 1994.

47. Dinh, C.; Mai, H.V.T.; Duong, T.H. New results on stability and stabilization of delayed caputo fractional order systems with
convex polytopic uncertainties. J. Syst. Sci. Complex 2020, 33, 563–583. [CrossRef]

http://dx.doi.org/10.1016/j.apm.2015.01.027
http://dx.doi.org/10.1186/s13662-020-02748-0
http://dx.doi.org/10.1038/nn.2212
http://dx.doi.org/10.1016/j.cnsns.2014.01.022
http://dx.doi.org/10.1109/TNNLS.2016.2574842
http://dx.doi.org/10.1007/s11424-020-8338-2

	Introduction
	Preliminaries
	Main Results
	Event-Triggered Control Scheme
	Numerical Example
	Conclusions
	References

