Evolution of Morphology, Fractal Dimensions, and Structure of (Titanium) Aluminosilicate Gel during Synthesis of Zeolites Y and Ti-Y
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Y Zeolite and Ti-Y Zeolite
2.3. The Zeolitization Stages
2.4. Characterization of Materials
2.5. The Fractal Dimension
3. Results and Discussion
3.1. Morphological Investigation
3.2. Structural Analysis
3.3. Fractal Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B.B. Fractals: Form, Chance and Dimension; W. H. Freeman: San Francisco, CA, USA, 1977; pp. 27–80+189–236. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman: San Francisco, CA, USA, 1982; pp. 109–146. [Google Scholar]
- Witten, J.T.A.; Sander, L.M. Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon. Phys. Rev. Lett. 1981, 47, 1400–1403. [Google Scholar] [CrossRef]
- Botet, R.; Jullien, R.; Kolb, M. Cluster Aggregation. In Fractals in Physics; Pietronero, L., Tosatti, E., Eds.; Elsevier Science Publisher: Amsterdam, The Netherlands, 1986; pp. 255–258. [Google Scholar]
- Kopelman, R. Fractal Reaction Kinetics. Science 1988, 241, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Coppens, M.O.; Froment, G.F. The Effectiveness of Mass Fractal Catalysts. Fractals 1997, 5, 493–505. [Google Scholar] [CrossRef]
- Gutfraind, R.; Sheintuch, M. Fractal and multifractal analysis of the sensitivity of catalytic reactions to catalyst structure. J. Chem. Phys. 1991, 95, 6100. [Google Scholar] [CrossRef]
- Dobrescu, G.; Papa, F.; State, R.; Raciulete, M.; Berger, D.; Balint, I.; Ionescu, N.I. Modified Catalysts and Their Fractal Properties. Catalysts 2021, 11, 1518. [Google Scholar] [CrossRef]
- Cohen, N. Fractal antenna and fractal resonator primer. In Benoit Mandelbrot: A Life in Many Dimensions; Frame, M., Cohen, N., Eds.; World Scientific: Singapore, 2015; pp. 206–228. [Google Scholar]
- Pandey, A. Practical Microstrip and Printed Antenna Design; Artech House: Norfolk County, MA, USA, 2019; pp. 5–27. [Google Scholar]
- Fan, J.; Yeo, W.H.; Su, Y.; Hattori, Y.; Lee, W.; Jung, S.Y.; Zhang, Y.; Liu, Z.; Cheng, H.; Falgout, L.; et al. Fractal design concepts for stretchable electronics. Nat. Commun. 2014, 5, 3266. [Google Scholar] [CrossRef] [Green Version]
- Giona, M.; Schwalm, W.A.; Adrover, A.; Schwalm, M.K. First-order kinetics in fractal catalysts: Renormalization analysis of the effectiveness factor. Chem. Eng. Sci. 1996, 51, 2273–2282. [Google Scholar] [CrossRef]
- Sheintuch, M.; Brandon, S. Deterministic approaches to problems of diffusion, reaction and adsorption in a fractal porous catalyst. Chem. Eng. Sci. 1989, 44, 69–79. [Google Scholar] [CrossRef]
- Tatlier, M.; Erdem-Şenatalar, A. Fractal Dimension as a Tool to Guide Zeolite Synthesis. Chaos Solitons Fractals 1998, 9, 1803–1812. [Google Scholar] [CrossRef]
- Singh, B.K.; Kim, Y.; Kwon, S.; Na, K. Synthesis of Mesoporous Zeolites and Their Opportunities in Heterogeneous Catalysis. Catalysts 2021, 11, 1541. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Yu, J. Applications of Zeolites in Sustainable Chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef] [Green Version]
- Nakrani, D.; Belani, M.; Bajaj, H.C.; Somani, R.S.; Singh, P.S. Concentrated colloidal solution system for preparation of uniform Zeolite-Y nanocrystals and their gas adsorption properties. Microp. Mesop. Mater. 2017, 241, 274–284. [Google Scholar] [CrossRef]
- Van Speybroeck, V.; Hemelsoet, K.; Joos, L.; Waroquier, M.; Bellb, R.G.; Catlow, C.R.A. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 2015, 44, 7044–7111. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.M.; Drews, T.O.; Ramanan, H.; He, C.; Dong, J.; Schnablegger, H.; Katsoulakis, M.A.; Kokkoli, E.; Mccormick, A.V.; Penn, R.L.; et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat. Mater. 2006, 5, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Mallette, A.J.; Seo, S.; Rimer, J.D. Synthesis strategies and design principles for nanosized and hierarchical zeolites. Nat. Synth. 2022, 1, 521–534. [Google Scholar] [CrossRef]
- de Moor, P.-P.E.A.; Beelen, T.P.M.; Komanschek, B.U.; Diat, O.; van Santen, R.A. In Situ Investigation of Si-TPA-MFI Crystallization Using (Ultra-) Small- and Wide-Angle X-ray Scattering. J. Phys. Chem. B 1997, 101, 11077–11086. [Google Scholar] [CrossRef] [Green Version]
- Taufiqurrahmi, N.; Mohamed, A.R.; Bhatia, S. Nanocrystalline Zeolite Y: Synthesis and Characterization. IOP Conf. Ser. Mater. Sci. Eng. 2011, 17, 012030. [Google Scholar] [CrossRef]
- Tang, B.; Dai, W.; Sun, X.; Guan, N.; Li, L.; Hunger, M. A procedure for the preparation of Ti-Beta zeolites for catalytic epoxidation with hydrogen peroxide. Chem 2014, 16, 2281–2291. [Google Scholar] [CrossRef]
- Petcu, G.; Anghel, E.M.; Somacescu, S.; Preda, S.; Culita, D.C.; Mocanu, S.; Ciobanu, M.; Parvulescu, V. Hierarchical Zeolite Y Containing Ti and Fe Oxides as Photocatalysts for Degradation of Amoxicillin. J. Nanosci. Nanotechnol. 2020, 20, 1158. [Google Scholar] [CrossRef]
- Teixeira, J. Small-Angle Scattering by Fractal Systems. J. Appl. Cryst. 1988, 21, 781–785. [Google Scholar] [CrossRef]
- Bale, H.D.; Schmidt, P.W. Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties. Phys. Rev. Lett. 1984, 53, 596–599. [Google Scholar] [CrossRef]
- Keefer, K.D.; Schaefer, D.W. Growth of Fractally Rough Colloids. Phys. Rev. Lett. 1986, 56, 2376–2379. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.W. Small-angle scattering studies of disordered, porous and fractal systems. J. Appl. Cryst. 1991, 24, 414–435. [Google Scholar] [CrossRef]
- Zheng, B.; Wan, Y.; Yang, W.; Ling, F.; Xie, H.; Fang, X.; Guo, H. Mechanism of seeding in hydrothermal synthesis of zeolite Beta with organic structure-directing agent-free gel. Chinese. J. Catal. 2014, 35, 1800–1810. [Google Scholar]
- Bortolatto, L.B.; Boca Santa, R.A.A.; Moreira, J.C.; Machado, D.B.; Martins, M.A.P.M.; Fiori, M.A.; Kuhnen, N.C.; Riella, H.G. Synthesis and characterization of Y zeolites from alternative silicon and aluminium sources Microp. Mesop. Mater. 2017, 248, 214–221. [Google Scholar] [CrossRef]
- Reinoso, D.; Adrover, M.; Pedernera, M. Green synthesis of nanocrystalline faujasite zeolite. Ultrason. Sonochem. 2018, 42, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Panzarella, B.; Tompsett, G.; Conner, W.C.; Jones, K. In situ SAXS/WAXS of zeolite microwave synthesis: NaY, NaA, and beta zeolites. Chem. Phys. Chem. 2007, 8, 357–369. [Google Scholar] [CrossRef]
- Koohsaryan, E.; Anbia, M. Nanosized and hierarchical zeolites: A short review. Chin. J. Catal. 2016, 37, 447. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, R.; Zhang, H.; Shang, Y.; Song, Y.; Liu, C. Structure evolution of aluminosilicate sol and its structure-directing effect on the synthesis of NaY zeolite. J. Appl. Cryst. 2017, 50, 231. [Google Scholar] [CrossRef]
Sample | q (nm−1) Self-Similarity Domain | α |Slope| | Surface Fractal Dimension Ds | Linear Correlation Coefficient (R2) |
---|---|---|---|---|
Y (4) | 0.1193–2.2019 | 3.979 | 2.021 ± 0.007 | 0.999 |
Y (5) | 0.1194–2.2020 | 3.956 | 2.044 ± 0.008 | 0.998 |
Y (6) | 0.1193–1.2891 | 3.986 | 2.014 ± 0.011 | 0.999 |
Y (7) | 0.1199–0.4798 | 3.794 | 2.206 ± 0.009 | 0.999 |
Y (8) | 0.1157–1.0026 | 3.914 | 2.086 ± 0.005 | 0.999 |
Y (9) | 0.1141–0.1682 | 3.968 | 2.032 ± 0.004 | 0.999 |
Y (10) | 0.1147–1.1045 | 3.502 | 2.498 ± 0.013 | 0.998 |
1TY (7) | 0.1121–1.4169 | 3.966 | 2.034 ± 0.008 | 0.999 |
1TY (8) | 0.1156–1.0668 | 3.996 | 2.005 ± 0.005 | 0.999 |
1TY (9) | 0.1182–1.2109 | 3.934 | 2.066 ± 0.004 | 0.999 |
1TY (10) | 0.1175–0.5674 | 3.725 | 2.275 ± 0.022 | 0.998 |
2TY (7) | 0.1120–1.7447 | 3.929 | 2.071 ± 0.010 | 0.998 |
2TY (8) | 0.1164–1.4919 | 3.867 | 2.133 ± 0.009 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petcu, G.; Dobrescu, G.; Atkinson, I.; Ciobanu, M.; Blin, J.-L.; Parvulescu, V. Evolution of Morphology, Fractal Dimensions, and Structure of (Titanium) Aluminosilicate Gel during Synthesis of Zeolites Y and Ti-Y. Fractal Fract. 2022, 6, 663. https://doi.org/10.3390/fractalfract6110663
Petcu G, Dobrescu G, Atkinson I, Ciobanu M, Blin J-L, Parvulescu V. Evolution of Morphology, Fractal Dimensions, and Structure of (Titanium) Aluminosilicate Gel during Synthesis of Zeolites Y and Ti-Y. Fractal and Fractional. 2022; 6(11):663. https://doi.org/10.3390/fractalfract6110663
Chicago/Turabian StylePetcu, Gabriela, Gianina Dobrescu, Irina Atkinson, Madalina Ciobanu, Jean-Luc Blin, and Viorica Parvulescu. 2022. "Evolution of Morphology, Fractal Dimensions, and Structure of (Titanium) Aluminosilicate Gel during Synthesis of Zeolites Y and Ti-Y" Fractal and Fractional 6, no. 11: 663. https://doi.org/10.3390/fractalfract6110663
APA StylePetcu, G., Dobrescu, G., Atkinson, I., Ciobanu, M., Blin, J. -L., & Parvulescu, V. (2022). Evolution of Morphology, Fractal Dimensions, and Structure of (Titanium) Aluminosilicate Gel during Synthesis of Zeolites Y and Ti-Y. Fractal and Fractional, 6(11), 663. https://doi.org/10.3390/fractalfract6110663