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Abstract: In this paper, the sliding-mode control method was used to control a class of general
nonlinear fractional-order systems which covers a wide class of chaotic systems. A novel sliding
manifold with an additional nonlinear part which achieved better control performance was designed.
Furthermore, a novel fixed-time reaching law with a fractional adaptive gain is proposed, where
the reaching time to the sliding manifold is determined by the first positive zero of a Mittag–Leffler
function and is independent of initial conditions. We have provided some instructions on tuning the
parameters of the proposed reaching law to avoid exacerbating the chattering phenomenon. Finally,
simulation examples are presented to validate all results.

Keywords: sliding mode control; fractional order systems; fixed-time reaching law; Mittag–Leffler
function

1. Introduction

Recently, fractional calculus (an extension of integer order calculus) has played an
important role in solving all kinds of science and engineering problems. Fractional calculus
aids the precision and conciseness of modeling, and many practical plants have been
validated to have fractional order properties, such as memristor [1], viscoelasticity [2],
psoriasis [3], and abnormal diffusion process [4,5]. In addition, fractional order controllers
have been shown to achieve better control performance, such as strong robustness and
rapid convergence speed, compared with classical integer order controllers [6–8]. Moreover,
some fractional order controllers, such as PIλDµ controller [9], have been successfully
applied in practice.

Sliding mode control (SMC) has been widely utilized to control perturbed nonlinear
fractional-order systems due to its strong robustness to matched disturbance and system
uncertainty [10–15]. For instance, in [16], finite-time inter-layer projective synchronization
of fractional-order two-layer networks based on SMC technique was investigated. In [17],
the authors discuss the problem of tracking and stabilization of a class of chained fractional-
order nonlinear systems via SMC with a single input. SMC is used to realize the stabilization
and synchronization of fractional chaotic systems [18–21]. For instance, in [22], SMC with an
adaptive reaching law is presented to control a class of fractional chaotic systems, including
fractional Lure systems, fractional Lorenz systems, and so on. In [19], the SMC method is
used to control chaos synchronization between the sending end and the receiving end and
improve robustness to the parameter uncertainties and disturbances in the system. In [23],
a novel fixed-time SMC is designed for the secure communication of chaotic systems with
disturbance and uncertainty.

Generally, SMC has two phases: the reaching phase and the sliding mode phase. Once
the sliding manifold is reached, the system will enter the sliding mode phase, during which
the system is robust to disturbance and uncertainty. Therefore, rapidly reaching the sliding
manifold phase is desirable, and different reaching laws have been proposed based on

Fractal Fract. 2022, 6, 678. https://doi.org/10.3390/fractalfract6110678 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6110678
https://doi.org/10.3390/fractalfract6110678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-3372-0085
https://orcid.org/0000-0002-3314-3409
https://orcid.org/0000-0002-7422-5988
https://doi.org/10.3390/fractalfract6110678
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6110678?type=check_update&version=2


Fractal Fract. 2022, 6, 678 2 of 15

the traditional reaching law ṡ = −ksgn(s), k > 0. A novel fractional-order reaching law
was presented and analyzed in [24,25], where the sliding manifold can be reached in a
shorter time than the traditional reaching law by appropriately tuning the parameters.
However, the reaching time in almost all published works about SMC [24–27] is dependent
upon the initial condition of the sliding manifold, i.e., s(0). Consequently, there has been
increasing attention paid to the fixed-time reaching law, where there is an upper bound for
the reaching time with arbitrary initial values, making the reaching time independent of
initial conditions [6,28,29]. In [6], we developed a novel second-order reaching law, which
guarantees a fixed-time convergence with the sliding manifold. On this basis, two types
of fixed-time reaching laws with an adaptive gain were then proposed in [30]. However,
these mentioned reaching laws exacerbate the chattering phenomenon, compared with
existing reaching laws. Recently, a reaching-phase-free approach was proposed to control a
class of uncertain fractional-order systems, where the reaching phase was eliminated [15].
However, the initial condition must be exactly known in advance, which is an obstacle for
practical usage.

The chattering phenomenon is always present when SMC is utilized. It is exacerbated
by the pursuit of quick access to the sliding manifold phase, as the basic objective is to
increase the reaching gain k, which mainly determines the chattering amplitude. Many
articles concentrate on accelerating access to the sliding manifold without exacerbating
chattering. A novel exponential reaching law was proposed to accelerate the access proce-
dure without exacerbating the chattering phenomenon in [31]. In [32], a novel reaching law
was proposed to attenuate the chattering phenomenon. Though it is proven that the fixed-
time reaching law can guarantee quick access in [24], it will still exacerbate the chattering
phenomenon more than the traditional reaching law in the presence of disturbance and
uncertainty.

Motivated by aforementioned issues, SMC was utilized to control a class of general
nonlinear fractional-order systems in this paper, which covers a wide class of fractional
chaotic systems. A general design procedure for the sliding manifold is proposed. We
found better system performance was achieved by introducing an additional nonlinear
item. A novel fractional fixed-time reaching law is then proposed, where the reaching time
is independent of initial conditions and determined by the first positive zero of a Mittag–
Leffler function. We also provide some remarks on tuning the parameters of the fixed-time
reaching law in order to attenuate the chattering phenomenon. The main contributions can
be summarized as follows:

(1) The SMC method was used to control a class of fractional order systems covering a
wide class of fractional chaotic systems, where a better control performance is achieved
by introducing a nonlinear item to the sliding manifold.

(2) A novel fixed-time reaching law with a fractional adaptive gain is proposed, which
reduces the fixed-time reaching law in [6] with some specific parameters.

(3) The proposed reaching law will not exacerbate the chattering phenomenon compared
with the reaching law in [6] and shows more robustness to initial conditions compared
with the reaching law in [29].

2. Preliminaries

In this section, some basic definitions about fractional calculus will be introduced [33].
The fractional order integral is defined as

cI
α

t f (t) =
1

Γ(α)

∫ t

c
(t− τ)α−1 f (τ)dτ, (1)

where α > 0, Γ(α) =
∫ ∞

0 xα−1e−xdx is the Gamma function.
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On this basis, Caputo’s derivative definition is relevant to this study, which has the
following form

cD
α
t f (t) =

1
Γ(n− α)

∫ t

c

f (n)(τ)

(t− τ)α−n+1 dτ. (2)

Its Laplace transform can be formulated as

L {0D
α
t f (x)} = pαF(p)−

n−1

∑
k=0

pα−k−1 f (k)(0),

where p denotes the Laplace operator.
To simplify the notation, we denote the fractional order derivative of order α as Dα

instead of 0D
α
t in this study. Similarly, fractional order integration 0I

α
t is represented by

I α. In the entire following discussion, Caputo’s derivative definition will be used.
The frequency-distributed model of the fractional-order integrator will be introduced

in the following, which will contribute significantly to the analysis of the closed-loop
stability.

Lemma 1 (Ref. [34]). The fractional-order system Dαy(t) = v(t) with 0 < α < 1, v(t) ∈ R,
y(t) ∈ R is a continuous linear frequency distributed system. Its frequency distributed state
z(ω, t) ∈ R, which is also called the true state of fractional-order systems, satisfies

∂z(ω, t)
∂t

= −ωz(ω, t) + v(t), (3)

and the output y(t) is the weighted integral

y(t) =
∫ ∞

0
µα(ω)z(ω, t)dω, (4)

with the frequency weighting function

µα(ω) =
sin(απ)

ωαπ
> 0. (5)

Remark 1. A fractional order system can be converted into its equivalent frequency distributed
model based on Lemma 1. The stability of a frequency distributed model can be analyzed via
the indirect Lyapunov method [35], and has been widely applied to analyze the stability of frac-
tional order systems. Moreover, fractional order systems under Caputo’s derivative definition and
Riemann–Liouville’s derivative definition are special cases of frequency-distributed systems (3) with
initial conditions z(ω, 0) properly being settled [36,37] .

The Mittag–Leffler function with two parameters, which is of great importance in the
following, is defined as

E,(z) =
∞

∑
k=0

zk

Γ(αk + β)
, (6)

where α > 0, β > 0.

Lemma 2 (Ref. [38]). The following Laplace transform pair always holds

L −1
{

pα−β

pα + λ

}
= tβ−1Eα,β(−λtα), (7)

where α > 0, β > 0, λ > 0.
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Lemma 3. The following function

g(t) = L −1
{

pγ

p1+γ + ρ

}
= E1+γ,1

(
−ρt1+γ

)
, (8)

must have at least one positive zero for t > 0 with 0 < γ < 1.

Proof. We will prove this lemma by contradiction and firstly assume that g(t) > 0 all
the time. Consider the input function t0.5γ

Γ(1+0.5γ)
, whose Laplace transformation is 1

p1+0.5γ .
Then define

y(t) = L −1
{

pγ

p1+γ + ρ

1
p1+0.5γ

}
= L −1

{
p0.5γ

p(p1+γ + ρ)

}
. (9)

One can conclude that y(∞) = 0 by Laplace’s final value theorem.
On the other hand,

y(∞) =
1

Γ(1 + 0.5γ)

∫ ∞

0
g(t− τ)τ0.5γdτ (10)

is greater than zero since g(t) > 0 always holds due to the assumption.
By contradiction, it is known that g(t) cannot always be greater than zero, which

implies that it must have at least one zero. This completes the proof.

3. Main Results
3.1. System Description

Consider the following controlled nonlinear fractional order systems{
Dαi xi = fi(x) + ∆i + ui, i = 1, · · · , n−m,
Dαi xi = fi(x), i = n−m + 1, · · · , n,

(11)

where 0 < αi < 1, i = 1, 2, · · · , n, x = [x1, x2, · · · , xn]
T represents the system states,

fi(·), i = 1, 2, · · · , n are the known nonlinear functions, which satisfy the Lipschitz
condition to guarantee the existence and uniqueness of the solution of system (11); ui,
i = 1, 2, · · · , n−m are control inputs and ∆i, i = 1, 2, · · · , n−m are matched disturbances
and uncertainties.

Assumption 1. The matched disturbances and uncertainties ∆i, i = 1, · · · , n−m are bounded
and their upper bounds are known as di, i.e., |∆i| < di, respectively.

Assumption 2. For the following subsystem

ẋi = fi(x), i = n−m + 1, · · · , n, (12)

there exists a positive definite matrix P ∈ Rm×m, such that
L = yT Py,

L̇ =
m
∑

i=1
ϑi(x)xi + ψ(y),

ψ(y) ≤ 0,

(13)

where y = [xn−m+1, xn−m+2, · · · , xn]
T , ϑi(x) and ψ(y) are functions of x and y, respectively.

Remark 2. Assumption 2 states that the uncontrolled part of system (11) is self-stabilized since
ψ(y) is irrelevant to the controlled states xi, i = 1, · · · , n−m, which is reasonable and necessary
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for guaranteeing the closed-loop stability. More interestingly, Assumption 2 is assumed to hold for
the corresponding integer order system.

Remark 3. System (11) under Assumption 2 covers a wide class of fractional chaotic systems, such
as Lorenz systems, Chen systems, Financial systems, Liu systems, and Lure systems [22,39], which
have been widely used in encrypted communication. Therefore, Assumption 2 is not strong and
the controller design for the proposed nonlinear fractional order system is of great importance for
practical usage.

3.2. Sliding Manifold Design

For the controlled system (11), the following sliding manifolds can be designated

si = I Dαi xi +I [ϑi(x) + li(xi)], (14)

where i = 1, · · · , n−m, I denotes the conventional first-order integral and xili(xi) ≥ 0,
i = 1, 2, · · · , n−m hold.

Theorem 1. Once the sliding manifolds (14) are reached, the closed-loop system (11) is asymptoti-
cally stable.

Proof. Once the sliding manifolds are reached i.e., si = 0, i = 1, 2, · · · , n−m, we obtain
ṡi = Dαi xi + ϑi(x) + l(xi) = 0, i = 1, 2, · · · , n− m. The closed-loop system can then be
transformed into {

Dαi xi = −ϑi(x)− li(xi), i = 1, · · · , n−m,
Dαi xi = fi(x), i = n−m + 1, · · · , n.

(15)

One can obtain the following frequency distributed models of (15) by Lemma 1
∂zi(ω,t)

∂t = −ωzi(ω, t)− ϑi(x)− li(xi), i = 1, · · · , n−m,
∂zi(ω,t)

∂t = −ωzi(ω, t) + fi(x), i = n−m + 1, · · · , n,
xi =

∫ ∞
0 µαi (ω)zi(ω, t)dω,i = 1, 2, · · · , n.

(16)

Select the following Lyapunov function

V =
n−m

∑
i=1

∫ ∞

0
µαi (ω)z2

i (ω, t)dω +
∫ ∞

0
zT(ω, t)µ(ω)Pz(ω, t)dω, (17)

where
µ(ω) = diag

[
µαn−m+1(ω), µαn−m+2(ω), · · · , µαn(ω)

]
,

and
z(ω, t) = [zn−m+1(ω, t), zn−m+2(ω, t), · · · , zn(ω, t)]T .
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Taking the first time derivative of V, one can obtain

V̇ =
n−m
∑

i=1

∫ ∞
0 µαi (ω)

∂zi(ω,t)
∂t dω

+
∫ ∞

0 zT(ω, t)Pµ(ω)
∂z(ω,t)

∂t dω

+
∫ ∞

0
∂zT(ω,t)

∂t µ(ω)Pz(ω, t)dω

= −2
n−m
∑

i=1

∫ ∞
0 ωµαi (ω)z2

i (ω, t)dω

−2
∫ ∞

0 ωzT(ω, t)µ(ω)Pz(ω, t)dω

−2
n−m
∑

i=1
[ϑi(x) + li(xi)]xi + 2

m
∑

i=1
ϑi(x)xi + 2ψ(y)

= −2
n−m
∑

i=1

∫ ∞
0 ωµαi (ω)z2

i (ω, t)dω

−2
∫ ∞

0 ωzT(ω, t)µ(ω)Pz(ω, t)dω

−2
n−m
∑

i=1
li(xi)xi + 2ψ(y).

(18)

From the assumptions that xili(xi) ≥ 0, i = 1, 2, · · · , n − m, and ψ(y) ≤ 0, it is
concluded that V̇ ≤ 0 and the closed-loop system is asymptotically stable. This completes
the proof.

Remark 4. The condition xili(xi) ≥ 0, i = 1, 2, · · · , n−m is easy to satisfy and one may select
li(xi) as rxi, r|xi|βsgn(xi) with r > 0, β > 0. li(xi), i = 1, 2, · · · , n−m are added from (18) to
faster attenuate the energy of Lyapunov function V and achieve better control performance.

3.3. Fractional Fixed-Time Reaching Law

In order to shorten the reaching time to the sliding manifold, we proposed a novel
fixed-time reaching law with an adaptive gain in [6]. However, the proposed reaching law
will exacerbate the chattering phenomenon. In the study, a novel fixed-time reaching law
with a fractional update gain will be designed to attenuate the chattering amplitude, which
can be formulated as {

ṡ = −(θ|s|1−β + d)sgn(s),
Dγθ = ρ

β |s|
β,

(19)

where 0 < γ < 1, ρ > 0, 0 < β ≤ 1, d is the upper bound of the matched disturbance,
θ(0) = 0, and Dγ denotes the Caputo’s derivative definition. Then the sliding mode
controller is designated as{

ui = − fi(x)− ϑi(x)− li(xi)−
(
θi|si|β + di

)
sgn(si),

Dγθi =
ρ
β |si|β,

(20)

where 0 < γ < 1, ρ > 0, 0 < β ≤ 1, d is the upper bound of the matched disturbance,
θ(0) = 0, i = 1, 2, · · · , n−m.

With sliding mode controller (20), one can obtain that

ṡi = Dαxi + ϑi(x) + li(xi)
= fi(x) + ∆i + ui + ϑi(x) + li(xi)
= fi(x) + ∆i + ϑi(x) + li(xi)− fi(x)
−ϑi(x)− li(xi)− (θi + di)sgn(si)

= ∆i − (θi + di)sgn(si).

(21)

The following analysis is established for each control input ui in (20); thus, we only
analyze the properties for a single input. The subscript i in (20) and (21) is omitted for
convenience in the following discussion.
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Theorem 2. Controller (20) guarantees a fixed-time convergence to the sliding manifold, whose
reaching time is shorter than the first positive zero of E1+γ,1

(
−ρt1+γ

)
.

Proof. Similar to (21), we have the following equation{
ṡ = −(θ|s|1−β + d)sgn(s) + ∆,
Dγθ = ρ

β |s|
β,

(22)

where the subscript i is omitted for convenience. Define a Lyapunov function as V = 1
β |s|

β,
and take first-order derivative versus time, yielding,

V̇ = |s|β−1 ṡsgn(s) = −θ + |s|β−1(∆− d). (23)

Finally, we arrive at the following equalities{
V̇ = −θ + m(t),
Dγθ = ρV,

(24)

where m(t) = |s|β−1(∆− d) ≤ 0 due to the assumption d ≥ |∆|. Laplace transform is
performed on both sides of (24), yielding,{

pV(p)−V(0) = −θ(p) + m(p),
pγθ(p) = ρV(p),

(25)

where initial condition θ(0) = 0 is used. On this basis, we obtain

V(p) =
pγ

p1+γ + ρ
V(0) +

pγ

p1+γ + ρ
m(p). (26)

Inverse Laplace transform is performed on both sides of (26), resulting in

V(t) = E1+γ,1

(
−ρt1+γ

)
∗ (V(0) + m(t)), (27)

where ∗ denotes the convolution operator. According to Lemma 1, t0 is supposed to be the
first positive zero of E1+γ,1

(
−ρt1+γ

)
and then E1+γ,1

(
−ρt1+γ

)
> 0 and m(t) ≤ 0 hold for

any 0 < t ≤ t0. Therefore, for any 0 < t ≤ t0, we obtain E1+γ,1
(
−ρt1+γ

)
∗m(t) < 0 and

then
V(t) < E1+γ,1

(
−ρt1+γ

)
V(0).

It is concluded that V(t) must reach zero in a time shorter than t0, the first positive
zero of E1+γ,1

(
−ρt1+γ

)
, which is independent of initial conditions. Moreover, we obtain

that θ(t) ≥ 0 always holds since θ(0) = 0 and ρ|s| ≥ 0, which indicates that V(t) is non-
increasing. Combining with the fact that V(t) ≥ 0, once V(t) reaches zero, it is concluded
that V(t) will be maintained thereafter. Thus, we determine that V(t) will reach zero and
will be maintained thereafter in a fixed time shorter than t0, which is independent of initial
conditions and indicates a fixed-time convergence. This completes the proof.

Remark 5. In Theorem 2, only the reaching time for a single sliding manifold is provided. It can be
extended to multi sliding manifolds directly by using the following Lyapunov function

V =
1
β

n−m

∑
i=1
|s|β.
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Defining Θ =
n−m
∑

i=1
θi, it follows that

{
V̇ ≤ Θ,
DγΘ = ρV.

Consequently, the reaching time for multi sliding manifolds can similarly be derived, where the
reaching time is shorter than the first positive zero of E1+γ,1

(
−ρt1+γ

)
. Additionally, the proposed

reaching law will reduce to the fixed-time reaching law in [6] when β = γ = 1.

Theorem 2 indicates a fixed-time convergence to the sliding manifold, whose con-
vergence time mainly depends on the designated parameters ρ, γ, and β. As is known,
the amplitude of the sign function in (19), i.e., θ|s|1−β + d, determines the chattering phe-
nomenon. For 0 < β < 1, the fractional reaching law will not exacerbate the chattering
phenomenon, since θ|s|1−β = 0 when s = 0. However, for β = 1, additional chattering will
be introduced since θ is greater than zero. Consequently, a means to reduce the integral
value of θ quickly after reaching the sliding manifold would be meaningful. The next
theorem may reveal the relation between the decaying rate of θ and fractional order γ, and
guide suitable selections for γ, ρ when designing a sliding mode controller.

Theorem 3. For reaching law (19) with β = 1, if the convergence time is T, then for any given
∆T > 0 and δ > 0, one can always find a suitable γ such that θ(t) < δ holds for any t ≥ ∆T + T.

Proof. We assume that the sliding manifold converges to zero in a fixed time T according
to Theorem 2 and following equation can be derived

θ(t) =
ρ

Γ(γ)

∫ T

0
(t− τ)γ−1|s(τ)|dτ. (28)

Defining κ= sup
0<t≤T

|s(t)|, one obtains

θ(t) = ρ
Γ(γ)

∫ T
0 (t− τ)γ−1|s(τ)|dτ

≤ ρ
Γ(γ)

∫ T
0 (∆T)γ−1κdτ

≤ ρκT
Γ(γ) (∆T)γ−1

≤ ρκT
Γ(γ)

1
min{∆T,1} .

(29)

Finally, γ is selected such that Γ(γ) ≥ ρκT
δ min{∆T,1} , which could always be found since

lim
γ→0

Γ(γ) = ∞, and it is then concluded that θ ≤ δ. This completes the proof.

Remark 6. For 0 < β < 1, the fractional reaching law will not exacerbate the chattering phe-
nomenon, since θ|s|1−β = 0 after the sliding manifold is reached in a fixed time. For β = 1, one
can set γ sufficiently small at first to guarantee the quick decay of θ according to Theorem 3. After
determining γ, gain ρ can be designated by numerical simulation such that the Mittag–Leffler
function E1+γ,1

(
−ρt1+γ

)
contains a positive zero smaller than the desired reaching time. Compared

with the fixed-time reaching law in [6] which is a special case of (19) with β = γ = 1, the fractional
update law will attenuate the gain θ after the sliding manifold is reached.

Remark 7. Though reaching-phase free SMC has been proposed to totally eliminate the reaching
phase in [15], the initial conditions must be exactly known, which obstructs practical usage. The
proposed fixed-time reaching law controls the upper bound of the convergence time with arbitrary
initial conditions.
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4. Illustrative Examples

In this section, some simulation examples will be presented to demonstrate the effec-
tiveness of the proposed approaches. The fractional integrator for these numerical examples
is implemented via the integer-order approximation algorithm in the frequency domain.
Refer to [40] for more details about the approximate algorithm. The widely used fractional
order Lorenz system is considered, which is described as:

Dα1 x = 10y− 10x + ∆ + u,
Dα2 y = x(28− z)− y,
Dα3 z = xy− 8/3z,

(30)

with ∆ = 0.1− 0.1 sin(πx) + 0.1 cos(t) when simulating. Taking P as a unitary matrix, it is
obtained from (13) that{

L = y2 + z2,
L̇ = 56xy− 2y2 − 16/3z2,

⇒
{

ϑ = 56y,
ψ = −2y2 − 16/3z2.

The sliding manifold and controller can be designated as
s = I Dα1 x +I [56y + l(x)],
u = 10x− 66y− l(x)− (θ + d)sgn(s),
Dγθ = ρ|s|,

(31)

where parameters γ, ρ, d, and l(x) will be given later.

Example 1. In this example, our purpose is to compare the proposed sliding mode controller with
the controller in [39] and show the superiority of our proposed sliding manifold, where the same
reaching law is utilized. The controller designated in [39] can be described as

s = I Dα1 x +I [28y + 10x],
u = −38y− (θ + d)sgn(s),
Dγθ = ρ|s|.

(32)

Take α1 = 0.985, α2 = 0.993, α3 = 0.99, which guarantees the chaotic behaviour of the
uncontrolled system, and system initial conditions as x(0) = y(0) = z(0) = 1. When simulating,
select γ = 1, ρ = 1, d = 0.1, l(x) = 35x.

Simulation results are shown in Figures 1 and 2. It is observed that our method performs better
in system output from Figure 1 than the method by Yuan, with a smaller overshooting and a shorter
settling time. Moreover, control input with our method is much steadier, as shown in Figure 2. All
these results demonstrate that our method is superior to the method by Yuan in both control input
and system output.

Since reaching law is usually independent of the sliding manifold, we will consider
the same Lorenz system in the following examples. State responses are not shown as the
results are similar to Example 1.
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Figure 1. State responses of x, y, z in Example 1.
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Figure 2. Control inputs and sliding manifolds in Example 1.

Example 2. In this example, we will compare the proposed fractional reaching law with [6] to show
the effectiveness of the fractional update law for attenuating chattering. Take β = 1 and d = 0.3
when simulating. Consider following three parameter settings

Case 1 : γ = 1, ρ = 10, β = 1
Case 2 : γ = 0.05, ρ = 10, β = 1
Case 3 : ρ = 0.

(33)

Results are shown in Figures 3 and 4. All the reaching laws can guarantee a finite time
convergence of the sliding manifold. It is found that the proposed fractional reaching law (Case 2)
presents a faster convergence rate than the traditional reaching law (Case 3) without exacerbating
chattering. Compared with the reaching law in [6] (Case 1), the proposed fractional reaching law
has a similar convergence time but the chattering amplitude is quickly attenuated after the sliding
manifold is reached as shown in Figure 3, which demonstrates the conclusion of Theorem 3.
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Figure 4. Sliding manifolds in Example 2.

Example 3. In this example, we will show the fixed-time convergence of the sliding manifold with
different initial conditions and the same sliding manifold parameters as in Example 1. Set β = 0.5
and γ = 0.3 (since β 6= 1, the proposed reaching law will not introduce additional chattering). If
the reaching time is required to be shorter than 1 s , one can choose ρ such that the first positive
zero of the Mittag–Leffler function E1+γ,1

(
−ρt1+γ

)
is smaller than the desired reaching time in the

simulation. By simulation, it is found that the zero of E1+γ,1
(
−ρt1+γ

)
is 1 s when ρ = 2.28. Take

ρ = 2.5 when simulating and consider following three cases
Case 1 : x = y = z = 1,
Case 2 : x = y = z = 2,
Case 3 : x = y = z = 3.

(34)

Results are presented in Figure 5, showing that the reaching time for the three cases is less than
1 (s). Moreover, the reaching times with different initial conditions are all close to 0.85 s. Unlike
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the conventional case, a larger initial condition of the sliding manifold always results in a longer
reaching time, which shows the robustness to the initial conditions.
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Figure 5. Sliding manifolds in Example 3.

Example 4. In this example, we will compare the proposed reaching law with the reaching law
in [29], which can be expressed as

ṡ = −(k1|s|κ1 + k2|s|κ2 + d)sgn(s), (35)

where k1 > 0, k2 > 0, 0 < κ1 < 1, 1 < κ2 < 2 are designated parameters. When simulating,
set k1 = k2 = 3, κ1 = 0.5, κ2 = 1.5, with the parameters for reaching law (19) the same as in
Example 3. Results are shown in Figures 6 and 7. It is found that both reaching laws could achieve
a fixed-time convergence to the sliding manifold with different initial conditions. Notably, it was
found that the reaching times of the fractional reaching law (19) under different initial conditions are
almost the same. However, for the reaching law (35), reaching times with different initial conditions
are different although there is an upper bound for the reaching time.
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Figure 6. Sliding manifolds with reaching law (19) in Example 4.
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Figure 7. Sliding manifolds with reaching law (35) in Example 4.

5. Conclusions

A sliding mode controller has been designed to control a class of general nonlinear
fractional-order systems, covering a wide class of typical chaotic systems. A general
design procedure of the sliding manifold with an additional nonlinear part is proposed,
where better system performance is achieved. A novel fractional fixed-time reaching
law is then proposed, where the reaching time to the sliding manifold is independent of
initial conditions. Moreover, the proposed reaching law will not exacerbate the chattering
phenomenon compared with the traditional reaching law. All the conclusions are carefully
validated by simulation results. A promising topic for future research is the use of the
proposed fixed-time reaching law in practical applications.
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8. Ataşlar-Ayyıldız, B.; Karahan, O.; Yılmaz, S. Control and robust stabilization at unstable equilibrium by fractional controller for
magnetic levitation systems. Fractal Fract. 2021, 5, 101–127. [CrossRef]

9. Sheng, Y.; Bai, W.; Xie, Y. Fractional-order PIλD sliding mode control for hypersonic vehicles with neural network disturbance
compensator. Nonlinear Dyn. 2021, 103, 849–863. [CrossRef]

10. Li, H.; Zhang, T.; Tie, M.; Wang, Y. Fuzzy-based adaptive higher-order sliding mode control for uncertain steer-by-wire system. J.
Dyn. Syst. Meas. Control 2022, 144, 041005. [CrossRef]

11. Ren, J.; Sun, J.; Li, F. Robust observer-based finite time sliding mode control for one-sided Lipschitz systems with uncertainties. J.
Dyn. Syst. Meas. Control 2021, 143, 014501. [CrossRef]

12. Han, S. Fractional-Order Command Filtered Backstepping Sliding Mode Control with Fractional-Order Nonlinear Disturbance
Observer for Nonlinear Systems. J. Frankl. Inst. 2020, 357, 6760–6776. [CrossRef]

13. Mathiyalagan, K.; Sangeetha, G. Second-order sliding mode control for nonlinear fractional-order systems. Appl. Math. Comput.
2020, 383, 125264. [CrossRef]

14. Modiri, A.; Mobayen, S. Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic
systems. ISA Trans. 2020, 105, 33–50. [CrossRef]

15. Kamal, S.; Sharma, R.K.; Dinh, T.N.; Ms, H.; Bandyopadhyay, B. Sliding mode control of uncertain fractional-order systems: A
reaching phase free approach. Asian J. Control 2021, 23, 199–208. [CrossRef]

16. Wu, X.F.; Bao, H.B.; Cao, J.D. Finite-time inter-layer projective synchronization of Caputo fractional-order two-layer networks by
sliding mode control. J. Frankl. Inst. 2020, 358, 1002–1020. [CrossRef]
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