New Class Up and Down
-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities
(This article belongs to the Section Engineering)
Abstract
:1. Introduction
2. Preliminaries
- (1)
- should be normal if there exists and
- (2)
- should be upper semi continuous on if for given there exist there exist such that for all with
- (3)
- should be fuzzy convex that is for all and ;
- (4)
- should be compactly supported that is is compact. We appoint to denote the set of all fuzzy-numbers of .
Riemann Integral Operators for Interval and Fuzzy-Number Valued Mappings
- 1)
- if is U∙D -convex F-N∙V∙M, then is also U∙D -convex for .
- 2)
- if and both are U∙D -convex F-N∙V∙Ms, then is also U∙D -convex F-N∙V∙M.
- (i)
- If then U∙D -convex F-N∙V∙M becomes U∙D -convex F-N∙V∙M, that is
- (ii)
- (iii)
- If then U∙D -convex F-N∙V∙M becomes U∙D -convex F-N∙V∙M, that is
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bermudo, S.; Karus, P.; Nápoles Valdés, J.E. On q-Hermite-Hadamard inequalities for general convex mappings. Acta Math. Hungar. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Budak, H. On Fejer type inequalities for convex mappings utilizing fractional integrals mapping with respect to another mapping. Results Math. 2019, 74, 15. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Du, T.S.; Luo, C.Y.; Cao, Z.J. On the Bullen-type inequalities via generalized fractional integrals and their applications. Fractals 2021, 29, 20. [Google Scholar] [CrossRef]
- Iscan, I. Weighted Hermite-Hadamard-Mercer type inequalities for convex mappings. Numer. Methods Partial Differential Eq. 2021, 37, 118–130. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.-H.; Wang, M.-K.; Zhang, W.; Chu, Y.-M. Quadratic transformation inequalities for Gaussian hyper geometric mapping. J. Inequal. Appl. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.-M.; Zhao, T.-H. Concavity of the error mapping with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar]
- Qian, W.-M.; Chu, H.-H.; Wang, M.-K.; Chu, Y.-M. Sharp inequalities for the Toader mean of order—1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Chu, H.-H.; Chu, Y.-M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Dai, Y.-Q.; Chu, Y.-M. On the generalized power-type Toader mean. J. Math. Inequal. 2022, 16, 247–264. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.-M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
- Szostok, T. Inequalities of Hermite-Hadamard type for higher order convex mappings, revisited. Commun. Pure Appl. Anal. 2021, 20, 903–914. [Google Scholar] [CrossRef]
- Korus, P. An extension of the Hermite-Hadamard inequality for convex and s-convex mappings. Aequat. Math. 2019, 93, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Andric, M.; Pecaric, J. On (h;g;m)-convexity and the Hermite-Hadamard inequality. J. Convex Anal. 2022, 29, 257–268. [Google Scholar]
- Latif, M.A. Weighted Hermite-Hadamard type inequalities for differentiable GA-convex and geometrically quasiconvex mappings. Rocky Mountain J. Math. 2022, 51, 1899–1908. [Google Scholar] [CrossRef]
- Niezgoda, M. G-majorization and Fejer and Hermite-Hadamard like inequalities for G-symmetrized convex mappings. J. Convex Anal. 2022, 29, 231–242. [Google Scholar]
- Demir, S.; Iscan, I.; Maden, S.; Kadakal, M. On new Simpson′s type inequalities for trigonometrically convex mappings with applications. Cumhuriyet Sci. J. 2020, 41, 862–874. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel mappings of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Y Naturales. Ser. A Matemáticas RACSAM 2020, 114, 1–14. [Google Scholar]
- Liu, Z.-H.; Motreanu, D.; Zeng, S.-D. Generalized penalty and regularization method for differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F.; Yao, J.-C.; Zeng, S.-D. Existence of solutions for a class of noncoercive variational—Hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migorski, S.; Liu, Z.-H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Methods Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar]
- Liu, Z.-H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Internat. J. Bifur. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migórski, S.; Liu, Z.-H. Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation. Sci. Sin. Math. 2022, 52, 331–354. [Google Scholar]
- Liu, Z.-H.; Sofonea, M.T. Differential quasivariational inequalities in contact mechanics. Math. Mech. Solids. 2019, 24, 845–861. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migórski, S.; Liu, Z.-H.; Yao, J.-C. Convergence of a generalized penalty method for variational-hemivariational inequalities. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105476. [Google Scholar] [CrossRef]
- Li, X.-W.; Li, Y.-X.; Liu, Z.-H.; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 2018, 21, 1439–1470. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Positive solutions for resonant (p,q)-equations with convection. Adv. Nonlinear Anal. 2021, 10, 217–232. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Differential inclusion problems with convolution and discontinuous nonlinearities. Evol. Equ. Control Theory 2020, 9, 1057–1071. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Double phase Dirichlet problems with unilateral constraints. J. Differ. Equ. 2022, 316, 249–269. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Papageorgiou, N.S. Anisotropic (p,q)-equations with competition phenomena. Acta Math. Sci. 2022, 42B, 299–322. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex mappings via new fractional integrals, J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar]
- Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex mappings. J. Comput. Appl. Math. 2020, 372, 15. [Google Scholar]
- Set, E.; Butt, S.I.; Akdemir, A.O.; Karaoglan, A.; Abdeljawad, T. New integral inequalities for differentiable convex mappings via Atangana-Baleanu fractional integral operators. Chaos Solitons Fractals 2021, 143, 14. [Google Scholar] [CrossRef]
- Khan, M.A.; Ali, T.; Dragomir, S.S.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for conformable fractional integrals. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 2018, 112, 1033–1048. [Google Scholar] [CrossRef]
- Meftah, B.; Benssaad, M.; Kaidouchi, W.; Ghomrani, S. Conformable fractional Hermite-Hadamard type inequalities for product of two harmonic s-convex mappings. Proc. Amer. Math. Soc. 2020, 149, 1495–1506. [Google Scholar] [CrossRef]
- Dragomir, S.S. Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex mappings. Math. Meth. Appl. Sci. 2021, 44, 2364–2380. [Google Scholar] [CrossRef]
- Kashuri, A.; Ramosacaj, M.; Liko, R. Some new bounds of Gauss-Jacobi and Hermite-Hadamard-type integral inequalities. Ukrainian Math. J. 2022, 73, 1238–1258. [Google Scholar] [CrossRef]
- Kunt, M.; Iscan, I.; Turhan, S.; Karapinar, D. Improvement of fractional Hermite-Hadamard type inequality for convex mappings. Miskolc. Math. Notes 2018, 19, 1007–1017. [Google Scholar] [CrossRef]
- Mehrez, K.; Agarwal, P. New Hermite-Hadamard type integral inequalities for convex mappings and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued mappings and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Qi, Y.F.; Li, G.P. New Hermite-Hadamard-Fejer type inequalities via Riemann-Liouville fractional integrals for convex mappings. Fractals 2021, 29, 11. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Kilicer, D. On the extension of Hermite-Hadamard type inequalities for coordinated convex mappings. Turkish J. Math. 2021, 45, 2731–2745. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Mappings and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
- Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite-Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued mappings pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Mappings in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Mappings in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Mappings and Related Hermite-Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard inequalities for convex fuzzy-number-valued mappings via fuzzy Riemann integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite–Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some new versions of Hermite–Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex mappings via fuzzy-interval-valued settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
- Narges Hajiseyedazizi, S.; Samei, M.E.; Alzabut, J.; Chu, Y.-M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
- Jin, F.; Qian, Z.-S.; Chu, Y.-M.; Rahman, M.U. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
- Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2009. [Google Scholar]
- de Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.M. Interval analysis for computer graphics. SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Ed. 2012, 55, 9–15. [Google Scholar] [CrossRef]
- Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y.M. Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex mappings. Open Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
- Costa,, T.M.; Silva,, G.N.; Chalco-Cano,, Y.; Roman-Flores,, H. Gauss-type integral inequalities for interval and fuzzy-interval-valued mappings. Comput. Appl. Math. 2019, 38, 13. [Google Scholar]
- Liu, P.D.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued mappings in the second sense. Complex Intell. Syst. 2021, 8, 413–427. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite-Hadamard type inequalities for interval-valued preinvex mappings via fractional integral operators. Int. J. Comput. Intell. Syst. 2022, 15, 12. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued mappings. J. Inequal. Appl. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.; Debnath, A.K.; Pedrycz, W. A variable and a fixed ordering of intervals and their application in optimization with interval-valued mappings, Internat. J. Approx. Reason. 2020, 121, 187–205. [Google Scholar] [CrossRef]
- Singh, D.; Dar, B.A.; Kim, D.S. KKT optimality conditions in interval valued multi-objective programming with generalized differentiable mappings. European J. Oper. Res. 2016, 254, 29–39. [Google Scholar] [CrossRef]
- Tunç, M. On new inequalities for ℎ-convex mappings via Riemann-Liouville fractional integration. Filomat 2013, 27, 559–565. [Google Scholar] [CrossRef] [Green Version]
- İşcan, İ. Hermite–Hadamard–Fejér type inequalities for convex mappings via fractional integrals. Stud. Univ. Babeş–Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard-type inequalities for h-convex mappings. J. Math. Inequal. 2008, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.-Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.-M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations. Fractals 2022, 30, 1–11. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Bhayo, B.A.; Chu, Y.-M. Inequalities for generalized Grötzsch ring mapping. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
- Iqbal, S.A.; Hafez, M.G.; Chu, Y.-M.; Park, C. Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J. Appl. Anal. Comput. 2022, 12, 770–789. [Google Scholar] [CrossRef]
- Huang, T.-R.; Chen, L.; Chu, Y.-M. Asymptotically sharp bounds for the complete p-elliptic integral of the first kind. Hokkaido Math. J. 2022, 51, 189–210. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. On approximating the arc lemniscate mappings. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued mappings. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued mappings. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Breckner, W.W. Continuity of generalized convex and generalized concave set–valued mappings. Rev. Anal Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
- Nanda, N.; Kar,, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued mappings and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic. In Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013; p. 295. [Google Scholar]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued mappings. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Hai, G.-J.; Chu, Y.-M. Landen inequalities for Gaussian hypergeometric mapping. Rev. Real Acad. Cienc. Exactas Físicas Y Naturales. Ser. A Matemáticas RACSAM 2022, 116, 1–23. [Google Scholar]
- Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic mappings with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
- Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. Real Acad. Cienc. Exactas Físicas Y Naturales Ser. A Matemáticas RACSAM 2021, 115, 1–13. [Google Scholar]
- Chu, H.-H.; Zhao, T.-H.; Chu, Y.-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex intervalvalued mappings. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some refinements for inequalities involving zero-balanced hyper geometric mapping. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S.
New Class Up and Down
Khan MB, Zaini HG, Santos-García G, Noor MA, Soliman MS.
New Class Up and Down
Khan, Muhammad Bilal, Hatim Ghazi Zaini, Gustavo Santos-García, Muhammad Aslam Noor, and Mohamed S. Soliman.
2022. "New Class Up and Down
Khan, M. B., Zaini, H. G., Santos-García, G., Noor, M. A., & Soliman, M. S.
(2022). New Class Up and Down