Solvability of Nonlinear Impulsive Generalized Fractional Differential Equations with (p,q)-Laplacian Operator via Critical Point Theory
Abstract
:1. Introduction
2. Preliminaries and Statements
- (1)
- If and , then
- (2)
- If and , then
- ,
- there exist two constants such that ,
- there exists such that .
3. Variational Setting and Main Results
- for any ,
- , , , a.e. ,, , , a.e. ;
- ,, , a.e. , .
- ,.
4. Example
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, W.; Ni, J. New multiple positive solutions for Hadamard-type fractional differential equations with nonlocal conditions on an infinite interval. Appl. Math. Lett. 2021, 118, 107165. [Google Scholar] [CrossRef]
- Sun, H.R.; Zhang, Q.G. Existence of solutions for a fractional boundary value problem via the Mountain pass method and an iterative technique. Comput. Math. Appl. 2012, 64, 3436–3443. [Google Scholar] [CrossRef] [Green Version]
- Jiao, F.; Zhou, Y. Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. Int. J. 2011, 62, 1181–1199. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Zhou, Y.; Alsaedi, A.; Al-Hutami, H. Existence and uniqueness results for a nonlocal q-fractional integral boundary value problem of sequential orders. J. Comput. Anal. Appl. 2016, 20, 514–529. [Google Scholar]
- Fahad, H.M.; Fernandez, A. Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations. Appl. Math. Comput. 2021, 409, 126400. [Google Scholar] [CrossRef]
- El-Hady, E.; Ogrekci, S. On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative. J. Math. Comput. Sci. 2021, 22, 325–332. [Google Scholar] [CrossRef]
- Hattaf, K.; Mohsen, A.A.; Al-Husseiny, H. Gronwall inequality and existence of solutions for differential equations with generalized Hattaf fractional derivative. J. Math. Comput. Sci. 2022, 27, 18–27. [Google Scholar] [CrossRef]
- Nikan, Q.; Avazzadeh, Z.; Tenreiro Machado, J. An efficient local meshless approach for solving nonlinear time-fractional fourth-order diffusion model. J. King Saud Univ.—Sci. 2021, 33, 101243. [Google Scholar] [CrossRef]
- Phong, T.; Long, L. Well-posed results for nonlocal fractional parabolic equation involving Caputo-Fabrizio operator. J. Math. Comput. Sci. 2022, 22, 357–367. [Google Scholar] [CrossRef]
- Almeida, R.; Malinowska, A.B.; Monteiro, T. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 2017, 41, 336–352. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, J.E.; Ruzhansky, M.; Suragan, D. Explicit solutions for linear variable-coefficient fractional differential equations with respect to functions. Appl. Math. Comput. 2021, 403, 126177. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Belmor, S.; Jarad, F.; Abdeljawad, T.; Alqudah, M.A. On fractional differential inclusion problems involving fractional order derivative with respect to another function. Fractals 2020, 28, 204002. [Google Scholar] [CrossRef]
- Liu, K.; Fecčkan, M.; Wang, J. Hyers-Ulam stability and existence of solutions to the generalized Liouville-Caputo fractional differential equations. Symmetry 2020, 12, 955. [Google Scholar] [CrossRef]
- Lin, L.; Liu, Y.; Zhao, D. Controllability of impulsive ψ-Caputo fractional evolution equations with nonlocal conditions. Mathematics 2021, 9, 1358. [Google Scholar] [CrossRef]
- Zhao, D. A study on controllability of a class of impulsive fractional nonlinear evolution equations with delay in Banach spaces. Fractal Fract. 2021, 5, 279. [Google Scholar] [CrossRef]
- Alsarori, N.; Ghadle, K.; Sessa, S.; Saleh, H.; Alabiad, S. New study of the existence and dimension of the set of solutions for nonlocal impulsive differential inclusions with a sectorial operator. Symmetry 2021, 13, 491. [Google Scholar] [CrossRef]
- Alharbi, A.; Guefaifia, R.; Boulaaras, S. A new proof of the existence of nonzero weak solutions of impulsive fractional boundary value problems. Mathematics 2020, 8, 856. [Google Scholar] [CrossRef]
- Long, W.W.; Chen, G.P. Infinitely many solutions for a class of p-Laplacian type fractional Dirichlet problem with instantaneous and non-instantaneous impulses. Appl. Math. Sci. 2022, 16, 79–94. [Google Scholar] [CrossRef]
- Li, D.; Chen, F.; An, Y. The existence of solutions for an impulsive fractional coupled system of (p, q)-Laplacian type without the Ambrosetti-Rabinowitz condition. Math. Methods Appl. Sci. 2019, 42, 1449–1464. [Google Scholar] [CrossRef]
- Li, D.; Chen, F.; Wu, Y.; An, Y. Variational formulation for nonlinear impulsive fractional differential equations with (p,q)-Laplacian operator. Math. Methods Appl. Sci. 2022, 45, 515–531. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractinal Differential Equations; North-Holland Mathematics Studies: Amsterdam, The Netherlands, 2006; p. 204. [Google Scholar]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst.-S 2018, 13, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon-les-Bains, Switzerland, 1993. [Google Scholar]
- Yang, X.J.; Machado, J. A new fractional operator of variable order: Application in the description of anomalous diffusion. Phys. A Stat. Mech. Appl. 2017, 481, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chen, F.; An, Y. Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory. Math. Methods Appl. Sci. 2018, 41, 3197–3212. [Google Scholar] [CrossRef]
- Khaliq, A.; Rehman, M.U. Existence of weak solutions for Ψ-Caputo fractional boundary value problem via variational methods. J. Appl. Anal. Comput. 2021, 11, 1768–1778. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014; pp. 177–202. [Google Scholar]
- Gao, D.; Li, J. Applications of variational methods to a impulsive fractional differential equation with a parameter. Dyn. Syst. Appl. 2018, 27, 973–987. [Google Scholar]
- Zhao, Y.; Tang, L. Multiplicity results for impulsive fractional differential equations with p-Laplacian via variational methods. Bound. Value Probl. 2017, 2017, 123. [Google Scholar] [CrossRef] [Green Version]
- Rabinowitz, P. Minimax Methods in Critical Point Theory with Applications to Differential Equations; American Mathematical Society: Providence, RI, USA, 1986. [Google Scholar]
- Jia, M.; Liu, X. Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions. Appl. Math. Comput. 2014, 232, 313–323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Liu, Y.; Wang, Y.; Suo, J. Solvability of Nonlinear Impulsive Generalized Fractional Differential Equations with (p,q)-Laplacian Operator via Critical Point Theory. Fractal Fract. 2022, 6, 719. https://doi.org/10.3390/fractalfract6120719
Zhou J, Liu Y, Wang Y, Suo J. Solvability of Nonlinear Impulsive Generalized Fractional Differential Equations with (p,q)-Laplacian Operator via Critical Point Theory. Fractal and Fractional. 2022; 6(12):719. https://doi.org/10.3390/fractalfract6120719
Chicago/Turabian StyleZhou, Jianwen, Yuqiong Liu, Yanning Wang, and Jianfeng Suo. 2022. "Solvability of Nonlinear Impulsive Generalized Fractional Differential Equations with (p,q)-Laplacian Operator via Critical Point Theory" Fractal and Fractional 6, no. 12: 719. https://doi.org/10.3390/fractalfract6120719
APA StyleZhou, J., Liu, Y., Wang, Y., & Suo, J. (2022). Solvability of Nonlinear Impulsive Generalized Fractional Differential Equations with (p,q)-Laplacian Operator via Critical Point Theory. Fractal and Fractional, 6(12), 719. https://doi.org/10.3390/fractalfract6120719