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%
Abstract: In this paper, we consider the nonlinear impulsive generalized fractional differential equations
with (p, g)-Laplacian operator for 1 < p < g < oo, in which the nonlinearity f contains two fractional
derivatives with respect to another function. Since the complexity of the nonlinear term and the impulses
exist in generalized fractional calculus, it is difficult to find the corresponding variational functional
of the problem. The existence of nontrivial solutions for the problem is established by the mountain
pass theorem and iterative technique under some appropriate assumptions. Furthermore, our main
result is demonstrated by an illustrative example to show its feasibility and effectiveness. Due to the
employment of a generalized fractional operator, our results extend some existing research findings.

Keywords: (p,q)-Laplacian operator; generalized fractional differential operator; mountain pass
theorem; impulse

1. Introduction

Fractional calculus generalizes the definition of integer derivative and integral to
arbitrary orders. In recent years, due to the memory and hereditary properties in fractional
systems, fractional boundary value and initial value problems have been widely studied,
for example, one can see the literature [1-9]. However, unlike classical calculus, the
fractional derivative and integral can be defined in various non-equivalent ways, such
as the Riemann-Liouville type calculus, the Caputo type calculus, the Hadamard type
calculus, the Erdélyi-Kober type calculus and so on. For many practical models in the
engineering field, in order to overcome the problem of selecting the best fractional calculus
operators, an effective method is to consider the more general definitions of fractional
calculus. Based on the above analysis, we will consider the fractional derivatives with
respect to another function in this paper. In particular, by choosing suitable ¢, we will
obtain some well-known fractional differential operators.

Recently, more and more innovative results for fractional calculus regarding another
function have been obtained in the literature [5,10-15] and the references therein. More-
over, as known to all, impulsive fractional differential equations are fundamental models
for studying dynamic processes with sudden changes, and numerous researchers have
obtained many interesting conclusions by different methods, please refer to articles [16-18]
for more information. To the best of our knowledge, however, no researcher has used the
variational method to study the generalized fractional differential equations with impulsive
terms. This is one of the issues to be solved in this paper.

In [19], Long and Chen studied the many solutions for a class of p-Laplacian type
fractional Dirichlet problem with instantaneous and non-instantaneous impulses by using
variational methods and critical point theory. In [20], Li et al. investigated the existence
of solutions for an impulsive fractional coupled system of (p, g)-Laplacian type without
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the Ambrosetti-Rabinowitz condition. Li et al. in [21] dealt with the nonlinear impulsive
fractional differential equations with (p, g)-Laplacian operator and obtained the existence
of nontrivial solutions.

In this paper, motivated by the above-mentioned works, we will research the following
nonlinear impulsive generalized fractional differential equations with (p, )-Laplacian operator

(DT Dy (oD Pu(t)) + [u(t)|P~2u(t) + {DF PPy (oDf u(t)) + | (1)1 2u(t)
= F(tu(t),oDF%u(t), oD Pu(t)), t+ tj, ae tel0,T],

1
-1 ; -1; 2 .
A(:D5 0, (SDEu) + DDy (SDPu)) (1) = Liu(t)), j=12,...,m,

u(0) =u(T)=0, ae tel0,T],

where% <a<l, % <B<1,1<p<g<oo,@s) = |s|F2s(s # 0) with ®,(0) = 0,
oD;’?,1D7? and § D;’? denote the left and right generalized Riemann-Liouville fractional
derivatives and the left p-Caputo fractional derivative, respectively, f : [0, T] x R x R x
R — R is a continuous function with respect to t for all (x,y,z) € R3 and continuously
differentiable with respect to x,y,z for a.e. t € [0,T], i.e.,, f(-,x,y,z) € C([0,T|,R) and
f(t,-,-,-) € CY(R3,R), Ij € CR,R)forj=1,2,....m 0=ty <t < -+ <ty = Tand
the operator A is defined by

-1; ; -1 5
AGDS @, (S0 u) + D5, (§DFPu)) (1))
-1 ; -1; ; —
=D @, (6D} u)(t]) — D7 P 0u (D u)(t))

-1; ; -1; ; _
+DF @y (FDPPu) (t) — DE @y (FDP ) (8),

where

-1 C% . -1 Cp%
(D7 70, (§D u)(t) = thrﬂ Dy 7@, (D u)(t),
-
(DF 7, (§Du)(t) = lim Dy~ @, (§D7u)(t),
t—t.
]
-1 ; . -1 ;
Dy Py (D u) (1) = limy (D@ (GD ) (1),
j

—1; ; - . -1 ;
(DE PP, (FDFPu)(t) = lim (DE @ (FDfPu) (b).

t~>t]-

Generally speaking, due to the presence of the generalized fractional operators, the re-
sults in this paper extend some existing results. If ¢(t) = t, the existence of nontrivial
solutions of problem (1) is researched in [21]. In addition, as far as we know, there are few
researchers who deal with fractional differential equations with respect to another function
by applying the variational method. This provides a reference to study the existence of
solutions of the generalized fractional system with respect to another function. Therefore,
the conclusions in this paper are of great significance.

The remaining parts of the article are organized as follows. In Section 2, we give some
relevant definitions and lemmas. We present the variational structure and verify that the
corresponding energy functional satisfies the mountain pass geometry and then obtain
the nontrivial solutions of problem (1) by iterative technique in Section 3. In Section 4,
an example is given to illustrate the effectiveness of our results.

2. Preliminaries and Statements

In this section, we outline some basic notations and related facts regarding the nonlin-
ear impulsive generalized fractional differential equations which will be used later.
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1
Let ||u||r = (f0T|u\”dt) ¥ be the usual norm of space L? ([0, T]), C([0, T], R) is the space
of continuous functions with norm ||u|| = Orga<xT|u(t) |. Furthermore, define the equivalent

norm of continuous function space with ||u H_oo = OI?ta<XT| @' (t)u(t)| and the equivalent norm
o 1
of p-th Lebesgue measurable function space with |||,y = ( OTq)’(t) [u(t)|Pdt)r.

Definition 1. ([22,23]). Let [a, b] be a finite or infinite interval of the real line R and ¢(t) be an
increasing and positive monotone function on [a, b] with the continuous derivative ¢'(t) on [a, b].
The left and right fractional integrals of function u with respect to another function ¢ on [a, b] of
order a are defined by

ol u(t) = r(loo ,/;(q)a) — (1)l (Du(r)dr, R(«) >0,
i, u(t) = r(lao /tb<<v<f> — ()" g (Du(v)dr, R(a) > 0.

Remark 1. Notice that when ¢(t) = t, Definition 1 reduces to the definition of classical Riemann—
Liouville fractional integrals. When ¢(t) = Int, Definition 1 reduces to the definition of Hadamard
fractional integrals as shown in the literature [24].

Definition 2. ([22,23]). Let n = [R(a)] + 1 with R(a) > 0 and ¢ € C"([0, T]) such that
o' #0,i=1,2,...,n, the left and right Riemann—Liouwville fractional derivatives of function u
with order a with respect to ¢ are given by

oD u(t) (s ) ol ) ()

Remark 2. Apparently, if ¢(t) = t, Definition 2 becomes the definition of classical Riemann—
Liouville fractional derivatives. If ¢(t) = Int, Definition 2 simplifies to the definition of Hadamard
fractional derivatives, more details can be found in the literature [24] and the references therein.

Definition 3. ([25]). Let n = [R(a)] +1, ¢ € C"([0, T]) such that ¢! #0,i=1,2,...,nand
u € ACy([0, T, R). Then, the left and right p-Caputo fractional derivatives are depicted by

SDIPu(t) =ol ¢,1(t) L ymu(e)
_F(nl_ o) /Ot(ﬁ"(t) - G"(T))n_“_l@’(T)(qo,}T) j—r)”u(r)dr,
&, n—uo; 1 d n
FDY u(t) =il 90((Pl(t)a) u(t)
_1\n T
s [ @) = g (O

According to definitions of generalized fractional calculus and integration by parts
formula, we obtain the following lemma.
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Lemmal. Leta >0,p > 0,9 >0,

5+
1) If f € LP([0,T), 0,

%_ 1+aand ¢ € C[0,T).
R) and g € L9([0, T],

R), then

T / A dt = T / a4
| o Of@asmar= [ o0 s ()
Q) If f € oL"?(LP[0, T]

R) and g € (I77(L9]0, T], R), then

T . T .
| @ r0eDr gt = [ ¢/ (3(DF7 (1)

By Lemma 1, we give the following remark about the impulse item
Remark 3. For each u € Eg""?, we have

T , .
| o0, D u(0)oD; o )t
= /()¢'(t)tD0}_l;¢(¢p(on;¢

u(t))) vy (t)dt
m tjjrl m ~tj+1 a—1: a

= LD @D u)e()| =Y. [ 0d(iDy e, (oD u(1)))
j=0 t].+ j=0"1j

= —i}A(tDD% Lo p(oDy P u(t +2/]+l 77 (@, (oD u(t)))dt
j=

= _iA(tDI;"_W p(0D}’
j=0

@D} u(t)))o(t) + [ o/ (0D (@ oDFu(1)i.
the workspace below.

In order to investigate the existence of nontrivial solutions for problem (1), we present

Definition 4. Let 1 < p < oo, % < & < 1. Define g-Caputo fractional derivative space Ey"'? by
the closure of C§°([0, T}, R) endowed with the norm

1
e = ([ @ OuoPars [ o/ 05D upar)?.
Remark 4. According to [26], we can see that Eg’p ¥ is a reflexive and separable Banach space
Lemma 2. ([10]) If u(0) = u(T) = O, then the following relationships hold

oDy u(t) = §D;u(t),

0Dy ol u(t) = u(t),
ol oDy u(t) = u(t).
The fractional space E, % has the following important properties

Lemma 3. ([27]) Let1 < p < c0and 0 < o < 1, then

; My [p(t)]*
& 9
loZ " ullur o)) < m”ulm([m),
foru e LP([0,T],R), t € [0,T], ¢ € [0,T] andM » = max |¢'()].

O<t<T
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Lemma4. Letl <p<ooand0<a <1 Ifa> %,then

1 M ’[QD(T)]“ 1 5 0;
1" ()P u(t)||yr < ﬁ”fﬂ(ﬂ”ofﬁ Pu(t) e, ue Eg77. @
Moreover, zf + 1, =1land « > = then
My [p(T)]" 7
/ q) 1 . .

' (Bu(t)|| < £ 1o’ (t)7 oDy P u(t)|I1p, u € g™ ®)

T(@)((e =1)p" +1)7

Proof. In terms of Lemmas 2 and 3, (2) is obvious.
Now, we prove inequality (3). By using the Holder inequality and Lemma 2, for all
€ [0, T], we obtain

1/ (u(t)] =1/ ()1 oD} u)
=129 [ (p(0) - g0 9! (oD u(ie

I'(w)
<[ L0 ([0 - o) @) Par) ([ 9/ @) oD u(r) )}
L[ o0 - o) (g ()an) g Ol
- My p(T)]" 7 L,Hq)();OD;x;(P ()|

This completes the proof. [

In this paper, define the fractional derivative space E = Eg’p N Eg'q; ? endowed with
the norm

llulle Hu||0t,p;<P+||u”/5q'tp

1
</ B)u(t |th+/ ()|S D% u(t )|Pdt>”

1
(/ £)lut |‘fdt+/ ISDB?u (1 )|’7dt>q,

for any u € E. According to articles [26,28], E is a reflexive Banach space.
By Lemma 4, ||u||g is equivalent to

==

Julle = ([ o@D u(tlrant + ([ g'0lonPutnjsar)!.

Lemma 5. ([27-29]) Let % <« <land % < B < 1. Then, the space E is compactly embedded in
C([o, T],R).
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Definition 5. A function u € E is called a weak solution of problem (1), if the following equation holds

/OT ¢’ ()|oD u() |P-20DF (1), Dy o (t) + ¢! (1) |u(t) [P~ 2u(t)o(t)
+¢ (1)|oDPPu(t)|1-26DF u(t) D Po(t) + ¢ (1) [u(t) |7~ 2u(t)o(t)dt

+ i Li(u(t;))o(t;)
i=

= [ (00D 1)), 0D (0 (1)

forany v € E. Furthermore, u € E is a classical solution of Equation (1) if and only if u satisfies
Equation (1).

Lemma 6. The weak solution of Equation (1) is the classical solution of Equation (1).
Proof. The proof is similar to literature [30], so we omit it here. [

Theorem 1. (Mountain pass theorem) ([31]) Let H be a real Banach space and I € C'(H,R)
satisfy Palais—Smale condition. Suppose that I satisfies the following conditions:

(i) I1(0) =0,
(i) there exist two constants p, B > 0 such that I|aBp(0) > B,
(iii) there exists e € H such that I(e) < 0.

Then, 1 possesses a critical value c > [ given by

= inf max | ,
¢ = Infmax (8(s))

where B, (0) is an open ball in H of radius p centered at 0 and

I'={geC(0,1],H): g(0) = 0,g(1) =e}.

3. Variational Setting and Main Results

In this section, in order to apply the variational method, we make a variational
structure and give some basic assumptions which will be used in the proofs of our main
results. What is more, the existence of nontrivial solutions for problem (1) is illustrated by
the Mountain pass theorem and iteration method.

For a certain fixed 7 € E, define the functional ¥, : E — R as follows

0= q)l;gt)uoDi‘“Pu(tw ) + LoD u + fu(oina

4)
+ 2 / s — [ 9! (OF (1, (1), 0D (r(1)),0DF (y(0)),

where F(t,x,y,2) fo f(t,s,y,z)ds for any x,y,z € R. It is obvious that ¥, € CY(E,R)
and for any u, v € E, we have

(¥ (u),0) = /OTq)’<t>|oo:”"’u<t>\P-zonﬁ;"’u(t)oDi‘;@v(t)+fp’<t>|u<t>|r’—2u<t>v<t>
+¢ (010D u(t) 720D u(t)oDf o (t) + ¢! (H)|u(t) |7 2u(tyo(t)dt (5)
+ L))ot - /OT ¢’ (1) (£,u(t),0DF? (1(£)), 0D (7 (1)) )o()dt.
e

Remark 5. By Definition 5, u is a weak solution of problem (1) if and only if u satisfies (¥, (u),v) = 0
forallv € E.



Fractal Fract. 2022, 6, 719

7 of 24

v

v

Lemma 7. Assume that there exist positive constants a1, a,a3 > 0,7 > q,0 < v; < p(i=1,2,3),
0 < 0j < p and functions n; € L*([0, T|,R") (j = 1,2,--- ,m), m € L*([0, T],R") such that

(S1) forany x,y,z €R,
TF(t,x,y,2) — f(t,x,y,2)x < ap|x|" + a|y|"? + a3)z|" + m(t), ae. t € [0,T],

and

Ii(x)x — T/OX I(s)ds < n;(t)[x]%.

Then, the functional 'Y, satisfies the Palais—Smale condition.

Proof. Firstly, we will claim that any Palais-Smale sequence of the functional ¥, is bounded.
Assume that {1} C E is a Palais-Smale sequence for the energy functional ¥, i.e., ¥, (un) — ¢
and ¥, (1) — 0. Then, using (4), (5) and (S;), we have

Ty (un(t)) — Tfy(”n(t))un(t)

T T m un(t
(= DlllEg + G = Dllanlfg 3 [ s = - () ety

— [ 9O (1,001, 0DP (1)) = £t (1,005 (8, 0D 5 1) 1)

T T
(;—1>||un||,§’,,,;¢+(5—1>||un\|2,w Zn] )t

T . .
- /0 arg! () |un ()] + a9/ ()]0 DF 0 (1) + a3/ ()] DI 0 (1) + m(t)g/ (1)t

T T
(5 = Dlln g+ (5 = Dlltnll g~ m )en (81

—mllg' () T u(t) |1 — azlln(O)llaie — aslln(Ollg., — Tllm(t)|leo-

Duetotr >q > p,0< 9 <pli=123),0c< o < p, (j =1,2,...,m) and
¥y (un) — ¢, ¥} (un) — 0. Therefore, |[unl|ap;p and ||un|/g g,y are bounded, ie., {u,} is
bounded in E. According to the reflexivity of the space E, there exists a subsequence,
without loss of generality, still denoted {u, } such that u, — 1 in E as n — oco. In view of

lim ¥} (un) = 0, we obtain
n—o0

|<1F:7(”n) - ‘Pfy(”O)r“n — ug)| ‘ij(”n)(”n —up)| + |"F;7 (uo) (un — o)

<
< ¥ () = llun — ol + [} (o) (un — o) =0,

as n — oo, where E* is the dual of E.
Define

Xt = [ 9/(0(@y 0D u(0)) — @p(oDF7o(1))) (0D} u(t) — oDF7o(1)
¢ (O(@p (u()) — @, (0(1))) (u(1) — 0(1))t.

Then, based on the definition of (¥}, (), v) and (6), we have

(6)
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<‘Y/ (un) — ‘P;] (u0), un — 1g)
= [ 9O 6DT 0 (1)) ~ @p(aDF 7o (1) (05 (1) — oD o (1)

+ / (@ (1 (1)) — Py (10(1))) (1 (1) — 1o (1) )t

4 [0/ )y (0D (1)) g (0D a0 (1)) (DF (1) — oDF a0
+ / £) (4 (0 (1)) — 4 110 () (0 (£) — mo(£)) e )
+ 2 10 (1)) s (t) = (1))

+/ LF(t,un(£),0DF (), 0D (1)) — £ (t,u0(£)oDy 5 (1), 0DF 1 (£))]g (£) (un (£) — wo(t))dt

=Xupg + Xglog + g 1i(uo(£))) (un ;) — uo(£7))

[ 1700 0,006,005 (6)) = £t (100D 1), 0DF (1)) (1) () — (1)t

Since E is a reflexive space, based on Lemma 5, 1, — 1y uniformly in C([0, T],R),
functions I;(j = 1,2,...,m), f and ¢’ are continuous. It is easy to check that

AMS

[Lj(un(t)) — Li(uo(£7)) (un(t;) — uo(tj)) — 0,

1

]

and

[ (t0n(8), 0D 001,005 (1)) — £ (1,008, 0D 101,005 (1) (1)t (1) — 1)t 0,

asn — .
Next, we will declare that {u, } converges to 1 in E. By the same reasoning as in [20],
we have the following inequality

eyl =2,
(Jx|"2x — [y 2y) (x —y) > x—yP?
T 1<7<2

forany x,y € RN, Let

O, pig) = [ 9/(0)(@p oD un (1)) ~ @p(aD} "0 (1) (DT n(r) — oD o1

T . .
|/ ®1DE () = oDy Puot) e, p =2,

> . .
0 (loDs “un(t)] + loDy P ug (£)])>7

®)

1<p<2,
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T

OB 9) = [ ¢'(1)(@(oDF Pun(£)) = y(oDf Puo(1)) (oD} (1) — D o 1)t
[ o 010D () —oDE g e)at, g2, ©

= 0DF 1, (£) — oDFPug (1) 2

= T
/
[ oo -
0 (loDP 1 (£)] + [oDPPug(1)])2-7

dt, 1<g<2,

O(pig) = [ ¢'(1)(@plun(t) — @y (uo(6) (1) o (1))dt

L (Olun(t) —uo(B)Pdt, p>2, (10)

T lua(t) — w2
b # O a1 ot

Y

1<p<2,

O1i9) = [ /(1) (g un (1)) — @y (1)) (1) — (1))l
[T @)~ wo(olra, g2, a)

T Jua(t) — wo(D)
9O G et 1<a<2

When 1 < p < 2, with the help of Hoélder inequality and (a + b)" < 2"(a" + "),
we conclude

v

T , .
/o ¢'(D)loDy un(t) — oDy Pug(t)|Pdt

! 0D 1t () — 0D g (1) T . N 2y
<(y 7O e t‘ ) ([ @' (O(10D; ua(t)| + loDy uo(£)|)Vat) 12
( 0 ? (loD; un(t)| + oD Pug () )27 ) ) ¢ oDy un(£)] + lo Dy |)Pdt) (12)

! 0Dy Pun(t) — oD uo(H2 4 seon
< / (p’(t) 't t 2277 (||lu ||p,; —|—||u0||p’; )
( 0 (loDy P un(t)| + oD} Pug () )27 ) nllapie a,pip

4
2

2—p
2

~— |~ — | —~

Then, we have

/T(P’(f) |OE£‘;‘”un(t)—oD£:uo(f)|2
0 (loD{Pun(t)| + oDy T uo(t)])27 (13)

T _ . 2 b2
22”72(/0 ¢'()oDy un(t) — oDy o (1) Pdt) " ([[un & pig + lltt0llepig) 7 -

Similarly, we can see that

T, lun (t) — ug(t)|?
/ ? OGO o7 (14)

222 [ g/ Olun(6) ~ wo(OFd0) (19Ol + 16/ o)) 7

=

When 1 < g < 2, we derive

[To 0D un(t) — oD uo(MP
0 " ([oDf P un(t)] + loDf Pug(t)])21 (15)

T . : 2 72
2212 [ ¢/ (010Df1n(£) 0D o (8) 1) ([} + 100 ) T
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and

T, | () — 1o (t)]?
/0 (P(t)(|un(t)|+\Mo(tmz_th L ae

T 2 1 1 7-2
22"_2(/0 ¢ (E)un(t) — uo(£)|9d) 7 (1| (£) T1an (1) T4 + [l (£) Tuo ()| 4) T -
In general, when 1 < p < g <2, from (6) and (8)—(16), we have

Xulsid + Xm0 =@(a, p; ) + OB, 7; ) + O(p; @) + O(q; 9)

Bae
T . 2 2
>Ci[([ ¢ 0D} un(t) —oDPuo()1at)F + [ ! ()lun(t) — uol0) Pt
e i 2 17)
+Cz[(/0 ¢' (oD un(t) — oD ug () |7dt) T + / t)|un(t) — uo(t)|7dt)7]
>C3(Hun - uOHﬂépgv + HMn - uOHﬂ,q;(p)/
where
: p—2 14 14 ©2 p—2 rend P e p—
Cr = min {27 72([[un 1§ psp + 101 pip) 7, 272" (1) Pun(B) 1]y + 9 (8) Pria(B)[I]) P},
. _ 9-2 _ 1 1 q=2
G2 = min {212 (IS, + luoll%,) T+ 2972011/ (B un (1), + 9! () o (8)1) 7 ),
_2 _2
ngmin{Clz r, Cp2 ‘4}.
When 1 < p <2 < g, weyield
Xapi + Xgiy =0(a, p;9) + OB, q;9) + O(p; ) + O(3; )
_2 (18)
>C12 7 Huﬂ uO”rxp(p + ”uﬂ - uO”Z,q;@'
When 2 < p < g, we obtain
Xajpg + Xt =0(a, p; ¢) + O(B,4; 9) + O(p; ¢) + O(q; 9)
> [ g (D ua0) ~ Do 1Pt + [ gf (1) un(t) — o) Pt
(19)
+ [ o/ 01oDf T (t) — oD uo(0) 1t + [ (6] (1) — wo (1) Pt

>||un — uOHac,p;go + [[un — uOHﬁ,q;(p-

Due to Xp/pdd + Xg”qz? — 0asn — oo, by (17)—(19), we deduce |uy — tg||a,p;p — 0and
lun — uollg,g;p — O- Therefore, [uy — ugl|[g — 0as n — co. This completes the proof. [

Theorem 2. Let (Sq1) hold. If there exist some constants m;,n; > 0(i = 1,2,3), §,e > 0,
MGO>q-1LA>p-1A3>9-1,0<0,<p-10<G <p0<8<q ],d, >0,

>q—1and0 < p; <q—1,j=1,2,...,msuch that functions f and I;(j = 1,2,...,m)
satisfy
(S2) f(t,x,y,2) < my|x|M + my|x|*2|y|S + ma|x|?3|z]%2, Vx,y,z € R, x| <6, ae. t €
[0,T],

f(t,x,y,2) > nq|x| —mpy|®2 —n3|x|% —C, Vx>0, (y,z) ERxR,ae tc]0,T];
(S3) Ij(s) = —cjls|", V|s| <9,

Ii(s) < d]«|s|}‘f, V|s| > €, ae s€0,T],j=12,...,m
Then, for a fixed n € E, Yy possesses a critical value in E.
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Proof. We are now in a position to check that I admits the mountain pass geometry. Based
on Lemma 4, we have

lulle =g’ (17D u(®)l|eo + 19/ (£)70DPPu() 1

T'(a zx—li—o—l%l '« oc—lq—i—l%

> @6~ Dy ;> )H(P’(f)u(t)HJr @@= D rm 1) )Hq)'(f)u(f)ll (20)
M(P( )N My [p(T)]"

>Mpglle "(Hu(t)|,

T'(a)((a— l)il-‘rl L;l) I'(a)((a— 1) +1) P )

My [p(T)]* My lp(T))P

Let dg = M40, if u € E and ||ul|g < 6o, we can obtain ||¢’(£)u(t)]| < MLMH”HE <J.lt
follows from (S,) that

N

where M, = min{

‘3\»—'

E(t,u(t), 0D (t), 0D 1 (1))

v t DYy (t Dﬁ"q’ t))d

; f(t,s,0Dy" " 5(t), 0Dy 1 (t))ds

u(t) ) .

/0 ma s\ + mals|2]DF P (1)1 + m3|S|A3|oDﬁ'(P77(f)|€2ds

M
Ary+1

IN

my

Ml Ju(t) oD (1) 2.

u()1+ + u(®)|" oDy (D4 +

/\+1

Hence, for any t € [0, T], there exists a constant K > 0 such that ||77||g < K. According
to (20) and Holder inequality, we obtain

[ o @R tu(0,0D 1), 0DF 6t

T m
< ! 1 AM+1
< [ O]

my A1 o & Az+1 B¢ )
T 1? ' (1) [u(t)["> oDy (t)] R, +190()|M(f)| loDy " (t)|*2dt
=8
mq T T}’lzT P
< . +1||<o’<t>u<t>||h“+ 2T g ol 7 Iy
m3T ,1 q(AE+1)
P8
m T PYRE I Y L pidp )
< 1 1 8
< Gt ) g + )01+ K )]
m3T q q(A3+1)
+WK§2H(P (Hu(t)]| 7%
AM+1 A+1 P(/\ZQ'U q(AEgrl)
< OIS + I £ Tl +mslul, 52
where
p=g1 a1
Ty = mq T oM+l My = myT 7 Kcl( M(p’[q)(T)} P 1)11(]])\35;1)
p7 7
(A +1)Mp,q) R (O (R e Ve
62 — 1
M, |o(T q q(A3+1)
3 = m3T q KC'Z( (p[qo( )] qil) q_éz
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By (S3) and Lemma 4, one has
u(t;) uty)
/0 Ii(s)ds > —cj/O |s|%ids
= L juey !
g1
cf Ti+1
— I 22
>~ @)
> T G T O e+ 1Bl T
- G+1M, e
Ti+1
> g+ I ),
where ;= 259 2 (5-) Tt Taking [[ullapp = p1, o =0 [ulle =p1+02=p,
by (4), (21) and (22), we have
‘YW(”) > ?HuHa,p;go"‘g”uHﬁ,q;(p_ch(H ||o<p<p+|| ()ng,q,q;)
j=1
) A V(Azgrl) 4(/\3;1)
() 25+ () I3 = (Ol — ()2
L W - p(/\fgl)
= Pf(** 191] m1P11 p*m2p1p ')
p ]:1
1 M Ti41—g f)\+lf 7’1({37;1)
6 Zcpzf 1‘021 Q_mzpzﬂ c2 )

For p1, p small enough, there exist 7,0, > 0 such that

1o At P(/\zsjl)

= atl=p _ — 1Ti=p _ = P61

Z CjPy 10 — Tiap, =01,
(A3+1)

1 & T+l A +1— £ =

= —q _ = Mtl—q _ — -0
6 2 ‘, 02 — mip, — M0, > 0.
i=1

]

Therefore
’7(”)>pp0'1+pq0'2 =0>0, VYu€ckE Hu||E——p
¥ 1 2 ’ ’

On the other hand, owing to (S;) and (S3), we obtain

F(t,u(t), oD}y (t), 0D 5 (t))

u() w5 Bio
| £t oD n(e),0Df  n(6)ds

Y]

1+1

and

u(t) u(t) d;
ide — ] i+1
/0 Ii(s)ds S/o dj|s|"ids = Vj+1|u|”1+ .

L ufEF Y — mau(8) oDy ()% — nau(t) oD P (1)[% — Cu

(23)

(1),

(24)
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Taking x > 0, u € E\{0}, combining (23) and (24), we infer
T /(¢ " /(¢ .

o) = [ E 0 Dl + u(olF) + L (oD + (o)
Mmoo exu(t;

T " 8
5i(s)ds = [ ¢/ (OF(t,xu(t),aDF* (n(1)),0DF (1))t

x}l/-‘rl |u|y/+1

xP x17
<l z,p,-(p+;||uuz,w+z

T/ {1+1 1
_ Al 1
/O(P()x g1+1

+ [ g QoD (0t + [ Cxg'Outrya 25)

|u|§1“dt+/0 noxg' (H)u(t)|oD 1 ()| %2dt

+i df xpt]-+1”u||yj+1
—ui+1

1 / ﬁ g1+1 / )
g/ (T u(®)[|517% + maxllg/ (Hu(B)[[IloDf 0 (1)1,
+ naxllg (u(®) | oD n(1)]|%%, + CTx|lg' (u(t)]| — —oo,

as x — co. Obviously, ¥,(0) = 0. Therefore, combining Mountain pass theorem with
Lemma 7, ‘{’,7 has a weak solutionon E. I

Theorem 3. Let l <a<l, l <B<11<p<g< oo Assumethat (S1)— (S3) hold and
there exist constants K>0,b; > 0(i=1,23),¢;>0(j=12,...,m) such that

(S4) |f(t,x1,y1,21) — f(t, x2,y2,22)| < b1|x1 — x2| 4 ba|y1 — ]/2\ +b3|z1 — 22,
|I]-(x1) — I]'(Xz)| < €]“X1 - x2|, Vx1,xp € [—K,K], Y1,Y2,21,22 € R.

Then the nonlinear problem (1) admits at least one nontrivial solution.

Proof. We will take advantage of the iterative method to illustrate it. We divide the proof
into two steps.

Step 1: At first, we consider for any u; € E, [[u1|app < K1 and [uq|pq,e < Kz with
K; + Kj < K. From Theorem 2, we know that there exists a critical point of ¥,,, without loss
of generality, we denote the critical point as up € E, i.e., ¥;, (42) = 0. Now, we assert that
[ua||e < K.

Letu = I ‘ , then ||7Z||g = 1. Similar to (25), we derive

Yo, (up) < max ‘I’ul(xu)

0<x
xP xq m d] ) ) T n
< — 4+ =+ xHi it —/ (xS St
- 02%(;, p L = e
+/ naxg! (D () [oDPuy ()| 2t

+/O n3x(p’(t)u(t)|0Df””u1(t)|53dt+/OTCxqo’(t)u(t)dt)

IN

xP q m _
max < ; + 3; + 2 daxtitt — gy xGrtl +ﬁ2K§2x +ﬁ3K§3x + Cx),

0<x<oco
- j=
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r=¢
where 71; = g Lo ()

+1 7 d; ; —_ o2
w5 4 = g el = ' ()7 s

, N3 =

-G — _ .
nallg!(t) Tl 1 C = Cllg'(DE(H)l|p. Taking &) = (F7g, )%, by Young inequality,

we gain
mkPr < P2 Lanr 2okl
p e p
= Nzx’” §2+€;2;—+P722 P
= Nzxﬁ—f'% f/

_ o P
where N; = pTFZ(ZTZ)”*‘;Z-
&
.. . T— 25 .
Similarly, taking €; = (ﬁ) P , we obtain

3Kex < P p@(ez )76 €3(e K§)h

= N3x7~ Gy %2;%123 p
— _F_ _
= N3xr % +Zz+pfp 5’,
where N3 = P—péa (%)ﬁ Define
Q) =+ 50+ dem e S
=

TP gp, TP pp
25+pp,r 1 24+ppT 2°

Yy (1) < max Qp(x) +

If0 <x <1,then

1 1 e
Qp(x)§;+a+;dj+N2+N3+C::ch.
]:

If1§x<oo,dueto§1>q—l,0<§2,§3Sp—1,0<yj§q—1,j:1,2,...

deduce

1 1 o _
Qp(x) < (; + p + Y di+ Ny + N3+ C)x? —mpxé ¥ := Q, (x).
j=1

Let Q,'(x) = 0, then

q<%+%+2}n:13j+ﬁz+ﬁ3 +E) : 1qul
=
(C1+1)m ) ‘

=

Obviously

Qp(x) < ép(x> < Qp(f) = CZ,p/

which implies that
Qp(x) < max{Cyp, Cpp} := Cp.

Therefore

T—P gp, TP pp
LI'rul(MZ(t)) S CP+WK +24+pp KZ

, M, we

(26)
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IN

With the help of (26) and ¥}, (u2) = 0, we get

T, (u2(t)) — (¥, (u2), u2)

(%-UHMZH ot ||uz||ﬁw+2/ ehs)ds — 32 1t uny)
j=1

-y ¥

wCp +

IN

J(TE(t,ua (1), 007 ur (D0Df u () = (£, ua(8),0D; 11 (£), 0Df 1 (1) ua (1)) dt

T—Pyr P p
25+ppK +24+ppK2

It follows from (S;), Lemma 4 and Holder inequality that

T
(? - 1)””2||Z,p;(p

m

TP gr P r wly)
o+ skl + 24+ppK2 —]Z%/O 7l

+ ZI( ))ua(t +/ F(t,un(t ),on;¢u1(f)/on;¢M1(t))
j=1

IN

(s)ds

—F(t,ua(£), 0D ur (1), 0DF P us (1)) ua (1) ) dt

Cp + 25+;al;]K’gjL 24+ppr+/ a9/ (£)[uz(8)[" + a2’ (1) [oDy Pur (1) (27)

IN

a3’ (H)|oDf ur ()] + m(t)g/ (t)dt + Z n;(£) | (ua (7)) |7
j=1
o My [(T)]"

—PF p —P ? M 7

IN

=72

-3
FasM, ]| + a7 2, + (g (1)

Yo (— 2O e,
N (O YR

-
. 2y " 2p+5,Y . 2;7+47 3 B Amo; .« L
Taking €3 = (£25) 7, e4 = (5=2) 7 7 €5 = (5=;*) 7 and €6 = (z=) 7, by Young
inequality, we obtain

e My[p(T))*
alM(P/ (W) ||”2()Hucp€0

pP—71,, 271\ N My le(T))® Nl M TP P
T((Tfp) rayM,, (%)7 )rm +?((W) P llua(8)] ) 1 (28)

T—Pp P
Ci+ 2p H“Z(t)”a,p;q?/

P*“Yz p P—r
{12M ||u1| e < ” (e4a2M(p,P )P ’Yz + ==

Y21 L
p (6 ||u1|zxp<p) (29)

_ —Pr
=Cy + K
2p+5p
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113 =13
p—7s3 q &) £
asM," |, < (esazM,)" )77 EEE: (*H 11d%:9) 72
S ’ prest 0)
. P rr
=C3 + 2p+4PK
[p(T)]* 7
Tl](t)( u -1 U]HuZHaapq)
L) ((a—=1)557 +1) 7
1
p—o; H* * £ 0 g
< 0 et —— A T )T @D
P T(@) (e =1)55 +1) 7 P
. TP p
= C].’+ dmp u2lla,p;q-
Combining (28) and (31), (27) is transformed into
T
(%71)Hu2 x,p;9
% % / T—p p
STCp+ s KL+ S K+ 09/ Ol + Gt T P a0l g
P or Por (32)
+Cz+2p+5pK +C3+2p+4p1< +2C + 1 4p P a2 hpig
LNy Por Pr 3(t—p) p /
:TCP+C1+C2+C3+ Z;lc]' + 24+pPK +23+ppK2 +T||M2||,x,p;¢+ ||m(t)(p (t)HLl.
]:
Therefore
4p L : 1 K5
22 prp < — p(rcp+cl+cz+cg+];cj+||m(t)¢(t)||L1) oozt (33)
Define
2p+4p m , 1
Ki = (=—(1Cp+C1+ Co+C3+ ) G/ + [[m(t) ¢’ ()| 1)) -
j=1
Then . . .
1
[u2]l% p;p < (ZPHKP‘FWK@” E(Kl + Kz).

z
Similar to (27)-(33), taking €;’ = (%)Wz and e’ = (W) , by Young inequal-
ity, we conclude

_ 4 —y 1 —
ﬁ2K§2x§ q qu( 7’12 >q §2 +€2( /K€2>g :N;xquz + T q q

€1’ q 24+arg
= ¥l q—103 3 e N e . T4 14
n3K23x < T(Gzl SIS 63 + 22 ( ’K23)§3 = N3x7 % + WKZ,

q

A —

- - .
Wheri 1:12 =1 qu(%){mzf N3 =1 ng(&)‘F 3.
e

xP x4 mo_ 41— 4l —_y - =, i
Qy(x) = r + i + ) dixitt — 7 x4 Ny xP % 4+ N3'x 7% + Ca.
=1
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Then

T 9 w1, T—9 ¢4
<
Fu (112) oI<I}ca<XooQ‘7(x>+2‘7+4qTK 25tgt o

Similar to Qp(x), there exists a nonnegative constant C; satisfying Q,(x) < C, for all
0 < x < 0. Therefore

T=9 g1, T—4 14
i (2) ch+2‘7+4qu +25+q‘1 o

In terms of (S1), Lemma 4 and Holder inequality, we yield

T q T4 )
(G- Dlelly, < Gt gl K+ 5l 2 e

+ZI up (t;))ua(t +/ J(TF(t, up(t ),on;wul(t)foDmm(t))

—f(t,uz(t),oD %1<t>,on"“’u1<t>>uz<t>>dt

IN

B

q 4 q 4 1 My [p(T)]

€y + 2q+4q1< +2q+5q1< +a M, (71“(ﬁ+1) ) 2 (85
P=m -

+ap M, K* + ﬂsM(P/TK;m + [lm(t) e’ (#)] 12

[p(T))P ™5 —
+ Y mi(6)( ) a7,
,; P -n T

K

77—17)73 and e’ = (4T )7/ by Young

. n q+4 T2 q+5 !
Taking €3’ = (—ﬁlq) 7,6y = (2-2) 7,65l = (B2
inequality, we obtain

=1 Mylg(T))P

aMy" (Frprn) )" 0l

9=" .21 % = Mq)’[(P(T)]ﬁ e M, T\ mo L
< — N LS
< G TeM,T (S )T+ G T Ol
— ! T—q q
- C + zq ||1/l2(t) .B/qF(P’

_ P g 1 .
ﬂzM(P,” kP < %(QI@M F )i +%(€7,K172)72
— q4q
= G+ 2‘”4171(
973 _ 9-13 1
M, KB < pP—7s M /4 7 WS & K’yz
a3y K" = (€503 )P == ; (€5 )
= Cé + —P KP

2p+4p
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P 4 o;
i (#) (——12D) )l
TB((B-Dg+1) 7
1
— 0o P4 S vl
< ](66 n (t)( [§0< )} B)U]V ] +E(€ ,H ZHﬁq(p)
L(B)((B— 1) +1)'
_ " T_q q
Then, (27) is changed into
D)’ < zC +c’+c’+c’+fc<’+ g Ty
q 2pge = q ! 2 3 frt U YA BV TARY
’L"_
Tl g+ Tl + (0 O
Define
2q+4q 1
Kp= (G (G +G +CO + G +ZC +m®)e' (Dll)) 7
j=1
Then
1< (K] KD < LK + K
[uallg g < (zqﬂ +2q+1 2)7 = 5(Ki+Ky).
Therefore
HMZHE < Kl +K2 < K
Suppose that ||, 1]/} app < Kyand [u, 1|| o <Kz, by repeating the above discus-

sion process, we can obtain that ||u, || < K for all 1 e N. Therefore, we have constructed a
sequence of critical points, which is bounded. The reflexivity of the space E implies that
Uy, — u*asn — oo.

Step 2: We need to show that u, — u* in E as n — oo and u* is a nontrivial solution
of problem (1). For any m,n € N, m # n, in view of (7), one has

X};‘lr;zj L(lpn + Xgn:],z)n

(o, (U (1) = F5, (ua () (i (£) — un(t))
- ;[Ij(um(fj)) — Li(un(t}))] (um(t;) — un(t;))
]—T | |
+/O F (b, 1t (£), 0D g1 (), 0D g1 (£)) ' (1) (1t (1) — 1 (£) )it

_ '/O'Tf(t, Mn(f),OD?‘F(Pun_l(t),ODE}‘Pun_l (t))q)/(t) (Mm(t) _ Mn(f))dt.
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Combining ¥},  (um) =0,  (un) = 0with (S), we obtain

T . .
Xamar + Xgn S/o (b1 |t () — tn (£)| + b2|oD; 1ty 1 (t) — oDy 1,1 (1)

o,p;p ‘Bq(p
+b D'B;q’u — D'B;(Pu t / D) up (t) — uy, (t)|dt
3|0 m l() (g n l( )|](P()| m() n( )|

"‘24’ Jej|um(t )_“n(tj)|2
—1
<(1M, ’T||”m—un||+b2M o l[th—1 — 1]k

q-1
M ity = [ e — un||+2<o el —

(34)

a,pe

r—1

:(b1M<p’T||um - uﬂ” + bZM/T ||um—1 —Up—1 Z,p;(p

q-1

+03M ] [[ut—1 — n— 1||;3q<p+29” Jejlltm — unll) [l1m — wn]|.

By Lemma 5, we know ||u;, — u,,|| — 0. Therefore, (34) implies that

Xy + Xghr,' — 0 (m,n — o). (35)
By (17), (18), (19) and (35), we can see that ||, —
as m,n — oo. Hence, {u, } converges to u* € E strongly.
Next, we will prove that ¥/. (u*) = 0. As shown in [32], for any s1,s; € RV, there
exist nonnegative constants r; r, such that

— uﬂ”ﬁ,q;(p —0

_ r—2 > 2
o1l 281 — foal 25y | < § TS~ 2l onl o2 r 22 6)
ralst—so|" 7, 1<r<2

Due to (36), for p > 2, there exist constants 1,7, > 0 such that

’ -2 7 ; -2 ;
oD un ()" 0D;  un (1) — [o Dy u ()] Dy u” (1)

— fun (B 2un(t) — ]u*(t)]p_zu*(t)’

(37)

<r

oD (1 () — u*<t>>‘(!0D;"<”un<t>| + |0t (1))

+ ol (8) — u* (8) | ([un(8) | + [ ()] )P 2.
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Based on (37), Lemma 4 and Holder inequality, we obtain

/oT ¢' (1) (oD un(1)[P~ 20D un (t) — oDy 1" (#)[P =2 Dy *u* (t) )o Dy o (#)
+ ¢ (1) (un ()P 2un(t) — | ()72 (D) o(1)dt
= /oT r19' (D)|oDy ™ (n(£) = u* ()| (loD 1 (£)| + [0 Dy u* (1) )P =20 Dy 0 ()
+ 129 ()2 un(8) — w (8| (Jun(£)| + [ (8))P 20D} o(t)dt
<) — 1" (D lagl9' (DT (0D an (8)] + 10D 7w (1)) 15 2" (8)F 0D P0(8) 1
rallg! ()7 () = " (D) 9 ()T (an (B)] + 1* (DDIL 29/ () o8) 1
< lua(t) = 0 (Dl 19 ()7 (0D 1n(8)] + oD (D) 125! (f)%oD?”(”v(t)Ilm

! T @ -2
e )~ Ol 0

==

\_/

W::
=

+ 1

()] + 1 (DD 1 (1) 00|,

forany v € E. If 1 < p < 2, there exist constants r3,74 > 0 such that

/oT ¢' (1) (oD un (1)[P~ 20Dy un (1) — oDy 1™ (#)[P~2 Dy *u* (t) )o Dy o (#)
+ ¢ (1) (un ()P 2un () — | (5)[P~ 20" (1))o(t)dt

T . . .
< [ rag 10D (1) ~ DY (01D o(0) + g () 1) — () o)l @8)
<rallin(t) = () g9 () D908 10 + 1o P ) )l ()P0 8]
ST3||Un apellP ol LP 4 r(a+1) n apellP Lp-

By the fact ||u,(t) — u*(t)||[g — 0 as n — oo, we know

[ o/ 00y (0D ()0 o(0) + ¢ ()0 (1) (1)

(3)
= [ g OR D (0)DFTo(1) + o (0 ()e(0)e
as n — oo. Likewise, we acquire
[0 (240D (1)0Df o(1) + g/ ()6 (1) 001t
(40)

o [ 946D ()0 o(0) + ¢/ (D ()0l
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as n — oo. Furthermore

/oT ¢/ () f (1 (5), 0D} (1,1 (1)), 0DF (1 () o £)dt
T

— | @' B f(tu (1),0D7 (u* (£)), 0DF (" ()0 (t)dt

0
< OT ¢/ (£)0(8) (b un (£) — 1" (£)] + 2|0 D (11 () — 0D (" () )t
T .
+ [ bsg/ (0(8)|oDF® (1 (8)) = oDF® (" (1))t
<brllg! (1) fun(t) = w* Ol 9’ () 7 |<>||| (41)
bl 1 () = 1w (1) gl ()7 [0t e,

+ b3l 1 (£) — " (£) ||/3,q;go||<0’(t)T POl 2,

<0 ) Dl T RO s, + bl 1) = Dl
NGO I s, + bl (1) (>|\,3,q,-¢\|q»/<t>%|v<t>|||mqj,

which implies that

JA T(p’(t)f(t, n (8), 057 (41 (8)), 0D (11 () o (1)t

(42)
= [ @O (0,005 (1)), 0007w (1)) o),
as n — oo. Notice that [; € C(R, R), then we obtain
Y Li(un(t)o(t)) — Y L(u*(t)))o(t)), (43)
=1 =1

as n — oo. From (38)—(43) and the fact (¥, . (u#n),v) = 0, we deduce

[ 0, (oDT e (1) o) + ¢! (0 (1)) t)

+ [ 9@ 0DPut (0)6DF (1) + ¢! (0 (o)t + Y- 1(a (1))o()

= [ PO (10,0087 (0),0DF 7 (1) o0,

which demonstrates that (¥/.(u*),v) = 0 for any v € E, ie., u* is a weak solution of
problem (1). According to Lemma 6, we know that u* is also the classical solution of
problem (1). Furthermore, we can see that ¥« (u*) > ¢ > 0 by Theorem 1. Therefore, u* is
a nontrivial solution of problem (1). O
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4. Example

In this section, we consider the following nonlinear impulsive generalized fractional
differential equations with (p, q)-Laplacian operator

L 1.2 12 12 )
D7 @3(0D7" u(t)) + |u(t)[u(t) + D" Pa(oDP" u(t)) + |u(t)|“u(t),
1.2 1.42
= f(t,u(t), oD} u(t),oD}" u(t)), t #tj, ae tel0,T],

44
—3t g (Cyst’ —5f g (Cpit ; o
DT q)g(o Dt M)+tDT @4(0Dt u))(t]) = Ij(u(t]')), ]j= 1,2,...,m,

u(0) =u(T)=0, ae tel0,T],

where f(t,u,v,w) = 5etu* + 4tu* sinv + 4tu* cos w, Ij(t) = %tz. Then, we obtain that
F(t,u,v,w) = e tud + %tuS sinv + %tu*r’ cos w.
Let p = 3,9 =4, T = 5. A simple calculation shows that

5F(t,u,v,w) — f(t,u,v,w)u <0,

and y
Ii(u)u — 5./0 Ii(s)ds <0,

which means (S1) holds. By Lemma 7, the functional of problem (44) satisfies Palais—
Smale condition.

Choose Ay = Ay = A3 =4, & =1, 8% =1,m =5 m =m3 =4,01 =4, m = 3,
n, = nz = 0, one has

f(t,u,o,w) = 5Se tut 4 4tutsinv + 4tu* cosw < 5|u|* + 4T |u|*|o| + 4T |u|*|w),

5 1
fltuo,w) > e—T\u] .
Choose 7 = 4, pj = 2(j=1,2,..,m), we have
1
Ii(t) > —§t4 and I;(t) <22

Then, the conditions (S;) and (S3) of Theorem 3 are satisfied. Furthermore, according
to the mean value theorem, the condition (S4) holds. As a consequence, the nonlinear
impulsive generalized fractional differential equation (44) has at least a nontrivial solution
by adopting Theorem 3.

5. Conclusions

By means of the mountain pass theorem and iterative technique, this paper derives
some new solvability results for nonlinear impulsive generalized fractional differential
equations with (p, q)-Laplacian operator in Banach space. In detail, since the nonlinearity f

contains generalized fractional derivatives OD;X; P14 and on P11, and the impulses exist in
generalized fractional calculus, it is more difficult to prove the existence of a nontrivial
solution to problem (1). By imposing constraints on the nonlinear f and impulses, we have
proved that functional (7) satisfies the Palais—-Smale condition the first time and verified
that functional (7) has at least one critical point by the mountain pass theorem. Finally,
a series of critical points is constructed and the iterative method is used to prove that the
critical points sequence converges to a point, which is a non-trivial solution of problem (1).
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