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Abstract: In this paper, we aim to discuss a fractional complex Ginzburg–Landau equation by using
the parabolic law and the law of weak non-local nonlinearity. Then, we derive dynamic behaviors of
the given model under certain parameter regions by employing the planar dynamical system theory.
Further, we apply the ansatz method to derive soliton, bright and kinked solitons and verify their
existence by imposing certain conditions. In addition, we integrate our solutions in appropriate
dimensions to explain their behavior at various groups of parameters. Moreover, we compare the
graphical representations of the established solutions at different fractional derivatives and illustrate
the impact of the fractional derivative on the investigated soliton solutions as well.

Keywords: local fractional derivative; complex Ginzburg–Landau equation; parabolic law; dynamical
system; soliton solution

1. Introduction

The complex Ginzburg–Landau equation is a type of nonlinear Schrödinger equation,
which governs the evolution of certain amplitude of instability pulses in a wide variety
of dissipative system. In the literature, many chemical and physical phenomena are de-
scribed by using the complex Ginzburg–Landau equation, in dynamic phase transitions,
surface waves in viscous liquids, processes in optics, laser physics, superconductivity,
modeling of Bose–Einstein condensation, spatially extended nonequilibrium systems and
other phenomena, to mention but a few (see, e.g., [1–6]). The aforementioned model is also
studied by many researchers from several aspects, including phase dynamics and modu-
lation instability. In addition, they extract exact and numerical solutions to this equation
(see, e.g., [7–11]). For instance, in [12] the authors obtain soliton solutions to the complex
Ginzburg–Landau equation using a modified Jacobi elliptic expansion method. Zayed,
E. et al., in [13], investigate optical soliton solutions for the complex Ginzburg–Landau
equation (CGLE) with nine different nonlinear forms using two approaches. Moreover,
exact solutions for the complex Ginzburg–Landau equation are also constructed with the
aid of the planner dynamical system [14]. The authors in [15] present a generalized fi-
nite difference method for solving the complex Ginzburg–Landau equation. Díaz, J. et al.
in [16], prove the existence and uniqueness of weak solutions for an initial boundary value
problem of the complex Ginzburg–Landau equation with some delayed feedback terms.
The 2-dimensional stochastic complex Ginzburg–Landau equation and how well-posed
the problem is are considered in [17]. Further, the exponential and Kudryashov methods
are utilized to obtain 1-soliton solutions for generalization have been considered in [17], as
well as proven by the authors of [18].
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On the other hand, many studies provide exact and numerical solutions for the
fractional complex Ginzburg–Landau equation (FCGLE). In [19], an iterative approach
is implemented to find numerical solution for the fractional complex Ginzburg–Landau
equation. The authors in [20] introduce a comparative study between three obtained soliton
solutions via three fractional derivative definitions. Meanwhile, a study of the dynamics
of dissipative solitons for the fractional complex Ginzburg–Landau equation is presented
in [21]. An exponential Runge–Kutta technique is adapted to present numerical study for
the 2-dimensional nonlinear spatial fractional complex Ginzburg–Landau equation [22].
Lu, P. et al. in [23], obtain exact traveling wave solutions for a (2 + 1)-dimensional fractional
complex Ginzburg–Landau equation using the fractional Riccati and bifunction method.
The authors in [24] introduce a 3-level linearized implicit difference scheme for the 2-
dimensional spatial fractional complex Ginzburg–Landau equation. They also show under
mild conditions that the proposed approach is uniquely solvable, convergent and stable
as well. The fractional complex Ginzburg–Landau equation in three spatial dimensions
with the dissipative effect are studied in [25]. In this citation, authors construct a prior
estimate under certain growth conditions. Moreover, they also present the existence
and uniqueness of a global smooth solution. Huang and Li in [26] utilize the complete
discrimination system technique to development exact solutions of the fractional complex
Ginzburg–Landau equation in the sense of the conformable fractional derivative.

Hereafter, we consider the following model:

i ∂ηψ
∂tη + a1

∂2ηψ

∂x2η +
(

q1|ψ|2 + q2|ψ|4 + q3
∂2η |ψ|2

∂x2η

)
ψ

= a2

∣∣∣ ∂η ψ

∂xη

∣∣∣2
ψ∗ + a3

4|ψ|2ψ∗

(
2|ψ|2 ∂2η |ψ|2

∂x2η −
(

∂2η |ψ|2
∂x2η

)2
)
+ a4ψ,

(1)

where the parameter a1 represents the group velocity dispersion, a2 and a3 represent per-
turbation effects, a4 symbolizes the detuning effect, q1 and q2 are assigned to the parabolic
law, while q3 represents the nonlocal nonlinearity term. The independent variables x and t
symbolize the nondimensional distance along the fiber and time in dimensionless form,
respectively. The complex-valued function ψ = ψ(t, x) constitutes the wave profile, while
ψ∗(t, x) is assigned to its conjugate. However, the novelty of this paper is to investigate
bright and kink soliton solutions using the ansatz method for the governing model (1) and
study its dynamic behavior using the theory of the dynamic planner system [27–34]. In this
paper, the ansatz method is utilized for the first time to establish wave solutions for the
fractional complex Ginzburg–Landau equation with non-local nonlinearity term. There
exists no work in the literature, as far as we know, that considers the fractional complex
Ginzburg–Landau equation in local fractional derivative sense. Therefore, all constructed
solutions in this paper are new and are displayed in graphical representations to illustrate
their physical properties.

This paper is arranged as follows: an overview of needful concepts is given in Section 2.
Section 3 is dedicated to utilizing a suitable traveling wave transformation on (1) to reduce
it into an integer-order ordinary differential equation. In Section 4, we introduce the
equilibria classification for the obtained dynamic system. The bright solitons and kink
solitons solutions for (1) have been established in Section 5. Several concluding remarks
are listed in Section 6.

2. Preliminaries

We dedicate this section to present an overview of needful concepts in our work.
The definition of the local fractional derivatives (LFD) and their properties have been
listed in the paper. For function ψ(ζ) ∈ Cη(a, b) and ε > 0, there is δ > 0 such that
|ψ(ζ)− ψ(ζ0) | < εη holds for |ζ − ζ0 | < δ, where ε, δ ∈ R.
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Definition 1 ([35]). Let η ∈ (0, 1) and ψ(ζ) ∈ Cη(a, b). Then, the local fractional derivative of
order of the function ψ(ζ) at the point ζ = ζ0 is defined as

Dη
ζ ψ(ζ0) =

dηψ(ζ0)

dζη = lim
ζ→ζ0

∆η(ψ(ζ)− ψ(ζ0))

(ζ − ζ0)
η , (2)

where ∆η is an operator defined as:

∆η(ψ(ζ)− ψ(ζ0)) ∼= Γ(1 + η)∆(ψ(ζ)− ψ(ζ0)). (3)

The following theorem presents the substantial properties of the local fractional deriva-
tives.

Theorem 1 ([35]). Let η ∈ (0, 1) and ψ1(ζ), ψ2(ζ) ∈ Cη(a, b). Then, the attached properties are
attained:

(p1) Dη
ζ [ψ1(ζ)± ψ2(ζ)] = D

η
ζ ψ1(ζ)±D

η
ζ ψ2(ζ),

(p2) Dη
ζ [ψ1(ζ)ψ2(ζ)] = D

η
ζ (ψ1(ζ))ψ2(ζ) + ψ1(ζ)D

η
ζ ψ2(ζ),

(p3) Dη
ζ

[
ψ1(ζ)

ψ2(ζ)

]
=
Dη

ζ (ψ1(ζ))ψ2(ζ)− ψ1(ζ)D
η
ζ ψ2(ζ)

(ψ2(ζ))
2 , ψ2(ζ) 6= 0.

(p4) Dη
ζ [ψ1(ζ) ◦ ψ2(ζ)] = D

η
ζ ψ1(ψ2(ζ))

(
ψ
(1)
2 (ζ)

)η
= ψ

(1)
1 (ψ2(ζ))D

η
ζ ψ2(ζ).

(p5) Dη
ζ ζnη =

Γ(1 + nη)

Γ(1 + (n− 1)η)
ζ(n−1)η .

Definition 2 ([35]). Let η ∈ (0, 1). Then, the local fractional partial derivative (LFPD) of the
fractal function ψ(ζ, θ) of the fractional order η, at the point ζ = ζ0 is defined as

Dη
ζ ψ(ζ0, θ) =

∂ηψ(ζ0, θ)

∂ζη = lim
ζ→ζ0

∆η(ψ(ζ, θ)− ψ(ζ0, θ))

(ζ − ζ0)
η , (4)

where ∆η is an operator defined as:

∆η(ψ(ζ, θ)− ψ(ζ0, θ)) ∼= Γ(1 + η)∆(ψ(ζ, θ)− ψ(ζ0, θ)). (5)

The local fractional partial derivative of ψ(ζ, θ) at θ = θ0 can be defined in a similar
way. The reader can be referred to [35–39] for more details about the local fractional
calculus.

3. Transformation and Hamiltonian

In this section, we utilize a suitable traveling wave transformation to reduce (1) into an
integer-order ordinary differential equation (ODE). Then, we introduce the corresponding
dynamic system and its Hamiltonian. For this purpose, the same technique used in [40–42]
is applied, in which the following complex fractional traveling wave transformation [43] is
considered:

ψ(t, x) = Ψ(χ)e(i(
γ(t−t0)

η

Γ(1+η)
+

δ(x−x0)
η

Γ(1+η)
)), χ =

α

Γ(1 + η)
(t− t0)

η +
β

Γ(1 + η)
(x− x0)

η , (6)

where Ψ is the amplitude of the wave profile, α represents the soliton speed, δ is the
frequency of the soliton and γ is assigned to be the soliton wave number. Employing the
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transformation given in (6) and using the chain rule of the LFD, we achieve the following
relations:

∂ηψ

∂tη =

(
α

dΨ
dχ

+ iγΨ
)

e(i(
γ

Γ(1+η)
tη+ δ

Γ(1+η)
xη)), (7)

∂2ηψ

∂x2η
=

(
β2 d2Ψ

dχ2 + 2iβδ
dΨ
dχ
− δ2Ψ

)
e(i(

γ
Γ(1+η)

tη+ δ
Γ(1+η)

xη)), (8)

∂η |ψ|2
∂xη = 2βΨ

dΨ
dχ

, (9)

∂2η |ψ|2
∂x2η

= 2β2

((
dΨ
dχ

)2
+ Ψ

d2Ψ
dχ2

)
, (10)

∣∣∣∣∂ηψ

∂xη

∣∣∣∣2 =

(
β

dΨ
dχ

+ iδΨ
)2

. (11)

Substitute the relations in (7)–(11) into the commanding model (1) to acquire the
following complex ODE:

i
(

α dΨ
dχ + iγΨ

)
+ a1

(
β2 d2Ψ

dχ2 + 2iβδ dΨ
dχ − δ2Ψ

)
+Ψ

(
q1Ψ2 + q2Ψ4 + q3

(
2β2
((

dΨ
dχ

)2
+ Ψ d2Ψ

dχ2

)))
= a2

1
Ψ

(
β dΨ

dχ + iδΨ
)2

+ a3
4Ψ3

(
2Ψ2

(
2β2
((

dΨ
dχ

)2
+ Ψ d2Ψ

dχ2

))
−
(

2βΨ dΨ
dχ

)2
)
+ a4Ψ.

(12)

The velocity of the soliton can be obtained from the imaginary part of the complex
Equation (12). It reads as:

α = −2a1βγ. (13)

The real part of the complex Equation (12) is written as:

(
a2δ2 − a1δ2 − a4 − γ

)
Ψ2 + q1Ψ4 + q2Ψ6 − a2β2

(
dΨ
dχ

)2
+ 2q3β2Ψ2

(
dΨ
dχ

)2

+β2(a1 − a3)Ψ d2Ψ
dχ2 + 2q3β2Ψ3 d2Ψ

dχ2 = 0.
(14)

Let dΨ
dχ = Φ. Then, Equation (14) is equivalent to the following dynamic system:

dΨ
dχ = Φ,

dΦ
dχ = − (a2δ2−a1δ2−a4−γ)Ψ2+q1Ψ4+q2Ψ6−a2β2Φ2+2q3β2Ψ2Φ2

β2(a1−a3)Ψ+2q3β2Ψ3 .
(15)

The Hamiltonian function [44,45] is given for the dynamic system (15) as:

H(Ψ, Φ) = 1
3
(
a2δ2 − a1δ2 − a4 − γ

)
Ψ3 + 1

5 q1Ψ5 + 1
7 q2Ψ7 + β2

2 (a1 − 2a2 − a3)ΨΦ2

+ 5q3β2

3 Ψ3Φ2 = ∆.
(16)

As the phase orbits (15) decides the traveling wave solutions of equation (1), one can
examine bifurcations of the phase profiles of Equation (15) in the (Ψ, Φ) phase plane. A
solitary wave solution of Equation (1) is analogous to a homoclinic orbit of Equation (15).
A periodic orbit of Equation (15) corresponds to a periodic traveling wave solution of
Equation (1).

4. Equilibria Classification

The regular system associated with the dynamic system (15) is given as
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dΨ
dξ =

(
β2(a1 − a3)Ψ + 2q3β2Ψ3)Φ,

dΦ
dξ = −

(
a2δ2 − a1δ2 − a4 − γ

)
Ψ2 − q1Ψ4 − q2Ψ6 + a2β2Φ2 − 2q3β2Ψ2Φ2,

(17)

which has the same Hamiltonian function as (15), where dχ =
(

β2(a1 − a3)Ψ + 2q3β2Ψ3)dξ.
Obviously, all equilibrium points for (17) lie on the Ψ-axes on the (Ψ, Φ)-plane.
Let ∆ = q2

1 − 4q2
(
a2δ2 − a1δ2 − a4 − γ

)
. Then, the equilibrium points for the dynamic

system (17) can be obtained under the following assumptions:
Case 1. If q1< 0, a2δ2 − a1δ2 − a4 − γ >0, and ∆ = 0, then there are three equilibrium

points:

E1(0, 0) and E2,3

(
±

√
−2(a2δ2 − a1δ2 − a4 − γ)

q1
, 0

)
.

Case 2. If q1 > 0, a2δ2− a1δ2− a4−γ < 0, and ∆ = 0, then there are three equilibrium
points:

E1(0, 0) and E2,3

(
±

√
−2(a2δ2 − a1δ2 − a4 − γ)

q1
, 0

)
.

Case 3. If q2 > 0,
(
a2δ2 − a1δ2 − a4 − γ

)
< 0, and ∆ >0, then there are three equilib-

rium points:

E1(0, 0) and E2,3

±
√
−q1 +

√
∆

2q2
, 0

.

Case 4. If q2< 0,
(
a2δ2 − a1δ2 − a4 − γ

)
>0, and ∆ > 0, then there are three equilib-

rium points:

E1(0, 0) and E2,3

±
√
−q1 +

√
∆

2q2
, 0

.

Case 5. If q2< 0, ∆ >0, and q1 > 0, then there are three equilibrium points:

E1(0, 0) and E2,3

±
√
−q1 −

√
∆

2q2
, 0

.

Case 6. If q2 < 0,
(
a2δ2 − a1δ2 − a4 − γ

)
< 0, and ∆ >0, then there are five equilib-

rium points:

E1(0, 0) and E2,3,4,5

±
√
−q1 ±

√
∆

2q2
, 0

.

Case 7. If q2 > 0,
(
a2δ2 − a1δ2 − a4 − γ

)
> 0, and ∆ > 0, then there are five equilib-

rium points:

E1(0, 0) and E2,3,4,5

±
√
−q1 ±

√
∆

2q2
, 0

.

Let M(E∗) be the coefficient matrix of the linearized system (17) at equilibrium point
E∗. Define:

J (E∗) = det(M(E∗)). (18)

Let σ = a4 +γ+(a1 − a2)δ and Ψ0 = 0, Ψ±1 = ±
√
−
√
−4q2σ

2q2
, Ψ±2 = ±

√√
−4q2σ

2q2
, Ψ±3 =

±
√
−q1+

√
∆

2q2
, and Ψ±4 = ±

√
−q1−

√
∆

2q2
.

Then, we get:
J (Ψ0, 0) = 0, (19)
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J (Ψ±1 , 0) = 1
q2

2
√

σ√
−q2σ

(−2β2σ(q2(a2 − a1) + 2q3
√−q2σ)

×(±σ + (−2q1 + 3
√−q2σ)

√
σ√−q2σ

)),
(20)

J (Ψ±2 , 0) = 1

q2
2

√√
−q2σ

q2

(2β2σ(q2(a1 − a2) + 2q3
√−q2σ)

×(±σ− (2q1 + 3
√−q2σ)

√√−q2σ
q2

)),
(21)

J (Ψ±3 , 0) = 1
4q3

2
(β2(
√

∆− q1)(q2(a1 − a2) + (
√

∆− q1)q3)

×(3∆− 2
√

∆q1 − q2
1 ∓ 2

√
2q2σ

√√
∆−q1
q2

)),
(22)

J (Ψ±4 , 0) = 1
4q3

2
(β2(
√

∆ + q1)(q2(a2 − a1) + (
√

∆ + q1)q3)

×(3∆ + 2
√

∆q1 − q2
1 ∓ 2

√
2q2σ

√
−
√

∆−q1
q2

)).
(23)

We have classified the gained equilibrium point E∗ of the system (17) using the planar
dynamic system theory as follows: if J > 0, then the point is center. The point is said
to be saddle if J < 0 and the point is cusp if J = 0, provided the poincare index of
the equilibrium point is zero [44,45], see also [29–34,46–48] for further details. The phase
portrait for the system (17) is shown in Figures 1–4. Figure 1 presents the phase portrait
when the system has three equilibrium points according to cases 1 and 2, provided the
equilibria E1(0, 0) is cuspidal point. Figure 1b presents two family of open curves that
tend to the singular line Ψ = 0 when |Φ| → ∞ . In Figure 2a, the phase portrait shows a
nonlinear periodic trajectory located at centers E2,3

(
Ψ±3 , 0

)
, while it shows a set of families

of open curves around the saddle points E2,3
(
Ψ±3 , 0

)
in Figure 2b. In Figure 3a, the level

curves surrounding the point E1(0, 0) correspond to a family of periodic orbits of the system
(17), while there are two heteroclinic orbits surrounding E1(0, 0) and connect the saddle
equilibria points E2,3

(
Ψ±4 , 0

)
. The curves presented in Figure 3b show a nonlinear periodic

trajectory located at centers E2,3
(
Ψ±4 , 0

)
. Figure 4a,b shows five equilibria points for the

system (17) that correspond to Case 6 and 7. In Figure 4a, there is a homoclinic trajectory
at the saddle points E2,3

(
Ψ±3 , 0

)
enclosing the centers E4,5

(
Ψ±4 , 0

)
. Figure 4b shows a

homoclinic trajectory at the saddle points E4,5
(
Ψ±4 , 0

)
enclosing the centers E2,3

(
Ψ±3 , 0

)
.
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5. Bright and Kink Wave Solutions

Usually, the existence of heteroclinic, homoclinic and periodic orbits for the system (17)
correspond to the existence of kink, solitary (bright or dark) and periodic wave solutions
for the governing model (1). Therefore, using the ansatz method, we will construct bright
and kink wave solutions for the governing model (1).

5.1. Bright Soliton

To demonstrate a bright soliton solution for Equation (1), we assume the solution for
the obtained ordinary differential Equation (14) has the form:

Ψ(χ) =
Asec h(mχ)√

1 + Bsec h2(mχ)
, (24)

where A, B and m are constants to be determined. Substituting (24) into (14), simplifying
the result and grouping the coefficients of the linearly independent terms, then setting it to
be zero, yields a nonlinear algebraic system that has the following solution:

A and B are arbitrary, γ = a4 + a1δ2, a3 = a1, a2 = 0, q1 = 0, q3β 6= 0, m = ±A
β

√
q2

2q3
, q2q3 > 0. (25)

Inserting the result of (25) into (24), then using it with (6), the bright soliton solutions
for the commanding model (1) can be introduced as follows:

ψ1,2(t, x) =
Asec h(± A

Γ(1+η)

√ q2
2q3

(xη−2a1(a4+a1δ2)tη))√
1+Bsec h2(± A

Γ(1+η)

√ q2
2q3

(xη−2a1(a4+a1δ2)tη))

×e(i(
(a4+a1δ2)

Γ(1+η)
tη+ δ

Γ(1+η)
xη)).

(26)

Figure 5 shows the 3D plot of the obtained solution of (26), |ψ1(x, t)|, where we
consider the case when m = A

β

√
q2

2q3
, at selected parameters, with the spatial variable

x ∈ [−25, 25] and the temporal variable t ∈ [0, 3]. To show the effect of the fractional
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derivative on the behavior of the soliton solution, a comparison between the soliton solution
at integer-order and fractional-order has been considered in Figure 5a,b.
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Figure 5. Bright soliton solution (26), |ψ1(x, t)| , where m = A
β

√
q2

2q3
, for (1) at A = B = a1 = q2 =

q3 = γ = 1, a4 = 0: (a) integer derivative order η = 1; (b) fractional derivative order η = 0.68.

For more details about the effectiveness of the fractional order on the solution, we
present a comparison between the obtained solution ψ1(x, t) in (26) at various fractional
derivative orders, see Figure 6. The change in the order of the fractional derivative is
accompanied by a change in the width of the inferred wave, and sometimes the wave shape
changes completely. For example, when the derivative is η = 0.4, the soliton solution is not
entirely bright.
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Figure 6. Bright soliton solution (26), |ψ1(x, t)| , where m = A
β

√
q2

2q3
, for (1) at: (a) 2D plot where

t = 5, A = B = a1 = 1, q2 = 1.8, q3 = 1.3, γ = 0.5, a4 = 0; (b) 2D plot where t = 1, A = 1,
B = 0.3, a1 = 1, q2 = 0.8, q3 = 1.3, γ = 0.5, a4 = 0.

Moreover, we have studied the variation of the inferred solution (26) with the group ve-
locity dispersion parameter a1 and detuning effect parameter a4 in Figure 7a,b,
respectively.
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Figure 7. Variation of the inferred bright soliton solution (26), |ψ2(x, t)| , where m = − A
β

√
q2

2q3
for

(1): (a) with the group velocity dispersion parameter a1 where: A = B = a1 = 1, q2 = 1.8, q3 = 1.3,
γ = 0.5, a4 = 0 and t = 5; (b) detuning effect parameter a4 where: A = 1, B = 0.3, a1 = 1,
q2 = 0.8, q3 = 1.3, γ = 0.5, a4 = 0 and t = 1.

5.2. Kink Soliton

To construct a kink soliton solution for the governing model (1), the solution for the
integer-order ordinary differential Equation (14) assumes the form:

Ψ(χ) = A
√

1 + tanh(mχ). (27)

Substituting the formal solution of (27) into the integer-order ODE (14), we, after simpli-
fication, get an expression with linearly independent terms, namely, tanhi(mχ), sec hj(mχ)

and tanhk(mχ)sec h2(mχ), where i = 1, 2, 3, 4, j = 2, 4 and k = 1, 2, in addition to the
fixed term. If the coefficients of these linearly independent terms vanish, we get an over-
determined nonlinear algebraic system, and its solution sets are listed in the following
cases:

Case 1. If q1 6= 0, a2β 6= 0, a1 = a3, q3 = 0, q2 =
−q2

1
4(a4+γ+(a1−a2)δ)

,
q1(a4 + γ + (a1 − a2)δ) > 0 and a2(a4 + γ + (a1 − a2)δ) < 0, then:

A1,2 = ±

√
a4 + γ + (a1 − a2)δ

q1
, m1,2 = ±

√
−(a4 + γ + (a1 − a2)δ)

β2a2
. (28)

Case 2. If q1 6= 0, a2β 6= 0, q2 = q3 = 0, a1 = 1
3 (a2 + 3a3), q1(a4 + γ + (a1 − a2)δ) >

0 and a2(a4 + γ + (a1 − a2)δ) < 0, then:

A1,2 = ±

√
a4 + γ + (a1 − a2)δ

2q1
, m1,2 = ±

√
−3(a4 + γ + (a1 − a2)δ)

2β2a2
. (29)

Case 3. If q1 = q3 = 0, q2 6= 0, a2β 6= 0, a1 = 1
2 (a2 + 2a3), q2(a4 + γ + (a1 − a2)δ) >

0 and a2(a4 + γ + (a1 − a2)δ) < 0, then:

A1,2 = ±
(

a4 + γ + (a1 − a2)δ

4q2

) 1
4
, m1,2 = ±

√
−4(a4 + γ + (a1 − a2)δ)

β2a2
. (30)
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Case 4. If q1q2 < 0, q3 = 0, a1 = a2 + a3, βa2 6= 0, a2q2 < 0 and a4 + γ + (a1 − a2)δ =
0, then:

A1,2 = ±
√
−q1

2q2
, m1,2 = ±

√
−q2

1
2β2a2q2

. (31)

According to Case 1 and the formal solution of (27), we can by using the transformation
(6) write the kink-type traveling wave solution for the governing model (1) as:

ψ1,2(t, x) = A1,2

√
1 + tanh

(
m1,2

(
α

Γ(1+η)
tη + β

Γ(1+η)
xη
))

×e(i(
γ

Γ(1+η)
tη+ δ

Γ(1+η)
xη)).

(32)

Using Case 2, we approach the kink-type traveling wave solution for the governing
model (1) as follows:

ψ3,4(t, x) = A1,2

√
1 + tanh

(
m1,2

(
α

Γ(1+η)
tη + β

Γ(1+η)
xη
))

×e(i(
γ

Γ(1+η)
tη+ δ

Γ(1+η)
xη)).

(33)

By utilizing Case 3, we write the kink-type traveling wave solution for the governing
model (1) as:

ψ5,6(t, x) = A1,2

√
1 + tanh

(
m1,2

(
α

Γ(1+η)
tη + β

Γ(1+η)
xη
))

×e(i(
γ

Γ(1+η)
tη+ δ

Γ(1+η)
xη)).

(34)

Finally, according to Case 4, we derive the kink soliton solutions for (1) as follows:

ψ7,8(t, x) = A1,2

√
1 + tanh

(
m1,2

(
α

Γ(1+η)
tη + β

Γ(1+η)
xη
))

×e(i(
γ

Γ(1+η)
tη+ δ

Γ(1+η)
xη)).

(35)

Figure 8 presents kink wave solution (32) for the governing model (1) on the spatial
variable x ∈ [−5, 5] and the temporal variable t ∈ [0, 2].
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Figure 8. Kink soliton solution |ψ1(x, t)| in (32) for (1) at a1 = 0.1, a2 = 1, a4 = 0.05, q1 = 0.1,
α = 0.1, β = 0.1, γ = 0.1, δ = 3: (a) integer derivative order η = 1; (b) fractional derivative order
η = 0.82.
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It is clear from Figure 8 that the kink shape of the surface of the inferred solution (32)
was not affected in general, or significantly, when changing the order of the derivative from
the integer order, η = 1, to fractional one, η = 0.82. To further illustrate the effect of the
fractional derivative on the surface of the deduced solutions, we present Figure 9, which
shows the two-dimensional plot of the deduced solution (33) at different fractional orders
of the derivative:
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of the fractional derivative on the surface of the deduced solutions, we present Figure 9, 
which shows the two-dimensional plot of the deduced solution (33) at different fractional 
orders of the derivative: 
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α = 0.1, β = 0.1, γ = 0.1, δ = 0.1 at: (a) t = 0.5; (b) t = 1.5.

We can notice that the surface structure of the extracted solution (35) is affected by the
change in the order of the fractional derivative. It is clear from Figure 9 that the effect was
present at the negative values of the spatial variable x, where some perturbations occurred
in the kink shape of the solution at certain values of x. In addition to perturbation, it also
changes when the value of the temporal variable is changed from t = 0.5 to t = 1.5.

Moreover, we paid attention to the effect of perturbation parameters a2 and a4 on the
behavior of the obtained kink soliton solution (33). We observe that when the value of the
perturbation parameter a2 varies from 0.1 to 0.41, then the kink shape of the surface of the
obtained solution is getting wider, as shown in Figure 10a. This is exactly the case when
the value of the perturbation parameter a4 increases, then the kink shape of the surface of
the obtained solution expands more, see Figure 10b.
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Figure 10. Variation of the inferred kink soliton solution |ψ4(x, t)| in (33) where t = 0.5, a3 =

0.01, q1 = 0.1, α = 0.01, β = 0.2, δ = 5, γ = 0.1 at: (a) with the perturbation parameters a2 and
a4 = 1; (b) with the perturbation parameters a4 and a2 = 0.1.
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6. Conclusions

In this work, the FCGLE has been considered, which is one of the most notable
nonlinear equations in physics that describes the dynamic of the oscillating systems with
the parabolic law and weak non-local law nonlinearity. The fractional derivative has
been considered in a local approach. Accordingly, we utilized a suitable traveling wave
transformation to reduce the governing model into an integer order ordinary differential
equation and presented a study on the dynamic behavior of the obtained dynamic system
under certain parameter regions. Moreover, two types of soliton solutions, namely, bright
and kink solitons, have been established with restrictive conditions to ensure their existence
using the ansatz method. The graphical representation has been introduced in 2D and 3D at
various values for the parameters with integer and fractional derivative orders to provide
a comparison for the physical properties of the constructed solutions at the fractional
derivative orders.
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agreed to the published version of the manuscript.
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