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Abstract: This paper explores the generalization of the fixed-point theorem for Fisher contraction
on controlled metric space. The controlled metric space and Fisher contractions are playing a very
crucial role in this research. The Fisher contraction on the controlled metric space is used in this paper
to generate a new type of fractal set called controlled Fisher fractals (CF-Fractals) by constructing a
system named the controlled Fisher iterated function system (CF-IFS). Furthermore, the interesting
results and consequences of the controlled Fisher iterated function system and controlled Fisher
fractals are demonstrated. In addition, the collage theorem on controlled Fisher fractals is established
as well. The newly developing IFS and fractal set in the controlled metric space can provide the novel
directions in the fractal theory.
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1. Introduction

Mandelbrot developed the concept of fractals in the important book “The Fractal
Geometry of Nature”to portray non-linearity in real-world objects and numerous scientific
events. In the real world, the fractal geometry has shown to be a particularly efficient
technique for representing complex systems with infinite intricacies [1]. Fixed-point theory
is a fundamental tool in Hutchinson’s theory of iterated function systems (IFSs), and
Barnsley has studied in detail the construction of deterministic fractals [2–4]. IFSs have
become a valuable tool for constructing many sorts of fractals. Stochastic growth models,
image processing, and random dynamical systems are only a few examples of IFS
applications. The presence of an deterministic fractal or attractor of IFS in a complete
metric space follows the well-known Banach contraction principle [5–7]. Fractals are often
used by researchers today in the various fields of science, such as time evolution of
quantum fractals, fractal-time derivative operators, Sierpinski-type fractal structures,
fractionally-perturbed systems, quantum mechanics, kinetic energy, topological insulators,
and other applications for physical problems [8–14].

Hutchinson’s IFS theory has massively expanded for more generalized spaces and
generalized contractions, and extended to infinite IFS and multifunction systems to generate
general types of fractal sets with the distinguished dimensional measures [15–31]. Hata [32]
used condition functions to create IFS. Fernau [33] developed the notion of limitless IFSs.
Klimek and Kosek [34], Gwozdz-Lukawska and Jachymski [35], Lesniak [36], and Mauldin
and Urbanski [37] have all done outstanding work in the area for fractal theory. On a
compact metric space, Secelean [38] explored countable iterated function systems. Secelean
proposed the idea of creating new IFS by combining various contractions into F-contractions.
The authors developed the notion of a topological IFS attractor in the reference, which
generalizes the familiar IFS attractor. Every IFS attractor is also a topological IFS attractor,
but the reverse is not true [39–41].

The controlled metric space (CMS) is a novel extension of b-metric space that uses a
two-variable control function in the triangle inequality as a controlling component of the
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system, and the fixed-point theorem and its ramifications were produced by the majority
of researchers [42,43]. In this present context, the above flow of extensions directs us to
instigate the notion of CMS with the Fisher contraction mapping. It also motivated us to
define IFS and to discuss HB theory to evolve the new type of fractal sets in the proposed
controlled metric space as a general case.

The remaining sections of the paper are organized as follows. Section 2 discusses the
basic concepts of the contraction, Banach contraction principle, Hausdorff metric space, and
iterated function system, which are required for this research work. Further, the fixed-point
theorem for Fisher contraction on complete controlled metric space (CCMS) and other
consequent results are proved in Section 3. The existence of fractals in controlled metric
space using the iterated function system of Fisher contractions and other interesting results
are established in Section 4. Finally, the obtained results are concluded in Section 5.

2. Preliminary Results

In the preliminary part, we recall some basic theory of an iterated function system that
is required for the proposed research work.

A function F on a metric space (H, ρ) is defined as a contraction if F satisfies
ρ(F(a),F(b)) ≤ rρ(a, b), ∀a, b ∈ H, r ∈ [0, 1) with the contraction ratio r.

In 1922, Banach proved a classic fixed-point theorem named the Banach contraction
principle, which is a strong and powerful tool in fixed-point theory [44].

Theorem 1. If F : H → H is a contraction mapping on a complete metric space (H, ρ), then F
has a unique fixed point a∗ ∈ H. Moreover, the sequence

{
Fj(a)

}∞
j=1 converges to a∗. That is,

limj→∞Fj(a) = a∗ for any element a ∈ H.

The Theorem 1 establishes the existence and uniqueness of fixed point of particular
self-mapping on a complete metric space and a constructive approach for computing the
fixed point of contractions.

If (H, ρ) is a complete metric space and K0(H) is the nonempty collection of all
compact subsets of H, for a ∈ H and A, B ∈ K0(H), define

ρ(x, B) = inf{ρ(x, b) : b ∈ B}

and
ρ(A, B) = sup{ρ(a, b) : a ∈ A}.

Obviously, ρ(A, B) and ρ(B, A) both are positive and exist. The Hausdorff metric
between A and B is defined as Hρ(A, B) = max{supa∈Aρ(a, B), supb∈Bρ(b, A)}. Then, the
mapping Hρ is defined on K0(H).

The contraction function on IFS acts on the members of the Hausdorff space, i.e., a
compact subset of H. It is also known that if (H, ρ) is complete, then the Hausdorff space
(K0(H), Hρ) is also complete.

Definition 1 (Controlled Metric Space [43]). Let H be a nonempty set and α : H × H → [1, ∞).
A controlled metric is a function where ρ : H × H → [0, ∞) satisfies the following conditions
∀ a, b, c ∈ H.

(a). ρ(a, b) = 0 iff a = b,
(b). ρ(a, b) = ρ(b, a),
(c). ρ(a, b) ≤ α(a, c)ρ(a, c) + α(c, b)ρ(c, b).

Then, the pair (H, ρ) is called the controlled metric space.

If, for all a, b ∈ H, α(a, b) = s ≥ 1, then (H, ρ) is a b−metric space, which leads us to
conclude that every b−metric space is a controlled metric type space. Additionally, every
b−metric space is a standard metric space if s = 1, and the converse is not always true.
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Likewise, every controlled metric space is a standard metric space, and the converse is not
always true.

A (hyperbolic) IFS consists of CMS (H, ρ), along with a finite collection of contraction
(continuous) mapping Fj : H → H with respect to the contractivity ratio rj, for
j = 1, 2, ..., N0. The system

{
H,Fj : n = 1, 2, ...N0

}
is the hyperbolic IFS which maps

F : K0(H)→ K0(H), which is defined by

F (B) = ∪N0
j=1Fj(B), B ∈ K0(H),

which induces a set valued map and Fj(B) =
{
Fj(b) : b ∈ B

}
is a contraction mapping on

CMS (K0(H), Hρ) with the contraction ratio r. That is,

Hρ(F (B), F (C)) ≤ rHρ(B, C).

Here, F has a unique fixed point which is known as an attractor and denoted by
K∗ ∈ K0(H).

Moreover, K∗ = limj→∞ Fj(B) for any B ∈ K0(H), where Fj = F ◦ F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
j times

.

Then, K∗ is also known as an invariant set and F (K∗) = K∗.

3. Fisher Fixed-Point Theorem on Controlled Metric Space

In this section, we develop a new idea of IFS by replacing the usual contraction with a
more general Fisher contraction.

In 1978, Fisher developed the new type of contraction known as Fisher contraction
mapping [45], defined as follows.

If there exist r and s such that r, s ∈ (0, 1
2 ), and for all a, b ∈ H and

ρ(F(a),F(b)) ≤ r[ρ(a,F(a)) + ρ(b,F(b))] + s(ρ(a, b)),

then F is said to be Fisher contraction mapping.
Here, r and s are contraction ratios of Fisher contraction F.
Now, we can introduce the Fisher contraction on the controlled metric space as follows.
Let (H, ρ) be CCMS. If F : H → H is a function with

ρ(F(a),F(b)) ≤ r[ρ(a,F(a) + ρ(b,F(b)] + s(ρ(a, b)) (1)

for every a, b ∈ H and r, s ∈ (0, 1
2 ), then F is called the controlled Fisher contraction. r and

s are the contraction ratios.
If r = 0, then the Fisher contraction is reduced to a usual contraction, but the converse

is not always true. Similarly, if s = 0, then the Fisher contraction is reduced to a Kannan
contraction, but the converse is not always true.

Now, the definition of the Hausdorff metric in introduced in CMS as follows.

Definition 2. If (H, ρ) is CMS, then the Hausdorff metric on CMS is the function
Hρ : K0(H)×K0(H)→ [0, ∞), defined by

Hρ(A, B) = max{supa∈Aρ(a, B), supb∈Bρ(b, A)}.

Based on the definition of (hyperbolic) IFS given by Barnsley [2], let us now introduce
the new IFS called the controlled Fisher IFS.

Let (H, ρ) be CCMS, and let Fj : H −→ H, j = 1, 2, 3, . . . , N0 (N0 ∈ N) be contractions
in CCMS with the corresponding contraction ratios rj and sj, j = 1, 2, 3, . . . , N0. Then,
the system {

H;Fj, j = 1, 2, 3, . . . , N0
}
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is said to be a controlled Fisher IFS (CF-IFS) of Fisher contractions with the contraction
ratios r = maxN0

j=1 rj and s = maxN0
j=1 sj. First, we present and verify some theorems that

provide a relationship among Fis, {i = 1, 2, . . . , N0}, in terms of contractivity ratios r and s;
and F has a unique fixed point, if it exists.

Theorem 2. Let F : H → H be a Fisher contraction with the contraction ratios r and s on CMS
(H, ρ) and a ∈ H. Then, F satisfies the following condition

ρ(Fi(a),Fi+1(a)) ≤ (
r

1− r
)iρ(a,F(a)) + (1− s)ρ(a,F(a)).

Moreover, limi→∞ ρ(Fi(a),Fi+1(a)) = 0.

Proof. Given that F is a controlled Fisher contraction mapping, then

ρ(Fi(a),Fi+1(a)) ≤ r(ρ(Fi−1(a),Fi(a))) + sρ(Fi−1(a),Fi(a)).

Consequently,

ρ(Fi(a),Fi+1(a)) ≤ r
1− r

ρ(Fi−1(a),Fi(a))

+ sρ(Fi−1(a),Fi(a))

≤ r
1− r

[
r

1− r
ρ(Fi−2(a),Fi−1(a))]

+ s[sρ(Fi−2(a),Fi−1(a))]

≤ (
r

1− r
)2[ρ(Fi−2(a),Fi−1(a))] + s2ρ(Fi−2(a),Fi−1(a))

...

≤ (
r

1− r
)iρ(a,F(a)) +

1
1− s

ρ(a,F(a))

≤ [(
r

1− r
)i + (1− s)−1]ρ(a,F(a)).

As i→ ∞, we have

lim
i→∞

ρ(Fi(a),Fi+1(a)) ≤ lim
i→∞

[(
r

1− r
)i + (1− s)−1]ρ(a,F(a)).

Since r
1−r < 1 and (1− s) < 1, limi→∞ ρ(Fi(a),Fi+1(a)) = 0.

Theorem 3. Let F : H → H be a Fisher contraction mapping with the contractivity ratios r and s
on CMS (H, ρ). If F has a fixed point, then it is unique.

Proof. To prove the uniqueness of the fixed point, let a∗ and b∗ be two fixed points of F.
Then, a∗ = F(a∗), b∗ = F(b∗).

ρ(a∗, b∗) = ρ(F(a∗),F(b∗))
≤ r[ρ(a∗,F(a∗)) + ρ(b∗,F(b∗))] + s(a∗, b∗)

= r[ρ(a∗, a∗) + ρ(b∗, b∗)] + s(a∗, b∗)

= 0.

There f ore, a∗ = b∗.

Theorem 4. Let F : H → H be a continuous Fisher contraction mapping on a CCMS (H, ρ) with
the contractivity ratios r and s; and F has a fixed point a∗ ∈ H. Then,
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ρ(a, a∗) ≤
{(

1− r
1− 2r

)
+

1
1− s

}
ρ(a,F(a)).

Proof. For a ∈ H, we have limi→∞ Fi(a) = a∗. Take the point a ∈ H as i → ∞ fixed, and
the metric function ρ(a, b) is continuous at the point b ∈ H. Therefore,

ρ(a, a∗) = ρ(a, lim
i→∞

Fi(a))

= lim
i→∞

ρ[a,Fi(a)]

≤ lim
i→∞

i

∑
j=1

ρ(Fj−1(a),Fj(a))

≤ lim
i→∞

ρ(a,F(a))

×
{(

1 +
r

1− r
+ · · ·+ (

r
1− r

)i−1
)
+ (1 + s + · · ·+ si−1)

}
≤
{(

1− r
1− r

)−1
+ (1− s)−1

}
ρ(a,F(a)).

Theorem 5 (Controlled Fisher Fixed-Point Theorem). Let F : H → H be a Fisher contraction
mapping on CCMS (H, ρ) with the contractivity ratios r, s, and α : [1, ∞) → R+. For a0 ∈ H,
take aj = Fj(a0). Suppose that

sup
i≥1

lim
j→∞

α(aj+1, aj+2)

α(aj, aj+2)
α(aj, ai) <

1
r
+

1
s

.

In addition, for every a ∈ H, limj→∞ α(aj, a) and limj→∞ α(a, aj) exist. Then, F has a unique
fixed point.

Proof. Take a ∈ H, and given that F is a Fisher contraction mapping with the contractivity
ratios r and s, we have

ρ(Fi(a),Fi+1(a)) ≤
{
(

r
1− r

) + (1− s)
}

ρ(a,F(a)), ∀i = 0, 1, 2, ...

Then, for any fixed a ∈ H, we get

ρ(Fj(a),Fi(a)) ≤ tj∧iρ(a,F|j−i|(a)) + ui∧jρ(a,F|j−i|(a)) (2)

where i, j ∈ {0}∪N and t := r
1−r , u := (1− s). In particular, take n = |j− i|, for n = 0, 1, 2, ...

We have

ρ(a,Fn(a)) ≤ ρ(a,F(a)) + ρ(F(a),F2(a)) + . . . + ρ(Fn−1(a),Fn(a))

≤ (1 + t + t2 + . . . + tn−1)ρ(a,F(a))

+ (1 + u + u2 + . . . + un−1)ρ(a,F(a))

≤ (
1− tk

1− t
)ρ(a,F(a)) + (1− u)−1ρ(a,F(a)).

Then, Equation (2) becomes

ρ(Fj(a),Fi(a)) ≤ ti∧j(1− tk)

1− t
ρ(a,F(a)) +

ui∧j

1− u
ρ(a,F(a)).
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As a result, limj→∞ α(aj, a) and limj→∞ α(a, aj) exist, and we have limits. It is clear
that

{
Fj(a)

}∞
j=0 is Cauchy. Since H is a complete controlled metric space, the sequence{

Fj(a)
}∞

j=0 has a limit, say, a∗ ∈ H. Hence, we have

lim
n→∞

Fj(a) = a∗. (3)

Now we prove that a∗ is a fixed point of F.

ρ(a∗,F(a∗)) ≤ α(a∗,Fj(a))ρ(a∗,Fj(a)) + α(Fj(a),F(a∗))ρ(Fj(a),F(a∗))

≤ α(a∗,Fj(a))ρ(a∗,Fj(a))

+α(Fj(a),F(a∗))r[ρ(Fj−1(a),Fj(a)) + ρ(a∗,F(a∗))] + sρ(a∗, a∗).

Further, taking the limit j approaching ∞, and considering Equation (3), Theorem 2
and limn→∞ α(aj, a), limj→∞ α(a, aj) exist and we have a limit. We get

ρ(a∗,F(a∗)) ≤ (1 + r)α(a∗,F(a∗))ρ(a∗,F(a∗)).

Hence, a∗ = F(a∗). By Theorem 3, a∗ is a unique fixed point.

4. Controlled F-Iterated Function System and Fractal

The HB theorem for generating the fractals in complete controlled metric space using
IFS of Fisher contractions and their consequences are proved and discussed in this section.

Theorem 6. Let F : H → H be a continuous Fisher contraction mapping on CMS (H, ρ)
with the contraction ratios r and s. Then, the function F : K0(H) → K0(H) is defined by
F(A) = {F(a) : a ∈ A}, ∀A ∈ K0(H), a Fisher mapping on (K0(H), Hρ) with the contraction
ratios r and s.

Proof. Let us consider a continuous mapping F. Therefore, F maps K0(H) into itself [2].
Let A, B ∈ K0(H). Then,

Hρ(F(A),F(B)) = ρ(F(A),F(B)) ∨ ρ(F(B),F(A))

≤ r[ρ(A,F(A)) + ρ(B,F(B))] + sρ(A, B)

∨ [ρ(B,F(B)) + ρ(A,F(A))] + sρ(B, A)

= r[ρ(A,F(A)) + ρ(B,F(B))] + sρ(A, B)

≤ r[Hρ(A,F(A)) +Hρ(B,F(B))] + s[Hρ(A, B)].

Therefore, Hρ(F(A),F(B)) ≤ r[Hρ(A,F(A)) +Hρ(B,F(B))] + s[Hρ(A, B)].

Theorem 7. Let (H, ρ) be CMS. Let
{

H;Fj; j = 1, 2, ..., N0
}

be a CF-IFS of continuous Fisher
contraction mappings on (K0(H), Hρ) with the corresponding contraction ratios rj and sj, for
each j. Define F : K0(H)→ K0(H) by F (A) = ∪N0

j=1Fj(A), for each A ∈ K0(H). Then, F is
a Fisher contraction with the contraction ratios r = max

{
rj; j = 1, 2, ..., N0

}
and

s = max
{

sj; j = 1, 2, ..., N0
}

.

Proof. The theorem is proved by using the mathematical induction approach and the
characteristics of the metric Hρ. The assertion is plainly true for N = 1 and N = 2. Thus,
we can show that
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Hρ(F (A), F (B))

=Hρ(F1(A) ∪ F2(A),F1(B) ∪ F2(B))
≤Hρ(F1(A),F1(B)) ∨Hρ(F2(A),F2(B))
≤r1

[
Hρ(A,F1(A)) +Hρ(B,F1(B))

]
+ s1Hρ(A, B)

∨ r2
[
Hρ(A,F2(A)) +Hρ(B,F2(B))

]
+ s2Hρ(B, A)

≤(r1 ∨ r2)
{
Hρ(A,F1(A)) ∨Hρ(A,F2(A))

}
+ (s1 ∨ s2)Hρ(A, B)

+
{
Hρ(B,F1(B)) ∨Hρ(B,F2(B))

}
=r
[
Hρ(A,F1(A) ∪ F2(A)) +Hρ(B,F1(B) ∪ F2(B))

]
+ sHρ(A, B).

Therefore,

Hρ(F (A),F (B)) ≤ r[Hρ(A, F (A)) +Hρ(B, F (B))] + sHρ(A, B).

The principle of mathematical induction proves the theorem.

The following theorem for the CF-IFS can be proved based on the prior results and the
concept of the CF-IFS.

Theorem 8. Let {H; (F0),F1,F2, · · · ,Fn} be a CF-IFS with the condensation mapping F0 and
the contraction ratios r = max

{
rj; j = 1, 2, ..., N0

}
and s = max

{
sj; j = 1, 2, ..., N0

}
. Then, the

transformation F : K0(H)→ K0(H), defined by

F (A) = ∪N0
j=1Fj(A), ∀A ∈ K0(H),

is a continuous Fisher contraction mapping on CCMS (K0(H), Hρ) with the contraction ratios r
and s. Additionally, F has a unique fixed point B ∈ K0(H), so it follows that

B = F (B) = ∪N0
j=1Fj(B),

given by B = limj→∞F ◦(A), for all A ∈ K0(H).

Proof. Since (H, ρ) is a complete CMS, the (Ko(H), Hρ) is also a complete CMS. Additionally,
Theorem 7 makes clear that the HB operator, F , is a contraction mapping on CMS. By using
Theorem 5, it is concluded that F has a unique fixed point. This completes our assertion.

Definition 3 (Controlled F-Fractals (CF-Fractals)). The fixed point B ∈ Ko(H) of HB operator
F for the CF-IFS described in Theorem 8 is said to be a controlled Fisher attractor or controlled
Fisher fractal or Controlled F-Fractal (CF-Fractal) in CMS. Thus, B ∈ Ko(H) is said to be a fractal
generated by a CF-IFS on CMS.

In this flow of extension, we can also prove the collage theorem for the CF-IFS.

Theorem 9 (Collage Theorem). Let (H, ρ) be CCMS. Given that Z ∈ K0(H) and ε ≥ 0,
suppose

{
H;Fj, j = 0, 1, 2, ..., N0

}
is a CF-IFS, with the condensation mapping F0 and Fisher

contraction ratios r and s such that

Hρ

(
Z,∪N0

j=0,j=1Fj(Z)
)
≤ ε.

Then,

Hρ(Z, B) ≤
[(

1− r
1− 2r

)
+

(
1

1− s

)]
ε,

where B is the attractor or controlled F-Fractal of a CF-IFS.
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Proof. Let us assume that Z ∈ K0(H) and ε ≥ 0. Choose the CF-IFS{
H;Fj, j = 0, 1, 2, ..., N0

}
, where F0 is the condensation mapping with the Fisher

contraction ratios r and s, so that

Hρ

(
Z,∪N0

j=0,j=1Fj(Z)
)
≤ ε.

By Theorem 4, for a ∈ H, we have limi→∞ Fi(a) = a∗. Consider a point a ∈ H as fixed
and the metric function ρ(a, b) as continuous at a point b ∈ H. Therefore,

ρ(a, a∗) = ρ(a, lim
i→∞

Fi(a))

≤
{(

1− r
1− r

)−1
+ (1− s)−1

}
ρ(a,F(a)).

This implies

Hρ(Z, B) ≤
[(

1− r
1− 2r

)
+

(
1

1− s

)]
ε.

In the proposed theory, if we choose all the contractivity factors
rj = 0 (j = 1, 2, · · · , N0), then the controlled Fisher IFS becomes a standard IFS; and if all
the contractivity factors sj = 0 (j = 1, 2, · · · , N0), then the controlled Fisher IFS becomes a
Kannan IFS; the converse of both cases are not always true. Hence, the method of
generating controlled Fisher fractal is a generalized case of the method of generating the
usual metric fractal through the classical IFS [2,4,5] and Kannan IFS (K-IFS) [41].

To date, the research on the generation of fractals has not been discussed in controlled
metric space by using Fisher contractions. The importance of this research was to generate
fractal sets in controlled metric space through the an iterated function system of Fisher
contractions. It was demonstrated with the idea of constructing a new type of fractals
in a controlled metric space through interesting theorems and results. It is believed that
this research will lead to a new path for developing the controlled multifractals and their
consequences based on Fisher contractions.

5. Conclusions

In this paper, a generalization of the fixed-point theorem for the Fisher contraction
on a controlled metric space was explored. The Fisher contraction over controlled metric
spaces was utilized in this study to develop a new type of iterated function system, the
CF-IFS. Essentially, an iterated function system of Fisher contractions has been constructed
in a controlled metric space to generate controlled Fisher fractals. The subsequent results
proved interesting on the controlled Fisher-iterated function system and controlled Fisher
fractals. It was observed that the controlled fractals are a general form of the classical fractals
and Kannan-type fractals. The proposed controlled Fisher fractals and their implications
will provide a prominent idea for analyzing the multi-level fractal objects in controlled
metric spaces.
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Notations

H Nonempty Set or Nonempty Space
ρ Metric
(H, ρ) Metric Space
F Contraction Mapping
K0(H) Collection of all Nonempty Compact Subsets of H
Hρ Hausdorff Metric
(K0(H), Hρ) Hausdorff Metric Space
r, s Contractivity Factors
F Hutchinson-Barnsley Operator
K∗ Invariant Set or Attractor
∨ Maximum
∧ Minimum
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