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2 Faculty of Physics, “Alexandru Ioan Cuza” University of Iasi, 700506 Iaşi, Romania
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Abstract: The accurate determination of atmospheric temperature with telemetric platforms is an
active issue, one that can also be tackled with the aid of multifractal theory to extract fundamental
behaviors of the lower atmosphere, which can then be used to facilitate such determinations. Thus,
in the framework of the scale relativity theory, PBL dynamics are analyzed through the aid of a
multifractal hydrodynamic scenario. Considering the PBL as a complex system that is assimilated to
mathematical objects of a multifractal type, its various dynamics work as a multifractal tunnel effect.
Such a treatment allows one to define both a multifractal atmospheric transparency coefficient and a
multifractal atmospheric reflectance coefficient. These products are then employed to create theoret-
ical temperature profiles, which lead to correspondences with real results obtained by radiometer
data (RPG-HATPRO radiometer), with favorable results. Such methods could be further used and
refined in future applications to efficiently produce atmospheric temperature theoretical profiles.

Keywords: PBL dynamics; multifractality; scale relativity theory; radiometer data

1. General Considerations: From Differentiability to Non-Differentiability in
Atmospheric Process Dynamics

The PBL (planetary boundary layer) dynamics remain a subject of great interest due to
the many consequences regarding atmospheric behavior on both a local and a global scale.
Because of the effects of buoyancy, tropospheric temperature profiles limits the motion
verticality of atmospheric entities, and therefore the PBL appears as a principal stable factor
in atmospheric dynamics [1]. The PBL is often turbulent, and because turbulence causes
mixing, the bottom part of the standard atmosphere homogenizes, while the area above is
commonly known as the “free atmosphere”. Therefore, the PBL plays a tremendous role in
aerosol and humidity transport and in the stratification and complex dynamic interplay of
the atmosphere; its existence is commonly determined by inversions of various physical
parameters, especially temperature [1]. However, while its common behavior patterns can
be somewhat anticipated from a phenomenological perspective, the exact description of
the atmospheric parameter inversions is not fully known.

Most models employed in the study of PBL dynamics assume, which can be unjustified,
physical variables’ differentiability. The successful applications of such models have to
be understood on a sequential level, which means that differentiability would mostly be
valid for larger domains. Classically, any and all dynamic variables that are dependent
on spatiotemporal coordinates also become dependent on the scale resolution [1–5]. Thus,
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instead of employing dynamical variables through non-differentiable functions, we must
use certain approximations of that function derived through its averaging at different scale
resolutions. As a consequence, all dynamic variables must then act as the limit of a family
of functions, these being non-differentiable for a null scale resolution and differentiable for
a nonzero scale resolution.

In general, non-differential methods are considered suitable in the field of complex
systems, where real measurements are conducted at a finite scale resolution. The implication
is that a new physical theory for such systems is developed, and in this theory, motion laws,
which are invariant to coordinate transformations, must be integrated with scale laws that
are similarly invariant. The present assumptions lead to a theory that was first developed
in the framework of the scale relativity theory, which defines fractal physical models [4–6].

In the following, the PBL dynamics in the framework of the scale relativity theory are
analyzed, assimilating it with a mathematical object of multifractal type (PBL dynamics
considered through the multifractal tunnel effect). The rationale for this assimilation lies
in the fact that the stratification of the lower atmosphere resembles the structure of a
tunneling barrier scenario. The intent of this development is to continue the theoretical and
practical advances into atmospheric physics using multifractality and to elaborate the basis
of a multifractal theoretical model, which could be used to study the evolution of many
types of parameters, most relevantly temperature. Starting with main theoretical aspects,
the atmosphere is considered from a multifractal perspective, with all the mathematical
consequences that this entails. Then, a multifractal tunnel effect in an external scalar
potential configuration is seen to produce a multifractal barrier object, which plays the
role of the PBL. This barrier entity and its properties are explained, and a variable is
chosen which can function as an iterative parameter in order to implement the resulting
equations as a model of atmospheric temperature. Finally, ceilometer and radiometer
data are employed as experimental data, and theoretical atmospheric temperature data is
contrasted with atmospheric temperature experimental data.

Regarding the usage of the multifractal tunnel effect as a theoretical implement in
atmospheric studies, to the best of our knowledge, this is a novel application; however,
this effect was previously employed in a study explaining the “chameleon effect” of choles-
terol [7]. In terms of merely applying multifractal theories to the atmosphere, a number
of studies have been elaborated, such as one that deals with developing a multifractal
random-walk description of turbulence itself, another study that analyzes the multifractal
long-term characteristics of local temperature fluctuations, and a recent study that seeks to
multifractally characterize atmospheric particular matter pollution [8–10]. It is noteworthy,
however, that given the theoretical complexity of using multifractal techniques, especially
in a scientific field such as atmospheric studies, which is already marked by added difficul-
ties in the form of chaos and scaling issues, there are not many current works that explore
the connections between multifractality and atmospheric fluid dynamics. This is the case
even though the formation of turbulence through strange attractors, which are fractal in
nature, has been both experimentally and theoretically established decades ago [11,12].
Therefore, it is also our hope that this study will not only present a functional application
of theory to practice but will also broaden the field of multifractal atmospheric study.

2. Theoretical Design: Non-Differentiability Calibrated on PBL Dynamics in the Form
of the Multifractal Hydrodynamic Model

Considering the PBL’s complexity, which can be assimilated with a mathematical ob-
ject of multifractal type, in such conjecture, the PBL dynamics can be explained through the
scale relativity theory (the PBL structural units occur on continuous but non-differentiable
multifractal curves), dynamics that can be described through the scale covariance deriva-
tive [5,13–16]:

d̂
dt

= ∂t + V̂ l∂l +
1
4
(dt)[

2
f (α) ]−1Dlp∂l∂p (1)
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where:
V̂ l = V l

D − iV l
F, (2a)

Dlp = dlp − id̂lp, (2b)

dlp = λl
+λ

p
+ − λl

−λ
p
−, (2c)

d̂lp = λl
+λ

p
+ + λl

−λ
p
−, (2d)

∂t =
∂

∂t
, ∂l =

∂

∂xl , ∂l∂p =
∂

∂xl
∂

∂xp , i =
√
−1, l, p = 1, 2, 3. (2e)

The meanings of the above parameters are explained in greater detail in one of our
previous works [16].

There exist many types of ways to define the notion of fractal dimension: Kolmogorov
fractal dimension, Hausdorff–Besikovitch fractal dimension, and many others [17–20]. For
such studies, it is necessary to select just one of these definitions, and for the meaning of
fractal dimension to be constant, given the fact that the dimension directly dictates whether
or not the process is correlative or not [17–20]. Thus, through the singularity spectrum,
f (α), it is possible to identify not only dynamic spaces in the PBL that are characterized by
just one fractal dimension but also dynamic spaces whose fractal dimensions are situated
in an interval of values, implying multifractality. It is possible to employ the singularity
spectrum in order to identify universality classes in PBL dynamics, even considering the
regularity of the attractors involved.

If the PBL dynamics are described by Markovian stochastic processes [21–23]:

λi
+λl

+ = λi
−λl
− = 2λδil i, l = 1, 2, 3, (3)

where λ is a specific coefficient of the multifractal–non-multifractal scale transition and δil

is Kronecker’s pseudotensor, the scale covariant derivative in Equation (1) becomes:

d
dt

= ∂t + V̂ l∂l − iλ(dt)(
2

f (α) )−1
∂l∂

l . (4)

Thus, if one accepts the principle of the scale covariance, which is by applying
Equation (1) to Equation (2a), without constraints, the PBL’s motion equations of the
structural units dynamics become:

dV̂i

dt
= ∂tV̂i + V̂ l∂lV̂i +

1
4
(dt)[

2
f (α) ]−1Dlk∂l∂kV̂i = 0. (5)

In this manner, acceleration, ∂tV̂i, convection, V̂ l∂lV̂i, and dissipation, Dlk∂l∂kV̂i, are
all balanced at every point of any multifractal curve of the PBL structural units dynamics.
Particularly, for Equation (3), the motion Equation (5) becomes:

d̂V̂i

dt
= ∂tV̂i + V̂ l∂lV̂i − iλ(dt)[

2
DF

]−1
∂l∂

lV̂i = 0. (6)

Now, through the separation of PBL structural units dynamics on scale resolution
(differentiable and non-differentiable scale resolutions), Equation (5) becomes:

∂tVi
D + V l

D∂lVi
D −V l

F∂lVi
F +

1
4
(dt)[

2
f (α) ]−1Dlk∂l∂kVi

D = 0, (7a)

∂tVi
F + V l

F∂lVi
D + V l

D∂lVi
F −

1
4
(dt)[

2
f (α) ]−1Dlk∂l∂kVi

F = 0, (7b)

while Equation (6) takes the form:

∂tVi
D + V l

D∂lVi
D −

[
V l

F + λ(dt)[
2

f (α) ]−1
∂l
]

∂lVi
F = 0, (8a)
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∂tVi
F + V l

D∂lVi
F +

[
V l

F + λ(dt)[
2

f (α) ]−1
∂l
]

∂lVi
D = 0. (8b)

For the non-rotational motions of the PBL structural units dynamics, the complex
velocity fields in Equation (2a) take the form:

V̂i = −2iλ(dt)[
2

f (α) ]−1
∂ilnΨ, (9)

where Ψ is the states function. From here, for:

Ψ =
√

ρeis, (10)

where
√

ρ is the amplitude and s is the phase, the complex velocity fields in Equation (9)
become explicitly:

V̂i = 2λ(dt)[
2

f (α) ]−1
∂is− iλ(dt)[

2
f (α) ]−1

∂i ln ρ, (11)

which enable the definition of the real velocity fields:

Vi
D = 2λ(dt)[

2
f (α) ]−1

∂is, (12)

Vi
F = iλ(dt)[

2
f (α) ]−1

∂i ln ρ. (13)

Through Equations (12) and (13) and using the mathematical procedures from [21–23],
Equation (8) reduces to the multifractal hydrodynamic equations:

∂tVi
D + V l

D∂lVi
D = −∂iQ, (14)

∂tρ + ∂l

(
ρV l

D

)
= 0, (15)

with Q, the multifractal specific potential:

Q = −2λ2(dt)[
4

f (α) ]−2 ∂l∂l
√

ρ
√

ρ
= −Vi

FVi
F −

1
2

λ(dt)[
2

f (α) ]−1
∂lV l

F. (16)

Equation (14) gives the multifractal specific momentum conservation law of the PBL
dynamics, while Equation (15) produces the multifractal state density conservation law
of the same dynamics. The multifractal specific potential in Equation (16) implies the
multifractal specific force:

Fi = −∂iQ = −2λ2(dt)[
4

f (α) ]−2
∂i ∂l∂l

√
ρ

√
ρ

, (17)

which shows the multifractality of the motion curves of the PBL dynamics.
We note that for external constraints, for example, the external scalar potential, U, the

multifractal hydrodynamic equations take the form:

∂tVi
D + V l

D∂lVi
D = −∂i(Q + U), (18)

∂tρ + ∂l

(
ρV l

D

)
= 0. (19)

It is possible to extrapolate the following theoretical results using the equations previ-
ously mentioned:

I. The existence of a multifractal specific force implies that all PBL structure units must
be considered through a multifractal medium;

II. This medium can be considered a multifractal fluid whose dynamics are characterized
by the hydrodynamic model presented previously;
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III. Since the velocity field, Vi
F, is absent from the multifractal states density conserva-

tion laws, it induces the possibility of non-manifest PBL dynamics, meaning that it
facilitates the transmission of multifractal specific momentum and multifractal energy;

IV. All potential issues regarding reversibility and existence of the eigenstates are solved
by the conservation of multifractal energy and multifractal momentum;

V. When using the tensor:

τ̂il = 2λ2(dt)[
4

f (α) ]−2
ρ∂i∂l ln ρ, (20)

the multifractal specific potential (Q) equation can be defined as a multifractal equilibrium
equation:

ρ∂iQ = ∂l τ̂
il . (21)

The multifractal tensor τ̂il can now be written in the form:

τ̂il = η
(

∂lVi
F + ∂iV l

F

)
, (22)

with:
η = λ(dt)[

2
f (α) ]−1

ρ. (23)

Then, this is a multifractal linear constitutive equation that must be employed for a
multifractal “viscous fluid”.

3. PBL Dynamics Mimed as a Multifractal Atmospheric Tunnel Effect

Let us describe the PBL dynamics through the following assumptions:

I. The PBL, as a complex system both in a structural and functional perspective, can be
assimilated with a mathematical object of multifractal type;

II. PBL dynamics can be described through the scale relativity theory in the form of
multifractal hydrodynamic equations;

III. The PBL works as a multifractal atmospheric tunnel effect described through the
external scalar potential (see Figure 1):

U(x) =


0 −∞ < x < 0
U0 0 ≤ x ≤ a
0 a < x < +∞

, (24)

where U0 is the multifractal atmospheric barrier height and a is its width (the characteristics
of PBL).
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Then, PBL dynamics are described through the multifractal energy conservation law
of the form:

Q + U = E, (25)

or explicitly:

2λ2(dt)[
4

f (α) ]−2 ∂l∂l
√

ρ
√

ρ
+ U = E. (26)

In Equation (26), ρ is the multifractal atmospheric state density, U is the external scalar
potential, λ is the specific coefficient associated with the multifractal–non-multifractal tran-
sition, and E is the multifractal energy constant. We note that the results of Equation (26) are
given by means of the functionality of the first Newton’s principle applied to Equation (18)
on multifractal manifolds.

Considering the one-dimensional case, Equation (26) through the substitution:

√
ρ = θ(x), (27)

becomes:
∂xxθ(x) +

1

2λ2(dt)[
4

f (α) ]−2
(E−U)θ(x) = 0. (28)

In the following, the above equations will be used to mime PBL dynamics through
the multifractal atmospheric tunnel effect (any PBL structural unit with known energy
penetrates a barrier of greater energy than the incident one).

As it is shown in Figure 1, we distinguish three zones denoted by (1), (2), and (3) as:

(1). the multifractal atmospheric incidence zone;
(2). the multifractal atmospheric barrier;
(3). the multifractal atmospheric emergence zone.

In such context, if θ1, θ2, and θ3 are the multifractal functions corresponding to the
above mentioned three zones, we have the following equations:

d2θ1

dx2 + k2θ1 = 0, −∞ < x < 0 (29a)

d2θ2

dx2 − q2θ2 = 0, 0 ≤ x ≤ a (29b)

d2θ3

dx2 + k2θ3 = 0, a < x < +∞ (29c)

where:
k2 =

E

2λ2(dt)(4/ f (α))−2
, q2 =

U0 − E

2λ2(dt)(4/ f (α))−2
(30)

Now, through integration, the following solutions of the above equations are obtained:

θ1(x) = A1eikx + B1e−ikx, −∞ < x < 0 (31a)

θ2(x) = A2eqx + B2e−qx, 0 ≤ x ≤ a (31b)

θ3(x) = A3eikx, a < x < +∞ (31c)

where A1, B1, A2, B2, and A3 are constants. We note the following:

I. eikx corresponds to the multifractal incident atmospheric states density (from −∞) in
the multifractal zone (1) and to the multifractal emergent atmospheric states density
(to +∞) in the multifractal zone (3);

II. e−ikx corresponds to the multifractal reflected atmospheric states density, which
exists only in the multifractal zone (1), passing from x = 0 to x = −∞ since in the
multifractal zone (3), the external scalar potential is uniformly null.
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Since the general expression of the multifractal atmospheric current of the states
density in the one-dimensional case has the form [5,24]:

Jx = iλ(dt)(2/ f (α))−1

(
θ

dθ

dx
− θ

dθ

dx

)
(32)

then the following currents can be defined:

• The multifractal atmospheric current density of the multifractal atmospheric incident
states density in zone (1):

Ji = 2λ(dt)(
2

f (α) )−1k|A1|2 (33)

• The multifractal atmospheric current density of the multifractal atmospheric emergent
states density in zone (3):

Je = 2λ(dt)(2/ f (α))−1k|A3|2 (34)

• The multifractal atmospheric current density of the multifractal reflected atmospheric
states density:

Jr = −2λ(dt)(2/ f (α))−1|B1|2 (35)

These results give the possibility of a univocal characterization of the multifractal
atmospheric tunnel effect through the multifractal atmospheric transparency:

T =
Je

Ji
=

∣∣∣∣A3

A1

∣∣∣∣2 (36)

and the multifractal atmospheric reflectance:

R =
Jr

Ji
=

∣∣∣∣ B1

A1

∣∣∣∣2 (37)

Imposing now the coupling conditions (in x = 0 and x = a), both for the functions θi
and their derivates, i.e.,

θ1(0) = θ2(0) (38a)

dθ1

dx
(0) =

dθ2

dx
(0) (38b)

θ2(a) = θ3(a) (38c)

dθ2

dx
(a) =

dθ3

dx
(a) (38d)

the multifractal algebraic system is obtained:

A1 + B1 = A2 + B2 (39a)

ik(A1 − B1) = q(A2 − B2) (39b)

eqa A2 + e−qaB2 = eiqa A3 (39c)

q
(
eqa A2 − e−qaB2

)
= ikeiqa A3 (39d)

Following the same mathematical procedure from [24], the multifractal atmospheric
transparency takes the form:

T =
4q2k2

4q2k2 + (q2 + k2)2sh2(qa)
(40)
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while the multifractal atmospheric reflectance becomes:

R =
(k2 + q2)

2

(q2 − k2)2 + 4q2k2 · cth2(qa)
(41)

Moreover, in the old notations (30), it is obtained:

R =

U2
0sh2

{[
(U0−E)

2λ2(dt)(4/ f (α))−2

]1/2
a

}

U2
0sh2

{[
(U0−E)

2λ2(dt)(4/ f (α))−2

]1/2
a

}
+ 4E(U0 − E)

(42)

T =
4E(U0 − E)

U2
0sh2

{[
(U0−E)

2λ2(dt)(4/ f (α))−2

]1/2
a

}
+ 4E(U0 − E)

(43)

For graphical dependencies, it is preferable to use the dimensionless coordinate system:

X = ka =

 E

2λ2(dt)(
4

f (α) )−2

 1
2

a (44a)

Y = qa =

[
(U0 − E)

2λ2(dt)(4/ f (α))−2

] 1
2

a (44b)

Then, the multifractal atmospheric transparency and multifractal atmospheric re-
flectance become:

R =
(X2 + Y2)

2

(Y2 − X2)2 + 4X2Y2cth2(Y)
(45)

T =
4X2Y2

4X2Y2 + (X2 + Y2)2sh2(Y)
(46)

The 3D variations of the multifractal atmospheric transparency, T, on the dimension-
less coordinates, X and Y, are depicted in Figure 2a,b:
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The 2D variations of the multifractal atmospheric transparency, T, on the dimension-
less coordinates, X and Y, are depicted in Figure 3a,b:
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Figure 3. The 2D variations of the multifractal atmospheric transparency, T, of the dimension-
less coordinates, X and Y: (a) the dependence T = T (X, Y = constant); (b) the dependence
T = T (X = constant, Y).

In Figure 4a,b, the 3D variations of the multifractal–atmospheric reflectance, R, on the
dimensionless coordinates, X and Y, are given.
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Figure 4. The variation of the multifractal atmospheric reflectance, R, of the dimensionless coordinates,
X and Y: (a,b) the dependence R = R (X, Y).

The dependence that T manifests with regards to X involves both minimal and asymp-
totic positive variations of the multifractal atmospheric transparency, while the dependence
of T with regards to Y shows only asymptotic positive variations of this transparency.
In the case of R, the behavior is exactly opposite, with the dependence that R manifests
with regards to X involving maximal and asymptotic negative variations of the multifrac-
tal atmospheric reflectance, while the dependence of R with regards to Y involves only
asymptotic negative variations of the multifractal atmospheric reflectance.

In Figure 5a,b, the 2D variations of the multifractal–atmospheric reflectance, R, on the
dimensionless coordinates, X and Y, are given.
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Figure 5. The 2D variations of the multifractal atmospheric reflectance, R, of the dimensionless coordi-
nates, X and Y: (a) the dependence R = R (X, Y = constant); (b) the dependence R = R (X = constant, Y).

In such a frame, since X is proportional with a minimal dimension relevant to the
PBL, namely the potential barrier width a, and T has a proportionality relation with the
atmospheric PBL temperature, Figure 3a can be transformed into Figure 6.
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The theoretical results imply a temperature inversion, thus showing a good accord
with a common understanding of the atmospheric temperature profile. Furthermore, with
the decrease in transparency, a confined multifractal environment is created in the barrier,
which then leads to a greater states density and an increase in temperature, which is in
correspondence with the experimental results.

4. Experimental Design

For the purpose of confirming the reflectance and transparency results obtained so
far, real atmospheric profiles are required. This profiling is justified by the fact that our
analysis considers the PBL, and other atmospheric boundary layers, as multifractal barriers
whose lengths represent their thickness relative to an atmospheric profile perpendicular
to the ground level. Indeed, the fact that the non-dimensional parameters, X and Y, are
proportional to the parameter a points to the fact that vertical atmospheric profiles represent
the transport phenomena of multifractal atmospheric parameters through multifractal
barriers. Ideally, to test the theories of transparency, an atmospheric parameter with a high
degree of predictability and whose profile behaviors are relatively well known must be
chosen, and atmospheric temperature proves itself to be an ideal candidate. When verifying
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the inversion behavior of such a parameter, it is important to note that temperature has a
natural connection to the states density in all non-degenerated-type systems. In addition,
in our context, all multifractal physical measures are, in one way or another, proportional
or inversely proportional to the transparency in the multifractal barrier. However, what
also must be considered is that the equations for transparency and reflectance are non-
dimensional, in which case the proportionality or inverse proportionality can vary in the
way that it must be considered, and instead of perfect proportionality, patterns of behavior
must be identified.

In order for our theoretical results to be compared to real data, theoretical temperature
profiling must be achieved, and thus the transparency equation must be iterated as a model
for the theoretical modeling of the atmospheric temperature, as in Figure 6. The control
parameter of such a model, since we have considered the proportionality of X and Y to a,
is the PBLH, which in this case can be considered synonymous with a itself. To obtain the
PBLH, ceilometer data has been used, and temperature data has been obtained through
radiometer data. The ceilometer platform utilized in this study is a CHM15k ceilometer
operating at a 1064 nm wavelength, and the radiometer platform is an RPG-HATPRO
radiometer platform. Both are positioned in Galat,i, Romania, at the UGAL–REXDAN
facility found at coordinates 45.435125N, 28.036792E, 65 m ASL, which is a part of the
“Dunărea de Jos” University of Galat,i. These instruments have been chosen and set up
to conform to the standards imposed by the ACTRIS community. From a computational
perspective, the necessary calculations are performed through code written and operated
in Python 3.6. Four instances are chosen for this study: all four are time series taken on the
5th, 6th, 7th, and 8th of May 2022 (Figures 7–18). Static profiles are also shown, and all of
them are extracted from the beginning of the time series (Figures 19–22).
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Figure 22. Profile of atmospheric temperature; radiometer data and theoretical model data; Galati,
Romania, 8 May 2022; straight line: radiometer temperature; dotted line: theoretical temperature.

As can be seen in the timestamps of the time series, they all represent datasets taken for
the entirety of each day, starting from midnight (Figures 7–18). The temporal resolution of
the ceilometer data is one profile every minute, and the spatial resolution is 3.5 m. From the
ceilometer profiles, typical low atmosphere behaviors are readily available, and the diurnal–
nocturnal cycle of the PBL can be observed (Figures 7, 10, 13 and 16). To determine PBLH,
a vertical spatial derivative algorithm was applied to the profiles—this well-established
method, called the “gradient method”, has also been compared in past studies with more
current algorithms [25–27]. This PBLH is then iterated in order to produce the theoretical
temperature time series as previously explained (Figures 9, 12, 14 and 18). It is found
that while the theoretical time series seems to slightly overestimate the inversion and
slightly underestimate the temperature lapse at higher altitudes, they are a close match
to the behavior of the experimental time series (Figures 8, 9, 11–14, 17 and 18). These
results point towards the fact that our multifractal interpretation has merits, meaning that
the model does predict the temperature inversion and subsequent lapse throughout the
atmosphere. Considering the fundamental capability of the model to properly assess the
general behavior and evolution of the experimental data, it can be used in future studies as a
theoretical predictor of atmospheric temperature if further adjustments are performed. For
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a more precise analysis of the order differences between the experimental and theoretical
temperature datasets to be performed, static profiles are shown next.

A discussion regarding the nature of temperature profiles is in order; it is known
that for diurnal profiles, there exists a slightly greater decrease in temperature in the SL,
and for nocturnal profiles, there is an inversion at the SL [1,28–31]. Otherwise, inversions
also mark the occurrence of the PBLH [1]. In this case, solely nocturnal profiles have been
chosen from the beginning of the time series. As can be seen in the temperature profile
figures, the theoretical model predicts the inversion at the boundary layer, although once
again, it does not always accurately predict the altitude at which the inversion takes place
(Figures 19–22). This is because the model has not been adjusted to account for any surface
radiative effects, merely taking into consideration the effects of the boundary layer. That
being said, maximal differences between the theoretical and the experimental temperature
profiles are on the order of degrees throughout the entirety of the profile; thus, it is possible
to state that the model shows success in approximating both the order and the spatial
evolution of the atmospheric temperature profile and iterating it with PBLH data produces
satisfactory results. The slight differences between Figures 19 and 22, Figures 20 and 21
must also be highlighted—even though the order of the differences between the theoretical
and real profiles seems to remain the same, the theoretical profile in Figure 22 might show a
more favorable shape because of the slightly lower temperature gradient that can be found
in the early segment of the dataset represented by Figure 17.

5. Conclusions

In conclusion, by employing a multifractal interpretation of atmospheric dynamics,
wherein the laws that govern atmospheric motions are reliant on the notion of scale resolu-
tion, it is possible to construct the framework for atmospheric parameter behavior inversion.
By considering the atmosphere from a multifractal states density perspective, the PBL, or
any other atmospheric boundary layer, can be stated as a potential barrier with associated
transparencies and reflectance, which directly govern the fluctuations of all multifractal
atmospheric parameters. This is then found, through the use of non-dimensional plotting,
to imply inversions in such parameters, including temperature. Finally, radiometer data of-
fers various examples of atmospheric temperature inversions, wherein theoretical products
made by iterating the model with PBLH data given by a ceilometer platform agree with
experimental data.
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