Mixed Neutral Caputo Fractional Stochastic Evolution Equations with Infinite Delay: Existence, Uniqueness and Averaging Principle
Abstract
:1. Introduction
- In view of the research gaps and pressing needs, the infinite delays are taken into consideration, which makes the underlying model and the obtained results more general and applicable.
- The local and global existence and uniqueness results for Equation (1), under local and global Carathéodory conditions by means of successive approximation and stopping time techniques, are rarely available in the literature, which is the key inspiration to our research work in this article and seems to be new to our knowledge.
- By using stochastic analysis techniques, we analyzed the averaging results under global Carathéodory conditions for the proposed model (1).
2. Preliminaries
- (i)
- is -adapted;
- (ii)
- for arbitrary , satisfies the following integral form:
3. Existence and Uniqueness
4. Averaging Principle
5. Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dzielinski, A.; Sierociuk, D.; Sarwas, G. Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Rihan, F.A. Numerical modeling of fractional-order biological systems. Abstr. Appl. Anal. 2013, 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- Rihan, F.A.; Lakshmanan, S.; Hashish, A.H.; Rakkiyappan, R.; Ahmed, E. Fractional-order delayed predator-prey systems with Holling type-II functional response. Nonlinear Dyn. 2015, 80, 777–789. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Dabiri, A.; Machado, J.A.T. Application of Variable-Order-Fractional Calculus in Solid Mechanics; De Gruyter: Berlin, Boston, 2019; pp. 207–224. [Google Scholar]
- Moghaddam, B.P.; Machado, J.A.T. Time analysis of forced variable-order fractional Vander Pol oscillator. Eur. Physucal J. Spec. Top. 2017, 226, 3803–3810. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Dabiri, A.; Lopes, A.M.; Machado, J.A.T. Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials. Comput. Appl. Math. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Lopes, A.M.; Machado, J.A.T.; Mostaghim, Z.S. Computational scheme for solving nonlinear fractional stochastic differential equations with delay. Stoch. Anal. Appl. 2019, 37, 893–908. [Google Scholar] [CrossRef]
- Maleknejad, K.; Hashemizadeh, E. Numerical solution of the dynamic model of a chemical reactor by hybrid functions. Procedia Comput. Sci. 2011, 3, 908–912. [Google Scholar] [CrossRef] [Green Version]
- Sahlan, M.N.; Hashemizadeh, E. Wavelet Galerkin method for solving nonlinear singular boundary value problems arising in physiology. Appl. Math. Compuation 2015, 250, 260–269. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Mostaghim, Z.S. Modified finite difference method for solving fractional delay differential equations. Bol. Soc. Parana. Matemática 2017, 35, 49–58. [Google Scholar] [CrossRef]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Sierociuk, D.; Dzielinski, A.; Sarwas, G.; Petras, I.; Podlubny, I.; Skovranek, T. Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 2013, 371, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadha, A.; Pandey, D.N. Existence results for an impulsive neutral fractional integrodifferential equation with infinite delay. Int. J. Diff. Equ. 2014, 2014, 10. [Google Scholar] [CrossRef] [Green Version]
- Gautum, G.R.; Dabas, J. Results of local and global mild solution for impulsive fractional differential equation with state dependent delay. Diff. Equ. Appl. 2014, 6, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Xie, S. Existence results of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay. Fract. Calc. Appl. Anal. 2014, 17, 1158–1174. [Google Scholar] [CrossRef] [Green Version]
- Lizama, C.; NGuérékata, G.M. Mild solutions for abstract fractional differential equations. Appl. Anal. 2013, 92, 1731–1754. [Google Scholar] [CrossRef]
- Li, K.; Jia, J. Existence and uniqueness of mild solutions for abstract delay fractional differential equations. Comp. Math. Appl. 2011, 62, 1398–1404. [Google Scholar] [CrossRef] [Green Version]
- Øksendal, B. Stochastic Differential Equations: An Introduction with Applications; Springer Science Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mao, X. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Øksendal, B. Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Lv, J.; Yang, X. A class of Hilfer fractional stochastic differential equations and optimal control. Adv. Diff. Equ. 2019, 2019, 17. [Google Scholar] [CrossRef]
- Muthukumar, P.; Thiagu, K. Existence of solutions and approximate controllability of fractional nonlocal stochastic differential equations of order 1 < q⩽2 with infinite delay and Poisson jumps. Differ. Equ. Dyn. Syst. 2018, 26, 15–36. [Google Scholar]
- Benchaabanea, A.; Sakthivel, R. Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients. J. Comp. Appl. Math. 2017, 312, 65–73. [Google Scholar] [CrossRef]
- Rihan, F.A.; Rajivganthi, C.; Muthukumar, P. Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control. Discrete Dyn. Nat. Soc. 2017, 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Li, K. Stochastic delay fractional evolution equations driven by fractional Brownian motion. Math. Methods Appl. Sci. 2015, 38, 1582–1591. [Google Scholar] [CrossRef] [Green Version]
- Chadha, A.; Pandey, D.N. Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay. Nonlinear Anal. 2015, 128, 149–175. [Google Scholar] [CrossRef]
- Wang, J.R. Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces. Appl. Math. Comput. 2015, 256, 315–323. [Google Scholar] [CrossRef]
- Sakthivel, R.; Revathi, P.; Ren, Y. Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal. 2013, 81, 70–86. [Google Scholar] [CrossRef]
- Sakthivel, R.; Revathi, P.; Anthoni, S.M. Existence of pseudo almost automorphic mild solutions to stochastic fractional differential equations. Nonlinear Anal. 2012, 75, 3339–3347. [Google Scholar] [CrossRef]
- Abouagwa, M.; Liu, J.; Li, J. Carathéodory approximations and stability of solutions to non-Lipschitz stochastic fractional differential equations of Itô-Doob type. Appl. Math. Comput. 2018, 329, 143–153. [Google Scholar] [CrossRef]
- Abouagwa, M.; Li, J. Stochastic fractional differential equations driven by Lévy noise under Carathéodory conditions. J. Math. Phys. 2019, 60, 1–17. [Google Scholar] [CrossRef]
- Abouagwa, M.; Cheng, F.; Li, J. Impulsive stochastic fractional differential equations driven by fractional Brownian motion. Adv. Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Khalaf, A.D.; Abouagwa, M.; Mustafa, A.; Wang, X. Stochastic Volterra integral equations with jumps and the strong superconvergence of the Euler–Maruyama approximation. J. Comput. Appl. Math. 2021, 382, 113071. [Google Scholar] [CrossRef]
- Abouagwa, M.; Bantan, R.A.R.; Almutiry, W.; Khalaf, A.D.; Elgarhy, M. Mixed Caputo fractional neutral stochastic differential equations with impulses and variable delay. Fractal Fract. 2021, 5, 239. [Google Scholar] [CrossRef]
- Hale, J.; Lunel, S. Introduction to Functional Differential Equations; Springer: New York, NY, USA, 1991. [Google Scholar]
- Hale, J.; Meyer, K. A class of functional equations of neutral type. Mem. Am. Math. Soc. 1967, 76, 1–65. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Yan, L. Existence results for fractional neutral stochastic integrodifferential equations with infinite delay. J. Phys. A Math. Theory 2011, 44, 1–16. [Google Scholar] [CrossRef]
- Alnafisah, Y.; Ahmed, H.M. Neutral delay Hilfer fractional integrodifferential equations with fractional Brownian motion. Evol. Equ. Control Theory 2021. [Google Scholar] [CrossRef]
- Rajivganthi, C.; Muthukumar, P.; Ganesh Priya, B. Successive approximation and optimal controls on fractional neutral stochastic differential equations with Poisson jumps. Optim. Control Appl. Methods 2016, 37, 627–640. [Google Scholar] [CrossRef]
- Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Nisar, K.S. A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. Chaos Solitons Fractals 2021, 142, 12. [Google Scholar] [CrossRef]
- Dineshkumar, C.; Udhayakumar, R. New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay integro-differential systems. Numer. Methods Partial Differ. Equ. 2021, 37, 1072–1090. [Google Scholar] [CrossRef]
- Khasminskii, R.Z. A limit theorem for the solution of differential equations with random right-hand sides. Theory. Probab. Appl. 1963, 11, 390–405. [Google Scholar] [CrossRef]
- Khalaf, A.D.; Abouagwa, M.; Wang, X. Periodic averaging method for impulsive stochastic dynamical systems driven by fractional Brownian motion under non-Lipschitz condition. Adv. Differ. Equ. 2019, 526, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Abouagwa, M.; Li, J. G-neutral stochastic differential eqautions with variable delay and non-Lipschitz coefficients. Discret. Contin. Dyn. Syst. Ser. B 2020, 25, 1583–1606. [Google Scholar]
- Duan, P.; Li, H.; Li, J.; Zhang, P. Averaging Principle for Caputo Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion with Delays. Complexity 2021, 2021, 8. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, J.; Yuan, C. Averaging principle for a type of Caputo fractional stochastic differential equations. Chaos 2021, 31, 053123. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yan, L.; Hu, J.; Guo, Z. An averaging principle for Mckean-Vlasov-type Caputo fractional stochastic differential equations. J. Math. 2021, 2021, 11. [Google Scholar] [CrossRef]
- Luo, D.; Zhu, Q.; Luo, Z. A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients. Appl. Math. Lett. 2021, 122, 107549. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Zhu, Q. The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math. Lett. 2021, 112, 106755. [Google Scholar] [CrossRef]
- Luo, D.; Zhu, Q.; Luo, Z. An averaging principle for stochastic fractional differential equations with time-delays. Appl. Math. Lett. 2020, 105, 106290. [Google Scholar] [CrossRef]
- Shen, G.; Wu, J.-L.; Yin, X. Averaging principle for fractional heat equations driven by stochastic measures. Appl. Math. Lett. 2020, 106, 106404. [Google Scholar] [CrossRef]
- Xu, W.; Duan, J.; Xu, W. An averaging principle for fractional stochastic differential equations with Lévy noise. Chaos 2020, 30, 083126. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xu, W.; Zhang, S. The averaging principle for stochastic differential equations with Caputo fractional derivative. Appl. Math. Lett. 2019, 93, 79–84. [Google Scholar] [CrossRef]
- Abouagwa, M.; Li, J. Approximation properties for solutions to Itô-Doob stochastic fractional differential equations with non-Lipschitz coefficients. Stoch. Dyn. 2019, 19, 21. [Google Scholar] [CrossRef]
- Liu, J.; Xu, W. An averaging result for impulsive fractional neutral stochastic differential equations. Appl. Math. Lett. 2021, 114, 106892. [Google Scholar] [CrossRef]
- Shen, G.; Wu, J.-L.; Xiao, R.; Yin, X. An averaging principle for neutral stochastic fractional order differential equations with variable delays driven by Lévy noise. Stoch. Dyn. 2021. [Google Scholar] [CrossRef]
- Xu, W.; Xu, W. An effective averaging theory for fractional neutral stochastic equations of order 0 < α < 1 with Poisson jumps. Appl. Math. Lett. 2020, 106, 6. [Google Scholar]
- Ramkumar, K.; Ravikumar, K.; Varshini, S. Fractional neutral stochastic differential equations with Caputo fractional derivative: Fractional Brownian motion, Poisson jumps, and optimal control. Stoch. Anal. Appl. 2020, 157–176. [Google Scholar] [CrossRef]
- Lakhel, E.; McKibben, M.A. Existence of solutions for fractional neutral functional differential equations driven by fBm with infinite delay. Stochastics 2018, 90, 313–329. [Google Scholar] [CrossRef]
- Dhanalakshmi, K.; Balasubramaniam, P. Stability result of higher-order fractional neutral stochastic differential system with infinite delay driven by Poisson jumps and Rosenblatt process. Stoch. Anal. Appl. 2020, 38, 352–372. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Alos, E.; Mazet, O.; Nualart, D. Stochastic Calulus with respect to Gaussian processes. Ann. Probab. 1999, 29, 766–801. [Google Scholar]
- Mishura, Y. Stochastic Calulus for Fractional Brownian Motion and Retarted Topics. In Lecture Notes in Mathematics; Springer Science Business Media: Berlin/Heidelberg, Germany, 2008; Volume 1929. [Google Scholar]
- Nualart, D. The Malliavin Calculus and Related Topics, 2nd ed.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Khalaf, A.D.; Zeb, A.; Saeed, T.; Abouagwa, M.; Djilali, S.; Alshehri, H. A special study of the mixed weighted fractional Brownian motion. Fractal Fract. 2021, 5, 192. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: London, UK, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Ren, Y.; Zhou, Q.; Chen, L. Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay. J. Optim. Theory Appl. 2011, 149, 315–331. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abouagwa, M.; Aljoufi, L.S.; Bantan, R.A.R.; Khalaf, A.D.; Elgarhy, M. Mixed Neutral Caputo Fractional Stochastic Evolution Equations with Infinite Delay: Existence, Uniqueness and Averaging Principle. Fractal Fract. 2022, 6, 105. https://doi.org/10.3390/fractalfract6020105
Abouagwa M, Aljoufi LS, Bantan RAR, Khalaf AD, Elgarhy M. Mixed Neutral Caputo Fractional Stochastic Evolution Equations with Infinite Delay: Existence, Uniqueness and Averaging Principle. Fractal and Fractional. 2022; 6(2):105. https://doi.org/10.3390/fractalfract6020105
Chicago/Turabian StyleAbouagwa, Mahmoud, Lama S. Aljoufi, Rashad A. R. Bantan, Anas D. Khalaf, and Mohammed Elgarhy. 2022. "Mixed Neutral Caputo Fractional Stochastic Evolution Equations with Infinite Delay: Existence, Uniqueness and Averaging Principle" Fractal and Fractional 6, no. 2: 105. https://doi.org/10.3390/fractalfract6020105
APA StyleAbouagwa, M., Aljoufi, L. S., Bantan, R. A. R., Khalaf, A. D., & Elgarhy, M. (2022). Mixed Neutral Caputo Fractional Stochastic Evolution Equations with Infinite Delay: Existence, Uniqueness and Averaging Principle. Fractal and Fractional, 6(2), 105. https://doi.org/10.3390/fractalfract6020105