Analysis of a Time-Fractional Substantial Diffusion Equation of Variable Order
Abstract
:1. Introduction
2. Existence and Uniqueness
3. Weighted Regularity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Deng, W. Discretized fractional substantial calculus. ESAIM M2AN 2015, 49, 373–394. [Google Scholar]
- Friedrich, R.; Jenko, F.; Baule, A.; Eule, S. Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 2006, 96, 230601. [Google Scholar]
- Chen, M.; Deng, W. High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 2015, 37, A890–A917. [Google Scholar]
- Deng, W.; Chen, M.; Barkai, E. Numerical algorithms for the forward and backward fractional Feynman-Kac equations. J. Sci. Comput. 2015, 62, 718–746. [Google Scholar]
- Deng, W. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 2009, 47, 204–226. [Google Scholar]
- Fahad, H.; Rehman, M. Generalized substantial fractional operators and well-posedness of Cauchy problem. Bull. Malays. Math. Sci. Soc. 2021, 44, 1501–1524. [Google Scholar]
- Huang, C.; Zhang, Z.; Song, Q. Spectral methods for substantial fractional differential equations. J. Sci. Comput. 2018, 74, 1554–1574. [Google Scholar]
- Ortigueira, M.; Bengochea, G.; Machado, J. Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron. Math. Meth. Appl. Sci. 2021, 44, 9191–9209. [Google Scholar]
- Zayernouri, M.; Ainsworth, M.; Karniadakis, G. Tempered fractional Sturm–Liouville EigenProblems. SIAM J. Sci. Comput. 2015, 37, A1777–A1800. [Google Scholar]
- Fu, Z.; Reutskiy, S.; Sun, H.; Ma, J.; Khan, M. A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl. Math. Lett. 2019, 94, 105–111. [Google Scholar]
- Wang, H.; Zheng, X. Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 2019, 475, 1778–1802. [Google Scholar]
- Zhang, Y.; Green, C.; Baeumer, B. Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings. J. Hydrol. 2014, 512, 315–331. [Google Scholar]
- Zheng, X.; Wang, H. A hidden-memory variable-order fractional optimal control model: Analysis and approximation. SIAM J. Control Optim. 2021, 59, 1851–1880. [Google Scholar]
- Zheng, X.; Wang, H. Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer. Anal. 2021, 41, 1522–1545. [Google Scholar]
- Zheng, X.; Wang, H. An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation. SIAM J. Numer. Anal. 2020, 58, 2492–2514. [Google Scholar]
- Zheng, X.; Wang, H. Analysis and numerical approximation to time-fractional diffusion equation with a general time-dependent variable order. Nonlinear Dyn. 2021, 104, 4203–4219. [Google Scholar]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dynam. 2002, 29, 57–98. [Google Scholar]
- Samko, S.; Ross, B. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar]
- Hendy, A. Numerical treatment for after-effected multi-term time-space fractional advection-diffusion equations. Engrg. Comput. 2021, 37, 2763–2773. [Google Scholar]
- Jiang, S.; Zhang, J.; Zhang, Q.; Zhang, Z. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 2017, 21, 650–678. [Google Scholar]
- Kumar, S.; Kumar, A.; Samet, B.; Gómez-Aguilar, J.; Osman, M. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos Solitons Fractals 2020, 141, 110321. [Google Scholar]
- Kumar, S.; Kumar, R.; Osman, M.; Samet, B. A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Partial Differ. Equ. 2021, 37, 1250–1268. [Google Scholar]
- Li, B.; Ma, S. Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 2022. [Google Scholar] [CrossRef]
- Luchko, Y. Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. Fract. Calc. Appl. Anal. 2012, 15, 141–160. [Google Scholar]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar]
- Sakamoto, K.; Yamamoto, M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar]
- Veeresha, P.; Prakasha, D.; Kumar, S. A fractional model for propagation of classical optical solitons by using nonsingular derivative. Math. Meth. Appl. Sci. 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Wang, H.; Guo, X. Analysis of a Time-Fractional Substantial Diffusion Equation of Variable Order. Fractal Fract. 2022, 6, 114. https://doi.org/10.3390/fractalfract6020114
Zheng X, Wang H, Guo X. Analysis of a Time-Fractional Substantial Diffusion Equation of Variable Order. Fractal and Fractional. 2022; 6(2):114. https://doi.org/10.3390/fractalfract6020114
Chicago/Turabian StyleZheng, Xiangcheng, Hong Wang, and Xu Guo. 2022. "Analysis of a Time-Fractional Substantial Diffusion Equation of Variable Order" Fractal and Fractional 6, no. 2: 114. https://doi.org/10.3390/fractalfract6020114
APA StyleZheng, X., Wang, H., & Guo, X. (2022). Analysis of a Time-Fractional Substantial Diffusion Equation of Variable Order. Fractal and Fractional, 6(2), 114. https://doi.org/10.3390/fractalfract6020114