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Abstract: This paper proposes new numerical algorithms for calculating the time domain responses
of fractional order transfer functions (FOTFs). FOTFs are divided into two categories, explicit
fractional order transfer functions (EFOTFs) and implicit fractional order transfer functions (IFOTFs).
Transforming an EFOTF into an equivalent fractional order differential equation, its time domain
response can be obtained by solving the equation by the difference method. IFOTF cannot be
transformed into an equivalent equation, so its time domain response cannot be calculated by existing
difference methods. A new numerical algorithm is designed for calculating a convolution and its
inverse operation, the time domain response of IFOTF can be calculated based on the algorithm. Error
analysis shows that the proposed numerical algorithms are of first-order accuracy. Four calculation
examples are presented, and the results are consistent with the theoretical analysis.

Keywords: fractional order transfer function; time domain response; numerical algorithm; benchmark
problem

1. Introduction

Fractional calculus is a theory about the integration and differentiation of non-integer
order. It is a powerful tool to describe systems which have long-term memory and long-
range spatial interaction. Fractional calculus has been applied in control theory in recent
years, and there have been many theoretical achievements in controllability [1,2], observ-
ability [3,4], stability [5–7], robustness [8,9] and control methods [10–12]. At the same
time, fractional order theory has also achieved great success in control engineering, such
as the fractional order PID controller [13,14], air-based precision positioning system [15],
fractional order positive position feedback compensator [16], and fractional order gray
model [17,18]. More achievements can be found in [19].

As many novel fractional order transfer functions (FOTFs) have emerged in the above
applications, an urgent problem is how to calculate their time domain responses. It is
usually difficult to find the analytical expression of the time domain response; therefore,
numerical algorithms are used to solve this problem. If a FOTF can be transformed into
an equivalent fractional order differential equation, its time domain response can be calcu-
lated by solving the equation with a numerical algorithm; such a FOTF is called explicit
fractional order transfer function (EFOTF) in this paper. There are many numerical algo-
rithms for solving fractional order differential equations, such as the linear multi-step algo-
rithm [20–22], separation of variables algorithm [23], predictor–corrector algorithm [24–26],
matrix method [27] and some recently proposed algorithms [28–30]. In addition, the time
domain response of EFOTF can also be calculated by MATLAB toolbox, FOTF [31].

If a FOTF cannot be transformed into an equivalent fractional order differential equa-
tion, its time domain response cannot be calculated by the difference algorithm; such a
FOTF is called implicit fractional order transfer function (IFOTF) in this paper. Some
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frequency methods are effective for some simple IFOTFs, for example, the time domain
response of the following IFOTF can be calculated by the method proposed in [32].

F(s) =
1(

1 + s
PT

)α , (1)

where PT is the transitional frequency, and α is a real number between 0 and 1. However, it
is difficult to estimate the calculation error, and frequency methods are ineffective for more
complex IFOTFs, such as

F(s) =
340

s0.756(s2 + 3.85s + 5880)1.15 . (2)

The IFOTF is a model of ionic polymer metal composite (IPMC) proposed in [33]; more
information can be found in [34,35]. Therefore, a time domain algorithm is needed, which
can calculate the time response of the IFOTF directly.

The main contribution of this work is to design a numerical algorithm for the IFOTF.
The time domain response can be calculated by the proposed algorithm without considering
the specific form of the IFOTF. The error analysis is presented, and it is proved that
the proposed algorithm is of first-order accuracy. For the IFOTFs which can only be
analyzed by frequency methods before, the proposed algorithm can give their time domain
characteristics directly. The IFOTF is analyzed in both the frequency domain and time
domain, so the result is more reliable.

Section 1 is devoted to expound the background and the significance of this work. The
definition and the notation are introduced in Section 2. The first algorithm is proposed
for EFOTF in Section 3. The second algorithm is designed for IFOTF based on the first
algorithm in Section 4. The error analysis is presented in Section 5. Section 6 consists of
four calculation examples. Section 7 contains the conclusion and the future work.

2. Definition

There are different fractional order definitions; Riemann–Liouville (RL) and Caputo
definitions are used in this paper.

Definition 1 ([36]). The RL fractional order derivative is defined as

RL
t0

Dα
t f (t) =

1
Γ(n− α)

dn

dtn

∫ t

t0

f (τ)

(t− τ)α−n+1 dτ, (3)

where t0 is an arbitrary real constant, α is a real constant bigger than zero, n = dαe, variable
t ∈ [t0,+∞), Γ is the Gamma function.

Definition 2 ([37]). The Caputo fractional order derivative is defined as

C
t0
Dα

t f (t) =
1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α−n+1 dτ. (4)

The parameters in (3) and (4) have the same meaning.

In (3) and (4), t0 denotes the initial time. If t0 6= 0, it can always be converted to zero
by variable substitution; therefore, t0 is always equal to zero.

The transfer function refers to the ratio of the Laplace transform of the response
(output) to the Laplace transform of the excitation (input) under the zero initial condition.
Therefore, it is always assumed that the function has a zero initial condition when discussing
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the transfer function. Under the zero initial condition, Definitions 1 and 2 are equivalent [36];
they are written as 0D

α
t f (t), i.e.,

0D
α
t f (t) = RL

0 Dα
t f (t) = C

0 Dα
t f (t). (5)

FOTFs are divided into two categories, EFOTF and IFOTF.

Definition 3. The explicit fractional order transfer function (EFOTF) is defined as

F(s) =
bmsβm + bm−1sβm−1 + · · ·+ b1sβ1

ansαn + an−1sαn−1 + · · ·+ a1sα1
, (6)

where s is a complex variable, coefficients a1, · · · , an, b1, · · · , bm are all real constants, orders
αn > · · · > α1 > 0, βm > · · · > β1 > 0 are all nonnegative real constants, and αn > βm.

Definition 4. The implicit fractional order transfer function (IFOTF) is defined as

F(s) =

(
bmsβm + bm−1sβm−1 + · · ·+ b1sβ1

)µ2/ν2(
ansαn + an−1sαn−1 + · · ·+ a1sα1

)µ1/ν1
, (7)

where µ1, ν1, µ2, ν2 are all positive integers, other parameters have the same meaning as the
parameters in (6).

The topic of this paper is how to calculate the time domain response of (6) and (7).
The details of the problem are described below. The time interval [0, T] is divided into N
identical subintervals and the step size h = T/N. The value of the excitation u(t) at the
grid point is written as uk(0 6 k 6 N). The same notation is applied to the response y(t),
written as yk(0 6 k 6 N). The problem is how to calculate the response yk of (6) and (7),
under some given excitation uk.

3. The Numerical Algorithm for EFOTF

The numerator and denominator of (6) are denoted as V(s) and W(s), and the Laplace
transforms of excitation u(t) and response y(t) are written as U(s) and Y(s). EFOTF (6) is
written as

W(s)Y(s) = V(s)U(s). (8)

According to the convolution theorem, the inverse Laplace transform of (8) is∫ t

0
w(τ)y(t− τ)dτ =

∫ t

0
v(τ)u(t− τ)dτ, (9)

where v(t) and w(t) are the inverse Laplace transforms of W(s) and V(s), respectively. The
trapezoidal rule is employed to calculate the two integrals in (9),

h

(
k−1

∑
j=1

wj yk−j +
w0 yk + wk y0

2

)
= h

(
k−1

∑
j=1

vj uk−j +
v0 uk + vk u0

2

)
+ O(h2). (10)

The recurrence formula is obtained from (10),

yk =
2

w0

k−1

∑
j=1

(vj uk−j − wj yk−j) +
v0 uk + vk u0 − wk y0

w0
+ O(h). (11)

Formula (11) can be used to calculate yk, as long as wj and vj are known. The following
method is proposed for calculating wj and vj.



Fractal Fract. 2022, 6, 122 4 of 14

EFOTF (6) is equivalent to the following fractional order differential equation,

n

∑
i=1

ai 0D
αi
t y(t) =

m

∑
i=1

bi 0D
βi
t u(t), (12)

with zero initial condition, its solution is the response of (6).
The fractional linear multistep method [21,22] is employed to calculate the fractional

order derivative in (12),

0D
αi
t y(t)|t=kh =

1
hαi

k

∑
j=0

ω
(αi ,p)
j yk−j + O(hp), (13)

where the coefficient ω
(αi ,p)
j is calculated by the following recursive formula,

ω
(αi ,p)
j =



0, j < 0,

θ
αi
0 , j = 0,

− 1
θ0

p

∑
k=1

θk

(
1− k

1 + αi
j

)
ω
(αi ,p)
j−k , j > 0.

(14)

The calculation error of (13) is O(hp), and the proof can be found in [21].
Plug (13) into (12). It yields

n

∑
i=0

ai
hαi

k

∑
j=0

ω
(αi ,p)
j yk−j =

m

∑
i=0

bi

hβi

k

∑
j=0

ω
(βi ,p)
j uk−j + O(hp). (15)

Multiply both sides of (15) by step size h, transpose the order of summation,

h
k

∑
j=0

(
n

∑
i=0

ai
hαi

ω
(αi ,p)
j

)
· yk−j = h

k

∑
j=0

(
m

∑
i=0

bi

hβi
ω
(βi ,p)
j

)
· uk−j + O(hp+1). (16)

Set p = 1 in (16) and compare (10) and (16). It yields the recurrence formula for
calculating wj and vj,

wj =
n

∑
i=0

ai
hαi

ω
(αi ,1)
j + O(h), vj =

m

∑
i=0

bi

hβi
ω
(βi ,1)
j + O(h), when 0 < j < k,

wj = 2
n

∑
i=0

ai
hαi

ω
(αi ,1)
j + O(h), vj = 2

m

∑
i=0

bi

hβi
ω
(βi ,1)
j + O(h), when j = 0 or k.

(17)

The above calculation process is summarized as the numerical algorithm.

Algorithm 1. Calculating the time domain response of EFOTF (6).

1. Calculate wj, vj by (17).
2. Use (11) to calculate yk, the time domain response at the grid point.

4. The Numerical Algorithm for IFOTF

There is no equation equivalent to IFOTF (7), so its time domain response cannot
be calculated by Algorithm 1. A new numerical algorithm is proposed for IFOTF in
this section.

The numerator and denominator of (7) are denoted as V̂(s) and Ŵ(s), and the Laplace
transforms of excitation u(t) and response y(t) are written as U(s) and Y(s). IFOTF (7) is
written as

Ŵ(s)Y(s) = V̂(s)U(s). (18)



Fractal Fract. 2022, 6, 122 5 of 14

Take the ν1ν2th power of both sides of (18),

Ŵν1ν2(s)Yν1ν2(s) = V̂ν1ν2(s)Uν1ν2(s), (19)

where Ŵν1ν2(s) and V̂ν1ν2(s) are polynomials. Consider Uν1ν2(s) as the excitation and
Yν1ν2(s) as the response. An equivalent EFOTF is obtained,

Yν1ν2(s)
Uν1ν2(s)

=
(∑n

i=1 ai sαi )µ1(
∑m

i=1 bi sβi
)µ2

. (20)

4.1. Numerical Convolution

According to the convolution theorem, the inverse Laplace transform of Uν1ν2(s) is

L −1{Uν1ν2(s)} = u(t) ∗ u(t) ∗ · · · ∗ u(t)︸ ︷︷ ︸
ν1ν2

. (21)

The notation ∗ denotes a convolution,

u(t) ∗ u(t) =
∫ t

0
u(t− τ)u(τ)dτ. (22)

The value of u(jh) is written as uj, and h is the step size. Assume that the first-order
error is contained in uj, i.e.,

uj = u(jh) + O(h), (0 6 j 6 N). (23)

Apply the trapezoidal rule to calculate the value of (22),

∫ kh

0
u(kh− τ)u(τ)dτ = h

k

∑
j=0

uk−j uj −
h
2
(u0uk + uku0) + O(h2)

k

∑
j=0

uj + O(h2)

= h
k

∑
j=0

uk−j uj + O(h), (0 6 k 6 N).

(24)

Although uj contains O(h), (24) is still of first-order accuracy. Therefore, the right
side of (21) can be calculated by applying (24) repeatedly. The result remains of first-order
accuracy.

The generating polynomial is introduced to simplify the expression. The generating
polynomial of uj is defined as

ū(x) =
N

∑
j=0

uj xj, (25)

where uj is defined as (23). The square of ū(x) is

ū2(x) =
2N

∑
k=0

( k

∑
j=0

uk−j uj

)
xk. (26)

Comparing (24) and (26), it yields that the result of (24) is the coefficient of (26)
multiplied by step size h. The right side of (21) can be calculated by this method. It is
expressed as,

u(t) ∗ u(t) ∗ · · · ∗ u(t)︸ ︷︷ ︸
ν1ν2

|t=kh = hν1ν2−1Sk(ūν1ν2(x)) + O(h), (0 6 k 6 N), (27)

where Sk represents selecting the coefficient of xk.
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The result of (27) is the value of L −1{Uν1ν2(s)} at grid point. It is the excitation of
(20). Because (20) is an EFOTF, its response can be calculated by Algorithm 1. The result is
written as Rk (0 6 k 6 N). The result is also the value of L −1{Yν1ν2(s)} at grid point, so it
yields the equation,

y(t) ∗ y(t) ∗ · · · ∗ y(t)︸ ︷︷ ︸
ν1ν2

|t=kh = Rk + O(h), (0 6 k 6 N). (28)

4.2. Numerical Inversion of Convolution

The solution of (28) is written as yj(0 6 j 6 N), and its generating polynomial is

ȳ(x) =
N

∑
j=0

yj xj. (29)

Calculate the left side of (28) by the same method as (27) and ignore the small quantity
term O(h). The following equation is obtained:

hν1ν2−1Sk(ȳν1ν2(x)) = Rk, (0 6 k 6 N). (30)

Let x = 0 and k = 0 in (30). It yields

y0 =
(

R0h1−ν1ν2
) 1

ν1ν2 . (31)

It is supposed that y0, · · · , yk−1 are calculated, and thus, yk can be calculated by the
following method. The polynomial ȳ(x) is written as the sum of three parts,

ȳ(x) = ȳl(x) + ȳe(x) + ȳh(x) =
k−1

∑
j=0

yj xj + yk xk +
N

∑
j=k+1

yj xj. (32)

According to the binomial theorem,

ȳν1ν2(x) =
(
ȳl(x) + ȳe(x)

)ν1ν2 +
ν1ν2

∑
j=1

(
ν1ν2

j

)
ȳj

h(x)
(
ȳl(x) + ȳe(x)

)ν1ν2−j

=
ν1ν2

∑
j=0

(
ν1ν2

j

)
ȳj

e(x)ȳν1ν2−j
l (x) +

ν1ν2

∑
j=1

(
ν1ν2

j

)
ȳj

h(x)
(
ȳl(x) + ȳe(x)

)ν1ν2−j

= ȳν1ν2
l (x) + ν1ν2ȳν1ν2−1

l (x)ȳe(x) +
ν1ν2

∑
j=2

(
ν1ν2

j

)
ȳj

e(x)ȳν1ν2−j
l (x)

+
ν1ν2

∑
j=1

(
ν1ν2

j

)
ȳj

h(x)
(
ȳl(x) + ȳe(x)

)ν1ν2−j.

(33)

In (33), only the first and the second terms contain xk, Bk1 denotes the coefficient of xk

contained in the first term, and Bk2 denotes the coefficient of xk contained in the second
term. Plug Bk1 and Bk2 into (30). It yields,

Bk1 + Bk2 = Rkh1−ν1ν2 . (34)
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Expand the second term of (33),

ν1ν2ȳν1ν2−1
l (x)ȳe(x) = ν1ν2ykxk

( k−1

∑
j=0

yj xj
)ν1ν2−1

= ν1ν2ykyν1ν2−1
0 xk + ν1ν2ykxk

( k−1

∑
j=1

yj xj
)ν1ν2−1

.

(35)

The second term of (35) only contains the term whose order is higher than k, so Bk2 is
equal to the coefficient of the fist term in (35),

Bk2 = ν1ν2yν1ν2−1
0 yk. (36)

Lemma 1 is cited from [38] for expanding the first term of (33).

Lemma 1 ([38]). Let c be a positive integer. For all x1, x2, · · · , xd,

(x1 + x2 + · · ·+ xd)
c = ∑

(
c

c1 c2 · · · cd

)
xc1

1 xc2
2 · · · x

cd
d , (37)

where the summation extends over all nonnegative integer solutions c1, c2, · · · , cd of c1 + c2 +
· · ·+ cd = c, and the multinomial coefficients are defined by(

c
c1 c2 · · · cd

)
=

n!
c1!c2! · · · cd!

. (38)

Expand the first term of (33) by Lemma 1. The coefficient of xk is

Bk1 = ∑
(

ν1ν2
c0 c1 · · · ck−1

)
yc0

0 yc1
1 · · · y

ck−1
k−1 . (39)

The summation extends over all nonnegative integer solutions c1, c2, · · · , ck−1, which
satisfy the following equations, 

k−1

∑
j=0

cj = ν1ν2,

k−1

∑
j=0

jcj = k.
(40)

According to (39), Bk1 can be calculated directly with y0, y1, · · · , yk−1, which are calcu-
lated. Plug (36) and (39) into (34). It yields the formula for calculating yk,

yk =
Rkh1−ν1ν2 − Bk1

ν1ν2yν1ν2−1
0

. (41)

The above calculation process is summarized as the numerical algorithm.

Algorithm 2. Calculating the time domain response of IFOTF (7).

1. Transform IFOTF (7) into EFOTF (20).
2. Calculate the time domain excitation of (20) by (27).
3. Solve the time domain response of (20) by Algorithm 1; obtain equation (30).
4. Calculate y0 by (31), and calculate yk (0 6 k 6 N) by (41).
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5. Error Analysis

Two formulas, (11) and (17), are employed in Algorithm 1; the parameters in (11) are
calculated by (17). It yields that Algorithm 1 is of first-order accuracy by plugging (17)
into (11).

Algorithm 2 consists of three parts. In the first part, IFOTF (7) is transformed into
EFOTF (20), the excitation of (20) is calculated by (27), which is of first-order accuracy.
The generating polynomial is introduced solely for the sake of convenience in expression;
it does not produce calculation error. Therefore, the result of this part is of first-order
accuracy.

In the second part, the response of EFOTF (20) is calculated by Algorithm 1; it is of
first-order accuracy. It is worth noting that the excitation of EFOTF (20) is used in this part;
it contains the first-order error. This error does not affect the calculation accuracy of (11);
therefore, the result of the second part is of first-order accuracy.

In the last part, (28) is solved by (41), and solution yk is the time domain response of
IFOTF (7). Use p to denote the order of error, i.e.,

y(kh) = yk + O(hp). (42)

Plug yk into (30). The calculation is of pth-order accuracy if p < 1; otherwise, the
calculation is of first-order accuracy.

Assume p < 1 and plug (42) into the left side of (30). The result is of pth-order
accuracy, i.e.,

hν1ν2−1Sk(ȳν1ν2(x)) = Rk + O(hp). (43)

It is contradictory to (28) because (28) and (43) have the same solution. It yields p > 1.
The solution yk is calculated by (41). The numerator of (41) contains Rk, which is

calculated by Algorithm 1. Algorithm 1 is of first-order accuracy, so the calculation accuracy
of yk cannot be higher than the first order, i.e., p 6 1. Combined with the preceding analysis,
it yields p = 1; Algorithm 2 is of first-order accuracy.

6. Calculation Examples

Four examples are presented in this section, the calculation results are used to validate
the proposed algorithms.

6.1. Example 1

An EFOTF is expressed as

Y(s) =
1

s0.7 + s0.5 U(s), (44)

where Y(s) and U(s) are the Laplace transforms of response and excitation, respectively.
The inverse Laplace transform of U(s) is

u(t) =
Γ(1.8)
Γ(1.1)

t0.1 +
Γ(1.8)
Γ(1.3)

t0.3. (45)

It can be verified that the time domain response is

y(t) = t0.8. (46)

Use Algorithm 1 to calculate the time domain response in [0, 10]. Select step size
h = 0.01; the analytical and numerical solutions are shown in Figure 1. There are two
curves in Figure 1, and because the calculation error is very small, the two curves coincide.

Use (46) to test the accuracy of the numerical solution. The computation error is
defined as |y(jh)− yj|, and the computation errors under different step sizes are reported in
Table 1. The error decreases along with decreasing the step size h, and they are proportional
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to each other. This result is consistent with the theoretical analysis, Algorithm 1 is of
first-order accuracy.

Table 1. Computation error of the time domain response of EFOTF (44).

Step Size t = 2 t = 4 t = 6 t = 8 t = 10

h = 0.1 8.2728× 10−3 8.4603× 10−3 8.4762× 10−3 8.3949× 10−3 8.3039× 10−3

h = 0.05 4.7671× 10−3 4.7630× 10−3 4.6350× 10−3 4.5479× 10−3 4.4700× 10−3

h = 0.01 1.1865× 10−3 1.1491× 10−3 1.0730× 10−3 1.0384× 10−3 1.0109× 10−3

h = 0.005 6.3320× 10−4 6.0817× 10−4 5.6145× 10−4 5.4124× 10−4 5.2541× 10−4

h = 0.001 1.4169× 10−4 1.3431× 10−4 1.2169× 10−4 1.1655× 10−4 1.1261× 10−4

0 1 2 3 4 5 6 7 8 9 10

t

0

1

2

3

4

5

6

7

y
(t

)

Analytical solution

Numerical solution

Figure 1. The time domain response of EFOTF (44).

6.2. Example 2

Algorithm 1 can also be used to solve fractional order differential equations. This
example was previously completed by the author of this paper; only the problem and result
are cited, and the calculation process can be found in [39].

The equation is proposed in [26],

C
0 D1.455

t y(t) = −t0.1 E1,1.545(−t)
E1,1.445(−t)

ety(t)C
0 D0.555

t y(t) + e−2t −
[

C
0 D1

t y(t)
]2

, (47)

where E1,1.545(−t) and E1,1.445(−t) are two-parameter Mittag–Leffler functions. The analyt-
ical solution is y(t) = e−t under the initial condition y(0) = 1, y′(0) = −1.

Solve (47) by Algorithm 1 and the PECE-type Adams algorithm proposed in [26].
The maximal error and the execution time are reported in Table 2; the result of the PECE-
type Adams algorithm is cited from [26], and the result of Algorithm 1 is cited from [39].
Considering the difference of computer hardware, it is of little significance to compare the
execution time. The maximal error is an important parameter for testing an algorithm. It is
obvious that Algorithm 1 is more accurate; its maximal error is proportional to the step size.
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Table 2. Comparison of the errors and the execution times.

Standard PECE-Type Adams Algorithm Algorithm 1
Step Size Maximal Error Execution Time Maximal Error Execution Time

h = 1/200 0.3904 101.2 s 0.01250 0.35667 s
h = 1/400 0.2193 368.4 s 0.00681 0.43396 s
h = 1/800 0.1164 1358.0 s 0.00358 0.99232 s
h = 1/1600 0.0600 5017.4 s 0.00185 2.54765 s

6.3. Example 3

An IFOTF is expressed as

Y(s) =
1

(4s + 1)0.5 U(s), (48)

where Y(s) and U(s) are the Laplace transforms of response and excitation, respectively.
The inverse Laplace transform of U(s) is

u(t) = t2. (49)

The time domain response is

y(t) = 0.5e−
t
4 0D

−0.5
t

(
t2e

t
4

)
. (50)

The analytical expression of (50) can be verified by the formula introduced in [40]. An
IFOTF is expressed as

Y(s) =
1

(τs + 1)ν
U(s), (51)

and the analytical expression of the time domain response is

y(t) = τ−νe−
t
τ 0D

−ν
t

(
u(t)e

t
τ

)
. (52)

Use Algorithm 2 to calculate the time domain response in [0, 10]. Select step size
h = 0.01; the analytical and numerical solutions are shown in Figure 2. There are two
curves in Figure 2; because the computation error is very small, the two curves coincide.

0 1 2 3 4 5 6 7 8 9 10

t

0

10

20

30

40

50

60

70

80

y
(t

)

Analytical solution

Numerical solution

Figure 2. The time domain response of IFOTF (48).
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Use (50) to test the accuracy of the numerical solution. The computation error is
defined as |y(jh)− yj|, computation errors under different step sizes are reported in Table 3.
The error is proportional to step size, the result is consistent with the theoretical analysis,
Algorithm 2 is of first-order accuracy.

Table 3. Computation error of the time domain response of IFOTF (48).

Step Size t = 2 t = 4 t = 6 t = 8 t = 10

h = 0.1 3.9420× 10−2 6.3127× 10−2 1.2113× 10−1 1.4719× 10−1 1.6519× 10−1

h = 0.05 1.9809× 10−2 3.1679× 10−2 6.0705× 10−2 7.3727× 10−2 8.2712× 10−2

h = 0.01 3.9728× 10−3 6.3512× 10−3 1.2162× 10−2 1.4766× 10−2 1.6560× 10−2

h = 0.005 1.9870× 10−3 3.1764× 10−3 6.0825× 10−3 7.3841× 10−3 8.2810× 10−3

h = 0.001 3.9748× 10−4 6.3543× 10−4 1.2167× 10−3 1.4770× 10−3 1.6564× 10−3

6.4. Example 4

IFOTF (2) is a model for the ionic polymer metal composite (IPMC) actuator [33],
which is mentioned at the beginning of the paper. Its time domain response is calculated in
this example. Rewrite its expression

Y(s) =
340

s0.756(s2 + 3.85s + 5880)1.15 U(s), (53)

where Y(s) and U(s) are the Laplace transforms of response and excitation, respectively.
The expression of U(s) is

U(s) =
Γ(8)

(s + 1)8 , (54)

the inverse Laplace transform of U(s) is

u(t) = t7e−t. (55)

The expression of Y(s) is

Y(s) =
340Γ(8)

(s + 1)8s0.756(s2 + 3.85s + 5880)1.15 . (56)

Use Algorithm 2 to calculate the time domain response in [0, 20]. The time domain
response is calculated by another method to verify the result of Algorithm 2. The inverse
Laplace transform of (56) is calculated by the numerical algorithm proposed in [41]. Select
step size h = 0.01; the results of the two algorithms are plotted in Figure 3. The two curves
almost coincide, and it verifies that the two results are credible. It is worthy noting that (56)
is used in the numerical inversion of the Laplace transform, but not used in Algorithm 2.
That means that the expression of the excitation is not necessary for Algorithm 2; it is a
more effective method in practical application.

The difference is defined as the result of Algorithm 2 minus the result of the numerical
inversion of the Laplace transform. The difference is reported in Table 4; the difference
decreases along with decreasing the step size. It shows that the two results are credible,
although neither of them is an exact solution.
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Figure 3. The time domain response of IFOTF (2).

Table 4. Difference between the results of the two algorithms.

Step Size t = 4 t = 8 t = 12 t = 16 t = 20

h = 0.2 3.55 × 10−1 4.70 × 10−1 −2.26 × 10−2 −8.80 × 10−2 −5.97 × 10−2

h = 0.1 1.76 × 10−1 2.36 × 10−1 −1.11 × 10−2 −4.41 × 10−2 −3.00 × 10−2

h = 0.05 8.76 × 10−2 1.18 × 10−1 −5.55 × 10−3 −2.21 × 10−2 −1.51 × 10−2

h = 0.02 3.48 × 10−2 4.71 × 10−2 −2.31 × 10−3 −8.96 × 10−3 −6.12 × 10−3

h = 0.01 1.73 × 10−2 2.35 × 10−2 −1.24 × 10−3 −4.56 × 10−3 −3.14 × 10−3

7. Discussion

Two numerical algorithms are proposed in this paper. The novelty is that the time
domain response can be calculated without considering the form of FOTF. Although
frequency methods are also effective for some simple IFOTFs, they are ineffective for more
complex IFOTFs. The proposed algorithms are useful tools for analyzing FOTFs, and
also for verifying the results of the frequency methods. The FOTF is analyzed in both the
frequency domain and time domain; thus, the result is more reliable. Four examples are
presented in the paper; the calculation results are consistent with the theoretical analysis.
Examples 1 and 3 are simple problems for which the analytical expressions of the time
domain responses are provided. The computation error can be obtained with the analytical
expression, so the two examples can be used as benchmark problems for testing numerical
algorithms; they are helpful for researchers to test their own numerical algorithms. In
Example 3, Algorithm 1 is compared with the PECE-type Adams algorithm, and the result
shows that Algorithm 1 is more accurate. In Example 4, the time domain response of (2) is
calculated by Algorithm 2. The IFOTF (2) is the model of IPMC; the authors of this paper
have not found other numerical algorithms to calculate its time domain response. If the
parameters of Algorithm 1 are changed, a more accurate solution can be obtained; however,
Algorithm 2 is of first-order accuracy. In future work, further studies will be carried out to
improve the calculation accuracy of Algorithm 2.

Author Contributions: Conceptualization, L.B. and D.X.; methodology, L.B.; writing—original draft
preparation, L.B.; writing—review and editing, L.B. and D.X. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.



Fractal Fract. 2022, 6, 122 13 of 14

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, B.; Su, H.S.; Wu, L.C.; Li, X.L.; Lu, X. Fractional-order controllability of multi-agent systems with time-delay. Neurocomputing

2021, 424, 268–277. [CrossRef]
2. Ahmad, I.; Rahman, G.U.; Ahmad, S.; Alshehri, N.A.; Elagan, S.K. Controllability of a damped nonlinear fractional order

integrodifferential system with input delay. Alex. Eng. J. 2022, 61, 1956–1966. [CrossRef]
3. Shamardan, A.B.; Moubarak, M.R.A. Controllability and observability for fractional control systems. J. Fract. Calc. 1999, 15, 25–34.
4. Hassanzadeh, I.; Tabatabaei, M. Calculation of controllability and observability matrices for special case of continuous-time

multi-order fractional systems. ISA Trans. 2018, 82, 62–72. [CrossRef]
5. Zhang, X.F.; Zhao, Z.L. Normalization and stabilization for rectangular singular fractional order T-S fuzzy systems. Fuzzy Sets

Syst. 2020, 381, 140–153. [CrossRef]
6. Zhang, X.F. Relationship between integer order systems and fractional order systems and its two applications. IEEE-CAA J.

Autom. Sin. 2018, 5, 639–643. [CrossRef]
7. Zhang, X.F.; Chen, Y.Q. Admissibility and robust stabilization of continuous linear singular fractional order systems with the

fractional order α: The 0 < α < 1 case. ISA Trans. 2018, 82, 42–50.
8. Chen, Y.Q.; Ahn, H.S.; Xue, D.Y. Robust controllability of interval fractional order linear time invariant systems. Signal Process.

2006, 86, 2794–2802. [CrossRef]
9. Zhang, J.X.; Yang, G.H. Robust Adaptive Fault-Tolerant Control for a Class of Unknown Nonlinear Systems. IEEE Trans. Ind.

Electron. 2017, 64, 585–594. [CrossRef]
10. Zhang, X.F.; Huang, W.K. Adaptive neural network sliding mode control for nonlinear singular fractional order systems with

mismatched uncertainties. Fractal Fract. 2020, 4, 50. [CrossRef]
11. Zhang, J.X.; Yang, G.H. Low-complexity tracking control of strict-feedback systems with unknown control directions. IEEE Trans.

Autom. Control 2019, 64, 5175–5182. [CrossRef]
12. Zhang, J.X.; Yang, G.H. Fuzzy adaptive output feedback control of uncertain nonlinear systems with prescribed performance.

IEEE Trans. Cybern. 2018, 48, 1342–1354. [CrossRef] [PubMed]
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