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Abstract: This paper is concerned with the existence of solutions for a fully coupled Riemann–
Stieltjes, integro-multipoint, boundary value problem of Caputo-type sequential fractional differential
equations. The given system is studied with the aid of the Leray–Schauder alternative and contraction
mapping principle. A numerical example illustrating the abstract results is also presented.
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1. Introduction

Coupled systems of fractional-order differential equations appear in the mathematical
models of several real-world problems. Examples include chaos and fractional dynam-
ics [1], bio-engineering [2], ecology [3], financial economics [4], etc. The topic of fractional
differential systems, complemented by different kinds of boundary conditions, has been
one a popular and important area of scientific investigation. Many researchers have con-
tributed to the development of this subject by publishing numerous articles, Special Issues,
etc. The modern methods of functional analysis areof great support in achieving existence
and uniqueness results for these problems [5,6]. For some recent works on fractional or
sequential fractional differential equations with nonlocal integral boundary conditions, we
refer the reader to a series of papers [7–13].

In the article of [14], the authors investigated the solvability of an initial value problem
involving a sequential fractional differential equation by means of fixed-point theorems in
partially ordered sets. In [15], the existence and uniqueness results for a periodic boundary
value problem of nonlinear sequential fractional differential equations were obtained by
the method of upper and lower solutions, together with the monotone iterative technique.

Now, we briefly describe some recent works on sequential fractional-order coupled
systems equipped with coupled boundary conditions. A fully coupled two-parameter sys-
tem of sequential fractional integro-differential equations with nonlocal integro-multipoint
boundary conditions was studied in [16]. The authors discussed the existence and unique-
ness of solutions for a system of Hilfer–Hadamard sequential fractional differential equa-
tions with two-point boundary conditions in [17]. The sequential hybrid inclusion boundary
value problem with three-point integro-derivative boundary conditions was investigated by
using the analytic methods relying on α-ψ-contractive mappings, endpoints, and the fixed
points of the product operators in [18]. The authors studied the existence and uniqueness
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of solutions for an initial value problem of coupled sequential fractional differential equa-
tions in [19]. The existence results for a nonlocal coupled system of sequential fractional
differential equations involving ψ-Hilfer fractional derivatives were presented in [20].

The objective of the present work is to develop the existence theory for a new class of
nonlinear coupled systems of sequential fractional differential equations supplemented
with coupled, non-conjugate, Riemann–Stieltjes, integro-multipoint boundary conditions.
In precise terms, we investigate the following system:{

(cDq+1 +c Dq)X (t) = f(t,X (t),Y(t)), 2 < q ≤ 3, t ∈ [0, 1],

(cDp+1 +c Dp)Y(t) = g(t,X (t),Y(t)), 2 < p ≤ 3, t ∈ [0, 1],
(1)

subject to the coupled boundary conditions:
X (0) = 0, X ′(0) = 0, X ′(1) = 0, X (1) = k

∫ ρ

0
Y(s)dA(s) +

n−2

∑
i=1

αiY(σi) + k1

∫ 1

ν
Y(s)dA(s),

Y(0) = 0, Y ′(0) = 0, Y ′(1) = 0, Y(1) = h
∫ ρ

0
X (s)dA(s) +

n−2

∑
i=1

βiX (σi) + h1

∫ 1

ν
X (s)dA(s),

(2)

where cDξ denotes the Caputo fractional derivative of order ξ ∈ {q, p}, 0 < ρ < σi < ν < 1,
f, g : [0, 1]×R×R→ R are given continuous functions, k, k1, h, h1, αi, βi ∈ R, i=1,2, · · · ,
n− 2 and A is a function of bounded variation.

Riemann–Stieltjes boundary conditions are quite general, since they include multipoint
and integral boundary conditions as special cases [21]. The Riemann–Stieltjes integral is a
generalization of the Riemann integral due to the Dutch astronomer T. J. Stieltjes and has
potential applications in probability theory [22]. In addition, the Riemann–Stieltjes integral
of the random variable with respect to its distribution function interprets the expected value
of random variable [23]. Moreover, the boundary conditions (2) have useful applications in
diffraction-free and self-healing optoelectronic devices. For more details, see [7].

The main emphasis in the present work is to investigate the existence criteria for
the solutions to a coupled system of nonlinear sequential fractional differential equations
equipped with multipoint Riemann–Stieltjes integral-type boundary conditions. Here, one
can see that the coupled boundary conditions relate the value of the unknown function
X (t) (Y(t)) at t = 1 with the distributions of the unknown function Y(t) (X (t)) on the
segments [0, ρ] and [ν, 1] in the sense of Riemann–Stieltjes integrals, together with the
sum of its discrete values at σi, i = 1, 2, · · · , n − 2. The present study is novel in the
given configuration and enriches the literature on boundary value problems of sequential
fractional differential equations.

Concerning our strategy when studying the problem (1)–(2), we use the fixed-point
approach, which is based on the idea of converting the given problem into a fixed-point
problem, followed by the application of appropriate fixed-point theorems to show the
existence of the fixed points for the operator involved in the problem at hand. We make use
of the Leray–Schauder alternative to show the existence of a solution to the given problem,
while the uniqueness result for the given problem is derived with the aid of the contraction
mapping principle due to Banach.

The rest of this paper is organized as follows. In Section 2, we present some basic
definitions of fractional calculus and prove an auxiliary lemma concerning the linear variant
of the problem (1)–(2), helping to convert it into a fixed-point problem. Section 3 establishes
the existence and uniqueness results for the given problem, whereas Section 4 contains an
example illustrating the main results. The paper ends with a discussion in Section 5, where
some special cases and possible future works are indicated.
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2. Preliminary Material

First, we outline some basic concepts of fractional calculus [24].

Definition 1. The Riemann–Liouville fractional integral of order ϑ ∈ R (ϑ > 0) for a locally
integrable, real-valued function U on −∞ ≤ a < z < b ≤ +∞, denoted by Iϑ

a U(z), is defined by

Iϑ
a U(z) =

1
Γ(ϑ)

∫ z

a
(z− s)ϑ−1U(s)ds.

Here, Γ(·) is the familiar Gamma function.

Definition 2. The Caputo derivative of fractional order ϑ for an (r− 1)-times absolutely continuous
function U : [a, ∞) −→ R is defined as

cDϑU(z) =
1

Γ(r− ϑ)

∫ z

a
(z− s)r−ϑ−1U(r)(s)ds, r− 1 < ϑ < r, r = [ϑ] + 1,

where [ϑ] denotes the integer part of the real number ϑ.

Lemma 1. The general solution of the fractional differential equation cDϑX (z) = 0, r− 1 < ϑ < r,
z ∈ [a, b], is

X (z) = $0 + $1(z− a) + $2(z− a)2 + · · ·+ $r−1(z− a)r−1,

where $i ∈ R, i = 0, 1, · · · , r− 1. Furthermore,

Iϑ cDϑX (z) = X (z) +
r−1

∑
i=0

$i(z− a)i.

Lemma 2. Let ψ, φ ∈ (C[0, 1],R) and ∆ 6= 0. Then the unique solution of the linear system of
fractional differential{

(cDq+1 +c Dq)X (t) = ψ(t), 2 < q ≤ 3, t ∈ [0, 1],

(cDp+1 +c Dp)Y(t) = φ(t), 2 < p ≤ 3, t ∈ [0, 1],
(3)

supplemented with the boundary conditions (2), can be expressed in the following formulas:

X (t) =
∫ t

0
e−(t−s) Iq

0+ψ(s)ds +
4

∑
i=1
Qi(t)Ei, i = 1, 2, 3, 4, (4)

Y(t) =
∫ t

0
e−(t−s) Ip

0+φ(s)ds +
4

∑
j=1
Pj(t)Ej, j = 1, 2, 3, 4, (5)

where

E1 =
∫ 1

0
e−(1−s) Iq

0+ψ(s)ds− Iq
0+ψ(1),

E2 =
∫ 1

0
e−(1−s) Ip

0+φ(s)ds− Ip
0+φ(1),

E3 = k
∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+φ(z)dz
)

dA(s) +
n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+φ(s)ds

+k1

∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+φ(z)dz
)

dA(s)−
∫ 1

0
e−(1−s) Iq

0+ψ(s)ds

E4 = h
∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ψ(z)dz
)

dA(s) +
n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ψ(s)ds
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+h1

∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ψ(z)dz
)

dA(s)−
∫ 1

0
e−(1−s) Ip

0+φ(s)ds, (6)

Qi(t) = (e−t + t− 1)λi + (−2e−t + t2 − 2t + 2)νi, i = 1, 2, 3, 4,

Pj(t) = (e−t + t− 1)ρj + (−2e−t + t2 − 2t + 2)ωj, j = 1, 2, 3, 4, (7)

ν1 =
e + (1− e)λ1

2
, ν2 =

(1− e)λ2

2
, ν3 =

(1− e)λ3

2
, ν4 =

(1− e)λ4

2
, (8)

ω1 =
(1− e)ρ1

2
, ω2 =

e + (1− e)ρ2

2
, ω3 =

(1− e)ρ3

2
, ω4 =

(1− e)ρ4

2
, (9)

λ1 =
(2− e)γ1 − A4γ2e

2∆
, λ2 =

A2γ1e− (2− e)γ2

2∆
, λ3 =

γ1

∆
, λ4 =

−γ2

∆
, (10)

ρ1 =
A4γ1e− (2− e)γ3

2∆
, ρ2 =

(2− e)γ1 − A2γ3e
2∆

, ρ3 =
−γ3

∆
, ρ4 =

γ1

∆
, (11)

∆ = γ2
1 − γ2γ3, γ1 =

3− e
2

, γ2 = −A1 − A2
(1− e)

2
, γ3 = −A3 − A4

(1− e)
2

, (12)

A1 = k
∫ ρ

0
(e−s + s− 1)dA(s) +

n−2

∑
i=1

αi(e−σi + σi − 1) + k1

∫ 1

ν
(e−s + s− 1)dA(s),

A2 = k
∫ ρ

0
(−2e−s + s2 − 2s + 2)dA(s) +

n−2

∑
i=1

αi(−2e−σi + σ2
i − 2σi + 2)

+k1

∫ 1

ν
(−2e−s + s2 − 2s + 2)dA(s),

A3 = h
∫ ρ

0
(e−s + s− 1)dA(s) +

n−2

∑
i=1

βi(e−σi + σi − 1) + h1

∫ 1

ν
(e−s + s− 1)dA(s),

A4 = h
∫ ρ

0
(−2e−s + s2 − 2s + 2)dA(s) +

n−2

∑
i=1

βi(−2e−σi + σ2
i − 2σi + 2)

+h1

∫ 1

ν
(−2e−s + s2 − 2s + 2)dA(s). (13)

Proof. Rewriting the first equation in (3) as cDq(D + 1)X (t) = ψ(t) and then applying the
integral operator Iq

0+ to it, we obtain

X (t) = (−e−t + 1)c1 + (e−t + t− 1)c2 + (−2e−t + t2 − 2t + 2)c3 + e−tc4

+
∫ t

0
e−(t−s) Iq

0+ψ(s)ds, (14)

where ci ∈ R, i = 1, 2, 3, 4 are unknown arbitrary constants. In a similar manner, applying
the integral operator Ip

0+ to the second equation in (3), we get

Y(t) = (−e−t + 1)b1 + (e−t + t− 1)b2 + (−2e−t + t2 − 2t + 2)b3 + e−tb4

+
∫ t

0
e−(t−s) Ip

0+φ(s)ds, (15)

where bi ∈ R, i = 1, 2, 3, 4 are unknown arbitrary constants. From (14) and (15), we have

X ′(t) = e−tc1 + (−e−t + 1)c2 + (2e−t + 2t− 2)c3 − e−tc4

−
∫ t

0
e−(t−s) Iq

0+ψ(s)ds + Iq
0+ψ(t), (16)
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Y ′(t) = e−tb1 + (−e−t + 1)b2 + (2e−t + 2t− 2)b3 − e−tb4

−
∫ t

0
e−(t−s) Ip

0+φ(s)ds + Ip
0+φ(t). (17)

Using the conditions X (0) = 0,Y(0) = 0,X ′(0) = 0,Y ′(0) = 0 in Equations (14)–(17),
we obtain c1 = c4 = 0 and b1 = b4 = 0. Then (14)–(17) become

X (t) = (e−t + t− 1)c2 + (−2e−t + t2 − 2t + 2)c3 +
∫ t

0
e−(t−s) Iq

0+ψ(s)ds, (18)

X ′(t) = (−e−t + 1)c2 + (2e−t + 2t− 2)c3 −
∫ t

0
e−(t−s) Iq

0+ψ(s)ds + Iq
0+ψ(t), (19)

Y(t) = (e−t + t− 1)b2 + (−2e−t + t2 − 2t + 2)b3 +
∫ t

0
e−(t−s) Ip

0+φ(s)ds, (20)

Y ′(t) = (−e−t + 1)b2 + (2e−t + 2t− 2)b3 −
∫ t

0
e−(t−s) Ip

0+φ(s)ds + Ip
0+φ(t). (21)

Using (18)–(21) in the rest of the boundary conditions given by (2), together with
notation (13), yields

(−e−1 + 1)c2 + 2e−1c3 = E1, (22)

(−e−1 + 1)b2 + 2e−1b3 = E2, (23)

e−1c2 + (−2e−1 + 1)c3 − A1b2 − A2b3 = E3, (24)

e−1b2 + (−2e−1 + 1)b3 − A3c2 − A4c3 = E4, (25)

where Ai, i = 1, 2, 3, 4 are given by (13) and Ei, i = 1, 2, 3, 4 are defined by (6). Inserting the
values of c3 and b3 from (22) and (23) into (24) and (25), we obtain

γ1c2 + γ2b2 =
(2− e)

2
E1 +

A2e
2
E2 + E3, (26)

γ3c2 + γ1b2 =
A4e

2
E1 +

(2− e)
2
E2 + E4, (27)

where γi, i = 1, 2, 3 are given by (12). Solving (26) and (27) for c2 and b2, we obtain

c2 =
4

∑
i=1

λiEi, b2 =
4

∑
j=1

ρjEj,

where λi (i = 1, 2, 3, 4) and ρj (j = 1, 2, 3, 4) are given in (10) and (11), respectively.
Substituting the values of c2 and b2 into (22) and (23) respectively, we find that

c3 =
4

∑
i=1

νiEi, b3 =
4

∑
j=1

ωjEj,

where νi, i = 1, 2, 3, 4, and ωj, j = 1, 2, 3, 4 are given by (8) and (9) respectively. Inserting
the values of c2, c3, b2 and b3 in (18) and (20), together with the notation (7), we obtain the
solution (4) and (5). One can obtain the converse of this lemma by direct computation. This
completes the proof.

For computational convenience, we introduce the following lemma:

Lemma 3. For ψ, φ ∈ C([0, 1],R), we have

(i)

∣∣∣∣∣
∫ t

0
e−(t−s) Iq

0+ψ(s)ds

∣∣∣∣∣ ≤ 1
Γ(q + 1)

(1− e−1)‖ψ‖,
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∣∣∣∣∣
∫ t

0
e−(t−s) Ip

0+φ(s)ds

∣∣∣∣∣ ≤ 1
Γ(p + 1)

(1− e−1)‖φ‖.

(ii)

∣∣∣∣∣
∫ 1

0
e−(1−s) Iq

0+ψ(s)ds

∣∣∣∣∣ ≤ 1
Γ(q + 1)

(1− e−1)‖ψ‖,

∣∣∣∣∣
∫ 1

0
e−(1−s) Ip

0+φ(s)ds

∣∣∣∣∣ ≤ 1
Γ(p + 1)

(1− e−1)‖φ‖.

(iii)

∣∣∣∣∣ n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+φ(s)ds

∣∣∣∣∣ ≤ 1
Γ(p + 1)

n−2

∑
i=1
|αi|σ

p
i (1− e−σi )‖φ‖,

∣∣∣∣∣ n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ψ(s)ds

∣∣∣∣∣ ≤ 1
Γ(q + 1)

n−2

∑
i=1
|βi|σ

q
i (1− e−σi )‖ψ‖.

(iv)

∣∣∣∣∣
∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+φ(z)dz
)

dA(s)

∣∣∣∣∣ ≤ [
∫ ρ

0

sp

Γ(p + 1)
(1− e−s)dA(s)

]
‖φ‖,

∣∣∣∣∣
∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ψ(z)dz
)

dA(s)

∣∣∣∣∣ ≤ [
∫ ρ

0

sq

Γ(q + 1)
(1− e−s)dA(s)

]
‖ψ‖.

(v)

∣∣∣∣∣
∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+φ(z)dz
)

dA(s)

∣∣∣∣∣ ≤ [
∫ 1

ν

sp

Γ(p + 1)
(1− e−s)dA(s)

]
‖φ‖,

∣∣∣∣∣
∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ψ(z)dz
)

dA(s)

∣∣∣∣∣ ≤ [
∫ 1

ν

sq

Γ(q + 1)
(1− e−s)dA(s)

]
‖ψ‖.

Proof. To prove (i), we have∣∣∣∣∣
∫ t

0
e−(t−s) Iq

0+ψ(s)ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ t

0
e−(t−s)

( ∫ s

0

(s− z)q−1

Γ(q)
ψ(z)dz

)
ds

∣∣∣∣∣
≤ tq

Γ(q + 1)
(1− e−t)‖ψ‖

≤ 1
Γ(q + 1)

(1− e−1)‖ψ‖.

The other cases are similar. Therefore, we omit the details.

3. Main Results

Let (X, ‖ · ‖) be a Banach space equipped with the norm ‖X ‖ = sup{|X (t)|,
t ∈ [0, 1]}, where X = {X (t)|X (t) ∈ (C[0, 1],R)}. Then (X×X, ‖(·, ·)‖) is also a Banach
space endowed with norm ‖(X ,Y)‖ = ‖X ‖+ ‖Y‖,X ,Y ∈ X.

By Lemma 2, we introduce an operator T : X×X→ X×X defined by

T(X ,Y)(t) =
(

T1(X ,Y)(t)
T2(X ,Y)(t)

)
, (28)

where

T1(X ,Y)(t) =
∫ t

0
e−(t−s) Iq

0+ f(s,X (s),Y(s))ds

+Q1(t)
[ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds− Iq
0+ f(s,X (s),Y(s))(1)

]
+ Q2(t)

[ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds− Ip
0+g(s,X (s),Y(s))(1)

]
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+ Q3(t)
[
k
∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)

+
n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+g(s,X (s),Y(s))ds

+k1

∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)

−
∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
]

+ Q4(t)
[

h
∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)

+
n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds

+h1

∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)

−
∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
]
, (29)

T2(X ,Y)(t) =
∫ t

0
e−(t−s) Ip

0+g(s,X (s),Y(s))ds

+P1(t)
[ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds− Iq
0+ f(s,X (s),Y(s))(1)

]
+ P2(t)

[ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds− Ip
0+g(s,X (s),Y(s))(1)

]
+ P3(t)

[
k
∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)

+
n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+ g(s,X (s),Y(s))ds

+k1

∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)

−
∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
]

+ P4(t)
[

h
∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)

+
n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds

+h1

∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)

−
∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
]
, (30)

where Qi(t), i = 1, 2, 3, 4 and Pj(t), j = 1, 2, 3, 4 are given in (7).

In the forthcoming analysis, we assume that f, g : [0, 1]×R×R→ R are continuous
functions satisfying the following conditions:

(F1) There are real constants ηi, ζi ≥ 0, i = 1, 2, η0, ζ0 > 0 such that

|f(t,X ,Y)| ≤ η0 + η1|X |+ η2|Y|,

|g(t,X ,Y)| ≤ ζ0 + ζ1|X |+ ζ2|Y|,

∀t ∈ [0, 1],X ,Y ∈ R.
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(F2) There are positive real constants L1 and L2, such that

|f(t,X1,Y1)− f(t,X2,Y2)| ≤ L1(|X1 −X2|+ |Y1 −Y2|),

|g(t,X1,Y1)− g(t,X2,Y2)| ≤ L2(|X1 −X2|+ |Y1 −Y2|),

∀t ∈ [0, 1],X1,X2,Y1,Y2 ∈ R;

In the sequel, we use the notation:

Θ = Λ1L1 + Λ2L2, Θ = Λ1L1 + Λ2L2, (31)

M = Λ1N1 + Λ2N2, M = Λ1N1 + Λ2N2, (32)

Λ1 =
1

Γ(q + 1)

{
(1− e−1) + (2− e−1)Q̃1 + (1− e−1)Q̃3 + Q̃4

[
|h|
∫ ρ

0
sq(1− e−s)dA(s)

+
n−2

∑
i=1
|βi|σ

q
i (1− e−σi ) + |h1|

∫ 1

ν
sq(1− e−s)dA(s)

]}
,

Λ2 =
1

Γ(p + 1)

{
(2− e−1)Q̃2 + Q̃3

[
|k|
∫ ρ

0
sp(1− e−s)dA(s) (33)

+
n−2

∑
i=1
|αi|σ

p
i (1− e−σi ) + |k1|

∫ 1

ν
sp(1− e−s)dA(s)

]
+ (1− e−1)Q̃4

}
,

Λ1 =
1

Γ(q + 1)

{
(2− e−1)P̃1 + (1− e−1)P̃3 + P̃4

[
|h|
∫ ρ

0
sq(1− e−s)dA(s)

+
n−2

∑
i=1
|βi|σ

q
i (1− e−σi ) + |h1|

∫ 1

ν
sq(1− e−s)dA(s)

]}
,

Λ2 =
1

Γ(p + 1)

{
(1− e−1) + (2− e−1)P̃2 + P̃3

[
|k|
∫ ρ

0
sp(1− e−s)dA(s)

+
n−2

∑
i=1
|αi|σ

p
i (1− e−σi ) + |k1|

∫ 1

ν
sp(1− e−s)dA(s)

]
+ (1− e−1)P̃4

}
, (34)

N1 = sup
t∈[0,1]

|f(t, 0, 0)| < ∞, N2 = sup
t∈[0,1]

|g(t, 0, 0, )| < ∞, (35)

where Q̃i = sup
t∈[0,1]

|Qi(t)|, i = 1, 2, 3, 4 and P̃j = sup
t∈[0,1]

|Pj(t)|, j = 1, 2, 3, 4,

Ω0 = (Λ1 + Λ1)η0 + (Λ2 + Λ2)ζ0,

Ω1 = (Λ1 + Λ1)η1 + (Λ2 + Λ2)ζ1,

Ω2 = (Λ1 + Λ1)η2 + (Λ2 + Λ2)ζ2, (36)

and

Ω = max{Ω1, Ω2}. (37)

The following result shows the existence of a solution for the coupled system (1)–(2)
and is based on the Leray–Schauder alternative [6].
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Theorem 1. Assume that the condition (F1) holds and Ω < 1, where Ω is given by (37).
Then, the problem (1) and (2) has at least one solution on [0, 1].

Proof. In the first step, it will be shown that the operator T : X×X→ X×X is completely
continuous. Note that the operator T is continuous in view of the continuity of the functions
f and g. Let V ⊂ X×X be bounded. Then, we can find positive constants M1 and M2 such
that |f(t,X (t),Y(t))| ≤ M1 and |g(t,X (t),Y(t))| ≤ M2, ∀(X ,Y) ∈ V . Therefore, for any
(X ,X ) ∈ V , we have

|T1(X ,Y)(t)| ≤
∫ t

0
e−(t−s) Iq

0+ |f(s,X (s),Y(s))|ds

+|Q1(t)|
[ ∫ 1

0
e−(1−s) Iq

0+ |f(s,X (s),Y(s))|ds + Iq
0+ |f(s,X (s),Y(s))|(1)

]
+|Q2(t)|

[ ∫ 1

0
e−(1−s) Ip

0+ |g(s,X (s),Y(s))|ds + Ip
0+ |g(s,X (s),Y(s))|(1)

]
+|Q3(t)|

[
|k|
∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+ |g(z,X (z),Y(z))|dz
)

dA(s)

+
n−2

∑
i=1
|αi|

∫ σi

0
e−(σi−s) Ip

0+ |g(s,X (s),Y(s))|ds

+|k1|
∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+ |g(z,X (z),Y(z))|dz
)

dA(s)

+
∫ 1

0
e−(1−s) Iq

0+ |f(s,X (s),Y(s))|ds
]

+|Q4(t)|
[
|h|
∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ |f(z,X (z),Y(z))|dz
)

dA(s)

+
n−2

∑
i=1
|βi|

∫ σi

0
e−(σi−s) Iq

0+ |f(s,X (s),Y(s))|ds

+|h1|
∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ |f(z,X (z),Y(z))|dz
)

dA(s)

+
∫ 1

0
e−(1−s) Ip

0+ |g(s,X (s),Y(s))|ds
]

≤ M1
1

Γ(q + 1)
(1− e−1) + Q̃1

[
M1

1
Γ(q + 1)

(1− e−1) + M1
1

Γ(q + 1)

]
+Q̃2

[
M2

1
Γ(p + 1)

(1− e−1) + M2
1

Γ(p + 1)

]
+Q̃3

[
|k|M2

∫ ρ

0

sp

Γ(p + 1)
(1− e−s)dA(s)

+M2

n−2

∑
i=1
|αi|

1
Γ(p + 1)

σ
p
i (1− e−σi )

+M2|k1|
∫ 1

ν

sp

Γ(p + 1)
(1− e−s)dA(s) + M1

1
Γ(q + 1)

(1− e−1)
]

+Q̃4

[
M1|h|

∫ ρ

0

sq

Γ(q + 1)
(1− e−s)dA(s) + M1

n−2

∑
i=1
|βi|σ

q
i (1− e−σi )

+M1|h1|
∫ 1

ν

sp

Γ(p + 1)
(1− e−s)dA(s) + M2

1
Γ(p + 1)

(1− e−1)
]

≤ M1

Γ(q + 1)

{
(1− e−1) + (2− e−1)Q̃1 + (1− e−1)Q̃3

+Q̃4

[
|h|
∫ ρ

0
sq(1− e−s)dA(s) +

n−2

∑
i=1
|βi|σ

q
i (1− e−σi )
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+|h1|
∫ 1

ν
sq(1− e−s)dA(s)

]}
+

M2

Γ(p + 1)

{
(2− e−1)Q̃2

+Q̃3

[
|k|
∫ ρ

0
sp(1− e−s)dA(s) +

n−2

∑
i=1
|αi|σ

p
i (1− e−σi )

+|k1|
∫ 1

ν
sp(1− e−s)dA(s)

]
+ (1− e−1)Q̃4

}
= Λ1M1 + Λ2M2.

Thus,

‖T1(X ,Y)‖ ≤ Λ1M1 + Λ2M2. (38)

Similarly, we have

‖T2(X ,Y)‖ ≤ Λ1M1 + Λ2M2. (39)

Hence, (38) and (39) imply that the operator T uniformly bounded.
Now, we establish that the operator T is equicontinuous. For t1, t2 ∈ [0, 1] with t1 < t2,

we obtain∣∣∣T1(X ,Y)(t2)− T1(X ,Y)(t1)
∣∣∣

≤
∣∣∣∣∣
∫ t1

0
[e−(t2−s) − e−(t1−s)]Iq

0+ f(s,X (s),Y(s))ds

∣∣∣∣∣+
∣∣∣∣∣
∫ t2

t1

e−(t2−s) Iq
0+ f(s,X (s),Y(s))ds

∣∣∣∣∣
+
∣∣∣Q1(t2)−Q1(t1)

∣∣∣[∣∣∣ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
∣∣∣+ ∣∣∣Iq

0+ f(s,X (s),Y(s))(1)
∣∣∣]

+
∣∣∣Q2(t2)−Q2(t1)

∣∣∣[∣∣∣ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
∣∣∣+ ∣∣∣Ip

0+g(s,X (s),Y(s))(1)
∣∣∣]

+
∣∣∣Q3(t2)−Q3(t1)

∣∣∣[|k|∣∣∣ ∫ ρ

0

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)
∣∣∣

+
n−2

∑
i=1
|αi|
∣∣∣ ∫ σi

0
e−(σi−s) Ip

0+g(s,X (s),Y(s))ds
∣∣∣

+|k1|
∣∣∣ ∫ 1

ν

( ∫ s

0
e−(s−z) Ip

0+g(z,X (z),Y(z))dz
)

dA(s)
∣∣∣

+
∣∣∣ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
∣∣∣]

+
∣∣∣Q4(t2)−Q4(t1)

∣∣∣[|h|∣∣∣ ∫ ρ

0

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)
∣∣∣

+
n−2

∑
i=1
|βi|
∣∣∣ ∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds
∣∣∣

+|h1|
∣∣∣ ∫ 1

ν

( ∫ s

0
e−(s−z) Iq

0+ f(z,X (z),Y(z))dz
)

dA(s)
∣∣∣

+
∣∣∣ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
∣∣∣]

≤ M1

Γ(q + 1)

[
tq
1

(
e−(t2−t1) − 1− e−t2 + e−t1

)
+ tq

2

(
1− e−(t2−t1)

)]
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+
M1

Γ(q + 1)

{
(2− e−1)

∣∣∣Q1(t2)−Q1(t1)
∣∣∣+ (1− e−1)

∣∣∣Q3(t2)−Q3(t1)
∣∣∣

+
∣∣∣Q4(t2)−Q4(t1)

∣∣∣[|h|∣∣∣ ∫ ρ

0
sq(1− e−s)dA(s)

∣∣∣
+
∣∣∣ n−2

∑
i=1

βiσ
q
i (1− e−σi )

∣∣∣+ |h1|
∣∣∣ ∫ 1

ν
sq(1− e−s)dA(s)

∣∣∣]}

+
M2

Γ(p + 1)

{
(2− e−1)

∣∣∣Q2(t2)−Q2(t1)
∣∣∣

+
∣∣∣Q3(t2)−Q3(t1)

∣∣∣[|k|∣∣∣ ∫ ρ

0
sp(1− e−s)dA(s)

∣∣∣
+
∣∣∣ n−2

∑
i=1

αiσ
p
i (1− e−σi )

∣∣∣+ |k1|
∣∣∣ ∫ 1

ν
sp(1− e−s)dA(s)

∣∣∣]+ (1− e−1)
∣∣∣Q4(t2)−Q4(t1)

∣∣∣},

and∣∣∣T2(X ,Y)(t2)− T2(X ,Y)(t1)
∣∣∣

≤ M2

Γ(p + 1)

[
tp
1

(
e−(t2−t1) − 1− e−t2 + e−t1

)
+ tp

2

(
1− e−(t2−t1)

)]

+
M1

Γ(q + 1)

{
(2− e−1)

∣∣∣P1(t2)−P1(t1)
∣∣∣+ (1− e−1)

∣∣∣P3(t2)−P3(t1)
∣∣∣

+
∣∣∣P4(t2)−P4(t1)

∣∣∣[|h|∣∣∣ ∫ ρ

0
sq(1− e−s)dA(s)

∣∣∣
+
∣∣∣ n−2

∑
i=1

βiσ
q
i (1− e−σi )

∣∣∣+ |h1|
∣∣∣ ∫ 1

ν
sq(1− e−s)dA(s)

∣∣∣]}

+
M2

Γ(p + 1)

{
(2− e−1)

∣∣∣P2(t2)−P2(t1)
∣∣∣

+
∣∣∣P3(t2)−P3(t1)

∣∣∣[|k|∣∣∣ ∫ ρ

0
sp(1− e−s)dA(s)

∣∣∣
+
∣∣∣ n−2

∑
i=1

αiσ
p
i (1− e−σi )

∣∣∣+ |k1|
∣∣∣ ∫ 1

ν
sp(1− e−s)dA(s)

∣∣∣]+ (1− e−1)
∣∣∣P4(t2)−P4(t1)

∣∣∣}.

Clearly, |T1(X ,Y)(t2)− T1(X ,Y)(t1)| → 0 and |T2(X ,Y)(t2)− T2(X ,Y)(t1)| → 0 as
t2 → t1 independent of (X ,Y) ∈ V . In consequence, the operator T(X ,Y) is equicontinuous.
Hence, it follows, according to Arzelá-Ascoli theorem, that T(X ,Y) is completely continuous.

In the second step, we consider a set

U = {(X ,Y) ∈ X×X|(X ,Y) = σT(X ,Y), 0 < σ < 1}

and show that it is bounded. Let (X ,Y) ∈ U , then (X ,Y) = σT(X ,Y) and for any t ∈ [0, 1],
we have

X (t) = σT1(X ,Y)(t), Y(t) = σT2(X ,Y)(t).

In consequence, we have

|X (t)| ≤ Λ1(η0 + η1|X |+ η2|Y|) + Λ2(ζ0 + ζ1|X |+ ζ2|Y|),

which leads to

‖X ‖ ≤ Λ1(η0 + η1‖X ‖+ η2‖Y‖) + Λ2(ζ0 + ζ1‖X ‖+ ζ2‖Y‖). (40)
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Likewise, one can obtain that

‖Y‖ ≤ Λ1(η0 + η1‖X ‖+ η2‖Y‖) + Λ2(ζ0 + ζ1‖X ‖+ ζ2‖Y‖). (41)

From (40) and (41), together with notations (36) and (37), we obtain

‖X ‖+ ‖Y‖ ≤
[
(Λ1 + Λ1)η0 + (Λ2 + Λ2)ζ0

]
+
[
(Λ1 + Λ1)η1 + (Λ2 + Λ2)ζ1

]
‖X ‖

+
[
(Λ1 + Λ1)η2 + (Λ2 + Λ2)ζ2

]
‖Y‖,

which implies that

‖(X ,Y)‖ ≤ Ω0 + max{Ω1 + Ω2}‖(X ,Y)‖ ≤ Ω0 + Ω‖(X ,Y)‖.

Thus
‖(X ,Y)‖ ≤ Ω0

1−Ω
,

which shows that U is bounded. In view of the foregoing steps, we deduce that the
hypothesis of the Leray–Schauder alternative [6] is satisfied; hence, its conclusion implies
that the operator T has at least one fixed point. Thus, there is at least one solution to the
problem (1) and (2) on [0, 1].

Our next result deals with the uniqueness of solutions for the problem (1) and (2) and
relies on Banach’s fixed point theorem.

Theorem 2. Let the condition (F2) hold, and that

Θ + Θ < 1, (42)

where Θ and Θ are given in (31). Then, there is a unique solution to the problem (1) and (2) on [0, 1].

Proof. Let us first establish that TUε ⊂ Uε, where the operator T is given by (28) and

Uε = {(X ,Y) ∈ X×X : ‖(X ,Y)‖ ≤ ε},

with ε >
M+M

1− (Θ + Θ)
, Θ, Θ and M,M are respectively given by (31) and (32). By the

assumption (F2) and (35), for (X ,Y) ∈ Uε, t ∈ [0, 1], we have

|f(t,X (t),Y(t))| ≤ |f(t,X (t),Y(t))− f(t, 0, 0)|+ |f(t, 0, 0)|

≤ L1(|X (t)|+ |Y(t)|) +N1 ≤ L1(‖X ‖+ ‖Y‖) +N1 ≤ L1ε +N1.

Similarly, one can show that |g(t,X (t),Y(t))| ≤ L2ε +N2. Taking into account (31)
and (32), we obtain

|T1(X ,Y)(t)| ≤ (Λ1L1 + Λ2L2)ε + (Λ1N1 + Λ2N2) = Θε +M,

which yields

‖T1(X ,Y)‖ ≤ Θε +M. (43)

In a similar manner, we obtain

‖T2(X ,Y)‖ ≤ Θε +M. (44)
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It then follows from (43) and (44) that

‖T(X ,Y)‖ ≤ (Θε +M) + (Θε +M) = (Θ + Θ)ε + (M+M) ≤ ε.

Consequently, TUε ⊂ Uε. Next, we show that the operator T is a contraction. Using
conditions (F2) and (31), we get

‖T1(X1,Y1)− T1(X2,Y2)‖
= sup

t∈[0,1]
|T1(X1,Y1)(t)− T1(X2,Y2)(t)|

≤ sup
t∈[0,1]

{ ∫ t

0
e−(t−s)

∣∣∣Iq
0+ f(s,X1(s),Y1(s))− Iq

0+ f(s,X2(s),Y2(s))
∣∣∣ds

+|Q1(t)|
[ ∫ 1

0
e−(1−s)

∣∣∣Iq
0+ f(s,X1(s),Y1(s))− Iq

0+ f(s,X2(s),Y2(s))
∣∣∣ds

+
∣∣∣Iq

0+ f(s,X1(s),Y1(s))− Iq
0+ f(s,X2(s),Y2(s))

∣∣∣(1)]
+ |Q2(t)|

[ ∫ 1

0
e−(1−s)

∣∣∣Ip
0+g(s,X1(s),Y1(s))− Ip

0+g(s,X2(s),Y2(s))
∣∣∣ds

+
∣∣∣Ip

0+g(s,X1(s),Y1(s))− Ip
0+g(s,X2(s),Y2(s))

∣∣∣(1)]
+|Q3(t)|

[
|k|
∫ ρ

0

( ∫ s

0
e−(s−z)

∣∣∣Ip
0+g(z,X1(z),Y1(z))− Ip

0+g(z,X2(z),Y2(z))
∣∣∣dz
)

dA(s)

+
n−2

∑
i=1
|αi|

∫ σi

0
e−(σi−s)

∣∣∣Ip
0+g(s,X1(s),Y1(s))− Ip

0+g(s,X2(s),Y2(s))
∣∣∣ds

+|k1|
∫ 1

ν

( ∫ s

0
e−(s−z)

∣∣∣Ip
0+g(z,X1(z),Y1(z))− Ip

0+g(z,X2(z),Y2(z))
∣∣∣dz
)

dA(s)

+
∫ 1

0
e−(1−s)

∣∣∣Iq
0+ f(s,X1(s),Y1(s))− Iq

0+ f(s,X2(s),Y2(s))
∣∣∣ds
]

+|Q4(t)|
[
|h|
∫ ρ

0

( ∫ s

0
e−(s−z)

∣∣∣Iq
0+ f(z,X1(z),Y1(z))− Iq

0+ f(z,X2(z),Y2(z))
∣∣∣dz
)

dA(s)

+
n−2

∑
i=1
|βi|

∫ σi

0
e−(σi−s)

∣∣∣Iq
0+ f(s,X1(s),Y1(s))− Iq

0+ f(s,X2(s),Y2(s))
∣∣∣ds

+|h1|
∫ 1

ν

( ∫ s

0
e−(s−z)

∣∣∣Iq
0+ f(z,X1(z),Y1(z))− Iq

0+ f(z,X2(z),Y2(z))
∣∣∣dz
)

dA(s)

+
∫ 1

0
e−(1−s)

∣∣∣Ip
0+g(s,X1(s),Y1(s))− Ip

0+g(s,X2(s),Y2(s))
∣∣∣ds
]}

≤ Λ1L1

(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
+ Λ2L2

(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
=

(
Λ1L1 + Λ2L2

)(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
= Θ

(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
.

Similarly, we can find that

‖T2(X1,Y1)− T2(X2,Y2)‖ = sup
t∈[0,1]

|T2(X1,Y1)(t)− T2(X2,Y2)(t)|

≤
(

Λ1L1 + Λ2L2

)(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
= Θ

(
‖X1 −X2‖+ ‖Y1 −Y2‖

)
.

Hence we obtain

‖T(X1,Y1)− T(X2,Y2))‖ ≤ (Θ + Θ)(‖X1 −X2‖+ ‖Y1 −Y2‖),
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which, in view of the condition (42), shows that T is a contraction. Thus, the conclusion
of Banach’s fixed-point theorem applies and, hence, the problem (1) and (2) has a unique
solution on [0, 1]. The proof is finished.

4. An Example

Example 1. Consider a coupled system of fractional differential equations
(cD26/7 +c D19/7)X (t) =

135X (t)
225 + t

+
3 sinY(t)

13 + t2 +
3

13
√

9 + t2
,

(cD17/5 +c D12/5)Y(t) =
√

16− t2

π(40 + t)
sin(2πX (t)) +

24| tan−1 Y(t)|
π(t2 + 120)

+
ln 5

2
, t ∈ [0, 1],

(45)

equipped with the coupled boundary conditions
X (0) = 0, X ′(0) = 0, X ′(1) = 0, X (1) = k

∫ ρ

0
Y(s)dA(s) +

3

∑
i=1

αiY(σi) + k1

∫ 1

ν
Y(s)dA(s),

Y(0) = 0, Y ′(0) = 0, Y ′(1) = 0, Y(1) = h
∫ ρ

0
X (s)dA(s) +

3

∑
i=1

βiX (σi) + h1

∫ 1

ν
X (s)dA(s).

(46)

Here q = 19/7, p = 12/5, k = 3/16, k1 = 2/175, h = 5/88, h1 = 3/104, A(s) = 1 + sr+1

r+1 ,
r ∈ N, ρ = 2/7, ν = 6/7, σ1 = 3/7, σ2 = 4/7, σ3 = 5/7, α1 = 1/10, α2 = 1/414,
α3 = 3/313, β1 = 1/3, β2 = 1/41, β3 = 7/121. Clearly

|f(t,X (t),Y(t))| ≤ 1
13

+
3
5
‖X ‖+ 3

13
‖Y‖,

|g(t,X (t),Y(t))| ≤ ln 5
2

+
1
5
‖X ‖+ 1

10
‖Y‖,

and hence η0 = 1/13, η1 = 3/5, η2 = 3/13, ζ0 = (ln 5)/2, ζ1 = 1/5, ζ2 = 1/10. Using
(36) and (37) with the given data and r = 2, we find that Ω1 ' 0.331501, Ω2 ' 0.138843 and
Ω = max{Ω1, Ω2} ' 0.331501 < 1. Therefore, by Theorem 1, the problem (45) and (46) has at
least one solution on [0, 1].

To explain Theorem 2, we consider the following system of sequential fractional differential
equations supplemented with the boundary conditions (46):

(cD26/7 +c D19/7)X (t) =
3e−t√
(t4 + 25)

|X (t)|
(1 + |X (t)|) +

18
(t2 + 30)

sin(Y(t)) + 9
2
√

5 + t
,

(cD17/5 +c D12/5)Y(t) = 1
(t + 10)

tan−1 X (t) +
e−t

10
|Y(t)|3

(1 + |Y(t)|3) +
cos(t + 1)
(9 + t)

,
(47)

t ∈ [0, 1]. It is easy to check whether |f(t,X1,Y1)− f(t,X2,Y2)| ≤ L1(‖X1−X2‖+ ‖Y1−Y2‖)
with L1 = 3/5 and |g(t,X1,Y1)−g(t,X2,Y2)| ≤ L2(‖X1−X2‖+ ‖Y1−Y2‖)with L2 = 1/10.
Additionally, Θ + Θ ' 0.282351 < 1. Therefore, the hypothesis of Theorem 2 is satisfied. Hence, by
the conclusion of Theorem 2, there is a unique solution to the system (47) equipped with the boundary
conditions (46) on [0, 1].

5. Discussion

We have presented the criteria ensuring the existence and uniqueness of solutions
for a coupled system of higher-order sequential Caputo fractional differential equations
complemented with Riemann–Stieltjes integro-multipoint boundary conditions on the
interval [0, 1]. A characteristic of the method employed in the present study is its generality,
as it can be applied to a variety of boundary value problems. As a special case, our results
become associated with multipoint boundary conditions:
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
X (0) = 0, X ′(0) = 0, X ′(1) = 0, X (1) =

n−2

∑
i=1

αiY(σi),

Y(0) = 0, Y ′(0) = 0, Y ′(1) = 0, Y(1) =
n−2

∑
i=1

βiX (σi),
(48)

if we take k = k1 = h = h1 = 0 in (2). In this case, the corresponding operators take
the form:

T̂1(X ,Y)(t) =
∫ t

0
e−(t−s) Iq

0+ f(s,X (s),Y(s))ds

+Q1(t)
[ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds− Iq
0+ f(s,X (s),Y(s))(1)

]
+ Q2(t)

[ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds− Ip
0+g(s,X (s),Y(s))(1)

]
+ Q3(t)

[ n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+g(s,X (s),Y(s))ds

−
∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
]

+ Q4(t)
[ n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds

−
∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
]
,

T̂2(X ,Y)(t) =
∫ t

0
e−(t−s) Ip

0+g(s,X (s),Y(s))ds

+P1(t)
[ ∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds− Iq
0+ f(s,X (s),Y(s))(1)

]
+ P2(t)

[ ∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds− Ip
0+g(s,X (s),Y(s))(1)

]
+ P3(t)

[ n−2

∑
i=1

αi

∫ σi

0
e−(σi−s) Ip

0+g(s,X (s),Y(s))ds

−
∫ 1

0
e−(1−s) Iq

0+ f(s,X (s),Y(s))ds
]

+ P4(t)
[ n−2

∑
i=1

βi

∫ σi

0
e−(σi−s) Iq

0+ f(s,X (s),Y(s))ds

−
∫ 1

0
e−(1−s) Ip

0+g(s,X (s),Y(s))ds
]
.

In future, we plan to develop the existence theory for the multivalued analogue of the
problem (1) and (2). Moreover, the boundary value problem considered in this paper can
be studied for other kinds of derivatives, such as Hadamard, Caputo–Hadamard, Hilfer,
Hilfer–Hadamard, etc.

Author Contributions: Conceptualization, Y.A., B.A. and S.K.N.; methodology, Y.A., B.A., S.K.N.
and A.S.M.A.; validation, Y.A., B.A., S.K.N. and A.S.M.A.; formal analysis, Y.A., B.A., S.K.N. and
A.S.M.A.; writing—original draft preparation, Y.A., B.A., S.K.N. and A.S.M.A.; funding acquisition,
A.S.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: Taif University Researchers Supporting Project number (TURSP-2020/303), Taif University,
Taif, Saudi Arabia.



Fractal Fract. 2022, 6, 123 16 of 16

Acknowledgments: Taif University Researchers Supporting Project number (TURSP-2020/303), Taif
University, Taif, Saudi Arabia. The authors thank the reviewers for their constructive remarks on
their work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005.
2. Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006.
3. Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton–zooplankton system.

Ecol. Model. 2015, 318, 8–18. [CrossRef]
4. Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics.

Theory and Application; Elsevier/Academic Press: London, UK, 2017.
5. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005.
6. Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1980.
7. Ahmad, B.; Alruwaily, Y.; Ntouyas, S.K.; Alsaedi, A. Existence and stability results for a fractional order differential equation with

non-conjugate Riemann–Stieltjes integro-multipoint boundary conditions. Mathematics 2019, 7, 249. [CrossRef]
8. Henderson, J.; Luca, R.; Tudorache, A. On a system of fractional differential equations with coupled integral boundary conditions.

Fract. Calc. Appl. Anal. 2015, 18, 361–386. [CrossRef]
9. Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. (Eds.) Advances in Fractional Calculus: Theoretical Developments and Applications in

Physics and Engineering; Springer: Dordrecht, The Netherlands, 2007.
10. Tariboon, J.; Ntouyas, S.K.; Asawasamrit, S.; Promsakon, C. Positive solutions for Hadamard differential systems with fractional

integral conditions on an unbounded domain. Open Math. 2017, 15, 645–666.
11. Lin, L.; Liu, Y.; Zhao, D. Study on implicit-type fractional coupled system with integral boundary conditions. Mathematics 2021, 9, 300.

[CrossRef]
12. Ahmad, B.; Alghanmi, M.; Alsaedi, A.; Nieto, J.J. Existence and uniqueness results for a nonlinear coupled system involving

Caputo fractional derivatives with a new kind of coupled boundary conditions. Appl. Math. Lett. 2021, 116, 107018. [CrossRef]
13. Lin, L.; Liu, Y.; Zhao, D. Controllability of impulsive ψ-Caputo fractional evolution equations with nonlocal conditions.

Mathematics 2021, 9, 1358. [CrossRef]
14. Fazli, H.; Nieto, J.J.; Bahrami, F. On the existence and uniqueness results for nonlinear sequential fractional differential equations,

Appl. Comput. Math. 2018, 17, 36–47.
15. Su, X.; Zhang, S.; Zhang, L. Periodic boundary value problem involving sequential fractional derivatives in Banach space.

AIMS Math. 2020, 5, 7510–7530. [CrossRef]
16. Alsaedi, A.; Ahmad, B.; Aljoudi, S.; Ntouyas, S.K. A study of a fully coupled two-parameter system of sequential fractional

integro-differential equations with nonlocal integro-multipoint boundary conditions. Acta Math. Sci. Ser. B 2019, 39, 927–944.
[CrossRef]

17. Saengthong, W.; Thailert, E.; Ntouyas, S.K. Existence and uniqueness of solutions for system of Hilfer-Hadamard sequential
fractional differential equations with two point boundary conditions. Adv. Differ. Equ. 2019, 2019, 525. [CrossRef]

18. Mohammadi, H.; Rezapour, S.; Etemad, S.; Baleanu, D. Two sequential fractional hybrid differential inclusions. Adv. Differ. Equ.
2020, 2020, 385. [CrossRef]

19. Baghani, H.; Alzabut, J.; Farokhi-Ostad, J.; Nieto, J.J. Existence and uniqueness of solutions for a coupled system of sequential
fractional differential equations with initial conditions. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1731–1741. [CrossRef]

20. Wongcharoen, A.; Ntouyas, S.K.; Wongsantisuk, P.; Tariboon, J. Existence results for a nonlocal coupled system of sequential
fractional differential equations involving ψ-Hilfer fractional derivatives. Adv. Math. Phys. 2021, 2021, 5554619. [CrossRef]

21. Webb, J.R.L.; Infante, G. Positive solutions of nonlocal boundary value problems involving integral conditions. Nonlinear Differ.
Equ. Appl. 2008, 15, 45–67. [CrossRef]

22. Ok, E.A. Probability Theory with Economic Applications; Lecture Notes; Economics Department, State University of New York-
Oswego (SUNY): Oswego, NY, USA, 2014.

23. Anevski, D. Riemann-Stieltjes Integrals; Lecture Notes; Mathematical Sciences, Lund University: Lund, Sweden, 2012.
24. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics

Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 24.

http://doi.org/10.1016/j.ecolmodel.2015.06.016
http://dx.doi.org/10.3390/math7030249
http://dx.doi.org/10.1515/fca-2015-0024
http://dx.doi.org/10.3390/math9040300
http://dx.doi.org/10.1016/j.aml.2021.107018
http://dx.doi.org/10.3390/math9121358
http://dx.doi.org/10.3934/math.2020481
http://dx.doi.org/10.1007/s10473-019-0402-4
http://dx.doi.org/10.1186/s13662-019-2459-8
http://dx.doi.org/10.1186/s13662-020-02850-3
http://dx.doi.org/10.1007/s11868-020-00359-7
http://dx.doi.org/10.1155/2021/5554619
http://dx.doi.org/10.1007/s00030-007-4067-7

	Introduction
	Preliminary Material
	Main Results
	An Example
	Discussion
	References

