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Abstract: In this paper, we study a class of second-order delay fractional differential equations with a
variable-order Caputo derivative. This type of equation is an extension to ordinary delay equations
which are used in the modeling of several biological systems such as population dynamics, epidemi-
ology, and immunology. Usually, fractional differential equations are difficult to solve analytically,
and with fractional derivatives of variable-order, they become more challenging. Therefore, the need
for reliable numerical techniques is worth investigating. To solve this type of equation, we derive a
new approach based on the operational matrix. We use the shifted Chebyshev polynomials of the
second kind as the basis for the approximate solutions. A convergence analysis is discussed and
the uniform convergence of the approximate solutions is proven. Several examples are discussed to
illustrate the efficiency of the presented approach. The computed errors, figures, and tables show
that the approximate solutions converge to the exact ones by considering only a few terms in the
expansion, and illustrate the novelty of the presented approach.

Keywords: second-order fractional delay differential equation; operational matrix method; shifted
Chebyshev polynomials of the second kind
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1. Introduction

Fractional differential equations (FDEs) appear in several science and engineering
applications. They have been used to model several nonlocal dynamical systems [1,2]
and, thus, have become a popular field of study. Fractional delay differential equations
(FDDEs) are also emerging in many other disciplines, including chemistry, physics, and
finance, where the inclusion of the delay term in the differential equations opens new
vistas [3]. Because it is extremely difficult to obtain solutions of nonlinear FDEs and FDDEs
in closed forms, several analytical and numerical methods such as the Adomian decom-
position and homotopy perturbations methods have been implemented [4–13]. In [14,15],
authors derived numerical approaches for the numerical integration of FDEs, which are
a generalization of many known methods in the literature, such as the Adams–Bashforth
approach. Adams–Bashforth methods were implemented to solve nonlinear FDDEs [16,17].
In addition, Daftardar-Gejji et al. recently introduced the predictor–corrector method for
solving FDEs [18]. A new iterative method to numerically solve FDEs was derived in [19]
and implemented for various functional equations. The operational matrix method (OMM)
has been proven to be an efficient approach to approximate various functional equations.
Gurbuz and Mehmet [20–23] implemented the OMM based on the Laguerre polynomials
to solve several types of linear and nonlinear functional equations, including the mixed
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boundary condition. Recently, the OMM was used by several researchers to solve fractional
differential equations. It was implemented to solve the fractional Riccati equations [24], the
generalized Abel integral equations [25], and fractional differential equations of arbitrary
order [26].

In this article, we study the following fractional delay problem:

D2z(s) = Dµ(s)z(s) + a(s)z(ζs) + r(s), 0 < s < 1, (1)

z(0) = z0, z′(0) = z1, (2)

where 0 < ζ < 1, 0 < µ(s) < 1 for all s ∈ [0, 1], a(s), r(s) are a continuous function on [0, 1],
and Dµ(s) is the variable Caputo derivative. In the next section, we present some definitions
and formulas which are used later. The method of solution is discussed in Section 3, and in
Section 4, we present some theoretical results. Several examples are discussed in Section 5.
In addition, we present conclusions in the last section.

2. Basic Definitions and Formulas

Here, we focused on basic concepts and definitions which were used in this paper. We
started with the definition of the variable Caputo derivative.

Definition 1. Let µ : [0, 1] → (0, 1) be a real valued function, and u ∈ AC[0, 1]. The Caputo
derivative of variable fractional order µ is defined by

Dµ(x)u(x) =
1

Γ(1− µ(x))

∫ x

0

u′(x)
(x− s)µ(x)

ds. (3)

Then, the following formulas can be obtained:

Dµ(x)xm =
Γ(m + 1)

Γ(1 + m− µ(x))
xm−µ(x), m = 1, 2, ... (4)

and
Dµ(x)1 = 0. (5)

For more details about the definition and properties of the variable Caputo derivatives,
we refer the reader to [27–29]. Let {Tk(x)}∞

k=0 be the set of Chebyshev polynomials of the
second kind on [−1, 1]. Then,∫ 1

−1
ω(x)Tk(x)Tl(x)dx =

{
π
2 , k = l
0, k 6= l

(6)

where ω(x) =
√

1− x2. The relation that generates these polynomials is given by

Tk+1(x) = 2xTk(x)− Tk−1(x), k = 1, 2, ... (7)

where

T0(x) = 1, (8)

T1(x) = 2x. (9)

Let x = 2s− 1. We defined the polynomials STk(s) by

STk(s) = Tk(2s− 1), k = 0, 1, .... (10)
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Then, it held that

STk+1(s) = (4s− 2)STk(s)− STk−1(s), k = 1, 2, ... (11)

where

ST0(s) = 1, (12)

ST1(s) = 4s− 2. (13)

Then, simple calculations indicate that ST2(s) and ST3(s) are given by

ST2(s) = (4s− 2)ST1(s)− ST0(s) = 16s2 − 16s + 3, (14)

ST3(s) = (4s− 2)ST2(s)− ST1(s) = 64s3 − 96s2 − 24s− 4. (15)

Thus, the coefficient of the leading term in STk(S) is 4k. The orthogonality relation is
given as ∫ 1

0
sω(s)STk(s)STl(s)ds =

{
π
8 , k = l
0, k 6= l

(16)

where sω(s) =
√

s− s2. One can see that if f (s) is a smooth function on [0, 1], then it can
be written in terms of {STk(s), k = 0, 1, 2, ...} as follows:

f (s) =
∞

∑
k=0

akSTk(s) (17)

where

ak =
8
π

∫ 1

0
sω(s)STk(s) f (s)ds. (18)

Now, we could find a relation between the basis {1, s, ..., sm} and the basis
{ST0(s), ST1(s), ..., STm(s)}. Let Υm(s) = [ST0(s), ST1(s), ..., STm(s)]

T and Φm(s) =

[1, s, ..., sm]T . Then,
Υm(s) = AmΦm(s) (19)

where for m = 5

A5 =


1 0 0 0 0
−2 22 0 0 0
3 −16 24 0 0
−4 40 −96 26 0
5 −80 336 −512 28

. (20)

It is easy to see that Am is a lower triangular matrix with the following diagonal
elements

(Am)kk = 22k−2. (21)

We had det(Am) = 2m2−m 6= 0, which implies that Am is a nonsingular matrix and it
held that

Φm(s) = A−1
m Υm(s). (22)
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3. Method of Solution

This section focuses on the derivation of the proposed method. First, we found the
operational matrices of D2z(s), z(ζs), and Dµ(s)z(s). From Equation (19), we had

Υ′′m(s) =
d2

ds2 [AmΦm(s)] = Am
d2

ds2 Φm(s) (23)

= Am


0
0
2
...

m(m− 1)sm−2

 (24)

= AmFmΦm(s)

= AmFm A−1
m Υm(s),

where

Fm =



0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
2 0 0 · · · 0 0 0
0 6 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · m(m− 1) 0 0


. (25)

Hence, AmFm A−1
m was the operational matrix of Υ′′m(s). Now,

Υm(ζs) = AmΦm(ζs) (26)

= Am


1
ζs

ζ2s2

...
ζmsm

 (27)

= AmGmΦm(s),

where

Gm =


1 0 0 · 0
0 ζ 0 · · · 0
...

...
...

...
...

0 0 · · · ζm−1 0
0 0 · · · 0 ζm

. (28)

From Equation (26), we obtained

Υm(ζs) = AmGm A−1
m Υm(s). (29)
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Hence, AmGm A−1
m was the operational matrix of Υm(ζs). Finally,

Dµ(s)Υm(s) = Dµ(s)(AmΦm(s)) (30)

= Am


Dµ(s)1
Dµ(s)s

...
Dµ(s)sm

 (31)

= Am


0

Γ(2)
Γ(2−µ(s)) s1−µ(s)

...
Γ(m+1)

Γ(m+1−µ(s)) sm−µ(s)



= Am


0 0 · · · 0
0 Γ(2)

Γ(2−µ(s)) s−µ(s) · · · 0
...

...
... · · ·

0 0 · · · Γ(m+1)
Γ(m+1−µ(s)) s−µ(s)

Φm(s)

= AmNµ(s)A−1
m Υm(s)

where

Nµ(s) =


0 0 · · · 0
0 Γ(2)

Γ(2−µ(s)) s−µ(s) · · · 0
...

...
... · · ·

0 0 · · · Γ(m+1)
Γ(m+1−µ(s)) s−µ(s)

. (32)

Hence, AmNµ(s)A−1
m was the operational matrix of Dµ(s)Υm(s). Let

Zm(s) =
m

∑
k=0

νkSTk(s) = ΘmΥm(s) (33)

where
Θm =

(
ν0 ν1 ν2 · · · νm

)
. (34)

From Equations (1), (23), (29) and (30), we obtained

Θm(AmFm A−1
m )Υm(s) = Θm(AmNµ(s)A−1

m + a(s)AmGm A−1
m )Υm(s) + r(s) (35)

or
Θm(AmFm A−1

m − AmNµ(s)A−1
m − a(s)AmGm A−1

m )Υm(s) = r(s). (36)

Taking the collocation points

sk =
2k + 2
2m + 2

, k = 1, 2, ..., m− 1, (37)

we had

Θm(AmFm A−1
m − AmNµ(sk)

A−1
m − a(sk)AmGm A−1

m )Υm(sk) = r(sk), k = 1, 2, ..., m− 1. (38)

Now, From Equation (33), we had

z0 = Zm(0) = ΘmΥm(0), (39)

z1 = Z′m(0) = AmNµ(1)A−1
m Υm(0), (40)
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which, combined with the results in Equations (38)–(40), led to

∏(Θm) = Ψ, (41)

where

∏(Θm) =



Θm(AmFm A−1
m − AmNµ(s1)

A−1
m − a(s1)AmGm A−1

m )Υm(s1)

Θm(AmFm A−1
m − AmNµ(s2)

A−1
m − a(s2)AmGm A−1

m )Υm(s2)
...

Θm(AmFm A−1
m − AmNµ(sm−1)

A−1
m − a(sm−1)AmGm A−1

m )Υm(sm−1)

ΘmΥm(0)
AmNµ(1)A−1

m Υm(0)


, Ψ =



r(s1)
r(s2)

...
r(sm−1)

z0
z1


. (42)

Then, we solve the nonlinear algebraic system (41) using Wolfram Research, Inc.,
Mathematica, Version 12.1, Champaign, IL (2021), to find Θm.

4. Theoretical Results

Our main task in this section was to show that {Zm(s) : m = 1, 2, ...} converged
uniformly to z(s) on [0, 1]. Since the differential operator on the Chebyshev polynomials
space was continuous and bounded, see [30], the solution produced by the operational
matrix method was very close to the least squares approximation of z(s). For simplicity in
analyzing the method, we assumed that zm(s) was the least square approximation of z(s).
Let z(s) ∈ Cm+1[0, 1], and assume that

Zm(s) =
m

∑
k=0

νkSTk(s) = ΘmΥm(s) (43)

was the least square approximation of z(s) of degree m. Using Taylor’s series expansion,
we had

z(s) = σm(s) +
zm+1(α)(s− c)m+1

(m + 1)!
, (44)

where c ∈ [0, 1], α between s and c, and

σm(s) =
m

∑
k=0

z(k)(c)(s− c)k

k!
. (45)

Thus,

|z(s)− σm(s)| =
∣∣∣∣ zm+1(α)(s− c)m+1

(m + 1)!

∣∣∣∣. (46)

Since Zm(s) was the least squares approximation of z(s), we had

‖z− Zm‖2
2 ≤ ‖z− σm‖2

2 (47)

=
∫ 1

0
sω(x)(z(s)− σ(s))2ds (48)

=
∫ 1

0
sω(s)

zm+1(α)(s− c)m+1

((m + 1)!)2 ds (49)

≤ τ2

((m + 1)!)2

∫ 1

0
sω(x)(s− c)2m+2ds (50)

=
τ2

((m + 1)!)2

∫ 1

0

√
s− s2(s− c)2m+2dx, (51)

where
τ = max{z(m+1)(s) : s ∈ [0, 1]}. (52)
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Let γ = max{1− c, c}. Then,

‖z− Zm‖2
2 ≤

τ2γ2m+2

((m + 1)!)2

∫ 1

0

√
s + s2 =

τ2γ2m+2

((m + 1)!)2
π

8
. (53)

Therefore,

‖z− Zm‖2 ≤
τγm+

(m + 1)!

√
π

8
, (54)

which approached to zero as m approached to ∞ for all s ∈ [0, 1]. Thus, {Zm(s) : m =
1, 2, ...} converged uniformly to z(s) on [0, 1]. The previous discussion was proof of the
following theorem:

Theorem 1. Suppose that z(s) ∈ Cm+1[0, 1]. Let Zm(s) = ∑m
k=0 νkSTk(s) = ΘmΥm(s) be the

least squares approximation of z(s). Then, {Zm(s) : m = 1, 2, ...} converges uniformly to z(s) on
[0, 1].

5. Examples

Three numerical examples were solved to show the efficiency of the OMM.

Example 1. Consider the delay fractional problem

D2z(s) = D
3sins+2coss

10 z(s) + sz(
s
2
) + r(s), 0 < s < 1 (55)

z(0) = 0, z′(0) = 1, (56)

where

r(s) = 2− 2
Γ(3− 3sins+2coss

10 )
s2− 3sins+2coss

10 − 1
Γ(2− 3sins+2coss

10 )
s1− 3sins+2coss

10 − s3

4
− s2

2
. (57)

The exact solution was given by

z(s) = s2 + s. (58)

Let the approximate solution be given by

Z5(s) =
5

∑
k=0

νkSTk(s). (59)

Then, using the proposed method, we obtained

ν0 = 0.8125000000000001, ν1 = 0.5, ν2 = 0.0625, ν3 = ν4 = ν5 = 0. (60)

Thus,

Z5(s) = 0.8125000000000001ST0(s) + 0.5ST1(s) + 0.0625ST2(s) = 1.11022× 10−16 + s + s2. (61)

Let

ε5 = max{|z(0)− Z5(0)|, |z(s1)− Z5(s1)|, ..., |z(s4)− Z5(s4)|, |z(1)− Z5(1)|}. (62)

Then, ε5 = 1.11022× 10−16. The absolute errors are reported in Table 1. The graphs of z(s)
and Z5(s) are shown in Figure 1.
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0.2 0.4 0.6 0.8 1.0
s

0.5

1.0

1.5

2.0

Figure 1. The graphs of z(s) and Z5(s) for Example 1.

Table 1. Absolute error for Example 1.

s |z(s)− Z5(s)|
0 1.11022× 10−16

0.1 1.11022× 10−16

0.2 1.11022× 10−16

0.3 1.11022× 10−16

0.4 1.11022× 10−16

0.5 1.11022× 10−16

0.6 1.11022× 10−16

0.7 1.11022× 10−16

0.8 1.11022× 10−16

0.9 1.11022× 10−16

1.0 1.11022× 10−16

Example 2. Consider the delay fractional problem

D2z(s) = D
s
4 z(s) + (sin s)z(

s
3
) + r(s), 0 < s < 1 (63)

z(0) = −2, z′(0) = 1, (64)

where

r(s) = 2− 2
Γ(3− s

4 )
s2− s

4 − 1
Γ(2− s

4 )
s1− s

4 − (sin s)
(

s2

9
+

s
3
− 2
)

. (65)

The exact solution was given by

z(s) = s2 + s− 2. (66)

Let the approximate solution be given by

Z5(s) =
5

∑
k=0

νkSTk(s). (67)

Then, using the proposed method, we obtained

ν0 = −1.1875000001, ν1 = 0.5, ν2 = 0.0625, ν3 = ν4 = ν5 = 0. (68)

Thus,

Z5(s) = −1.1875000001ST0(s) + 0.5ST1(s) + 0.0625ST2(s) = −2.0000000001 + s + s2. (69)
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Let

ε5 = max{|z(0)− Z5(0)|, |z(s1)− Z5(s1)|, ..., |z(s4)− Z5(s4)|, |z(1)− Z5(1)|}. (70)

Then, ε5 = 10−10. The absolute error is reported in Table 2. The graphs of z(s) and Z5(s) are
presented in Figure 2.

Table 2. Absolute error for Example 2.

s |z(s)− Z5(s)|
0 10−10

0.1 10−10

0.2 10−10

0.3 10−10

0.4 10−10

0.5 10−10

0.6 10−10

0.7 10−10

0.8 10−10

0.9 10−10

1.0 10−10

0.2 0.4 0.6 0.8 1.0
s

-2.0

-1.5

-1.0

-0.5

z(s)

Z5(s)

Figure 2. The graphs z(s) and Z5(s) for Example 2.

Example 3. Consider the delay fractional problem

D2z(s) = Dsz(s) + z
( s

4

)
+ r(s), 0 < s < 1 (71)

z(0) = 0, z′(0) = 0, (72)

where

r(s) =
15
4
√

s− 15
√

π

8Γ
( 7

2 − s
) s

5−2s
2 − 1

32
s

s
2 . (73)

The exact solution was given by
z(s) = s

5
2 . (74)

Let the approximate solution be given by

Z10(s) =
10

∑
k=0

νkSTk(s). (75)
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Using the proposed method, we had

ν0 =
256

315π
, ν1 =

512
693π

, ν2 =
256

1001π
, ν3 =

1024
45045π

, (76)

ν4 =
−256

153153π
, ν5 =

512
1616615π

, ν6 =
−256

2909907π
, ν7 =

2048
66927861π

, (77)

ν8 =
−2304

185810725π
, ν9 =

512
91265265π

, ν10 =
−2816

1017958725π
. (78)

Let
ε(s) = |z(s)− Z10(s)|. (79)

The absolute error is reported in Table 3. The graphs of z(s) and Z10(s) are presented in
Figure 3.

Table 3. Absolute error for Example 3.

s |z(s)− Z10(s)|
0 10−7

0.1 1.0× 10−7

0.2 1.0× 10−7

0.3 5.3× 10−7

0.4 5.0× 10−7

0.5 4.3× 10−7

0.6 1.9× 10−7

0.7 1.0× 10−7

0.8 3.1× 10−7

0.9 4.1× 10−7

1.0 4.9× 10−7

0.2 0.4 0.6 0.8 1.0
s

0.2

0.4

0.6

0.8

1.0

z(s)

Z10(s)

Figure 3. The graphs of z(s) and Z10(s) for Example 3.

Example 4. Consider the delay fractional problem

D2z(s) = Dsz(s) + z
( s

3

)
+ r(s), 0 < s < 1 (80)

z(0) = 0, z′(0) = 0, (81)

where r(s) was chosen so that the exact solution was given by

z(s) = s
5
2 cos(s

5
2 ). (82)
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Let the approximate solution be given by

Z10(s) =
10

∑
k=0

νkSTk(s). (83)

Using the proposed method, we had

ν0 = 0.220256, ν1 = 0.18058, ν2 = 0.035659, ν3 = −0.0189969, (84)

ν4 = −0.0109545, ν5 = −0.00258346, ν6 = −0.000356888, ν7 = 0.0000498019, (85)

ν8 = 0.0000219865, ν9 = 7.20851× 10−6, ν10 = −2.72747× 10−7. (86)

Let
ε(s) = |z(s)− Z10(s)|. (87)

The absolute error is reported in Table 4. The graphs of z(s) and Z10(s) are presented in
Figure 4.

Table 4. Absolute error for Example 4.

s |z(s)− Z10(s)|
0 10−6

0.1 1.6× 10−6

0.2 1.5× 10−6

0.3 7.2× 10−7

0.4 6.7× 10−7

0.5 5.8× 10−7

0.6 5.1× 10−7

0.7 4.9× 10−7

0.8 4.5× 10−7

0.9 4.1× 10−7

1.0 4.0× 10−7

0.2 0.4 0.6 0.8 1.0
s

0.1

0.2

0.3

0.4

0.5

z(s)

z10(s)

Figure 4. The graphs of z(s) and Z10(s) for Example 4.

6. Conclusions

We presented an algorithm to solve a class of delay fractional initial value problems
with the variable Caputo fractional derivative. We expanded the approximate solution
using extended types of Chebyshev polynomials and then determined the coefficients using
the operational matrix approach. We proved that the approximate solutions converged
uniformly to the exact ones. We illustrated the efficiency of the presented approach through
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four examples. It was noticed that the computed errors were small, even if we considered a
number of terms in the expansion. We chose examples where their exact solutions were
available, so it was possible to compute the exact errors. The approximate solutions were
very close to the exact ones, which indicated the efficiency of the presented approach in
dealing with these types of problems, and, therefore, it is recommended to extend its use to
other types of problems.
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