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Abstract: This study focuses on numerically addressing the time fractional Cattaneo equation involv-
ing Caputo–Fabrizio derivative using spline-based numerical techniques. The splines used are the
cubic B-splines, trigonometric cubic B-splines and extended cubic B-splines. The space derivative
is approximated using B-splines basis functions, Caputo–Fabrizio derivative is discretized, using
a finite difference approach. The techniques are also put through a stability analysis to verify that
the errors do not pile up. The proposed scheme’s convergence analysis is also explored. The key
advantage of the schemes is that the approximation solution is produced as a smooth piecewise
continuous function, allowing us to approximate a solution at any place in the domain of interest. A
numerical study is performed using various splines, and the outcomes are compared to demonstrate
the efficiency of the proposed schemes.

Keywords: cubic B-splines; trigonometric cubic B-splines; extended cubic B-splines; Caputo–Fabrizio
derivative; Cattaneo equation

1. Introduction

The time fractional Cattaneo differential equation (TFCDE) under consideration is [1]

∂v(s, t)
∂t

+CF
a Dα

t v(s, t) =
∂2v(s, t)

∂2s
+ g(s, t), (1)

with initial conditions {
v(s, 0) = φ(s),
vt(s, 0) = ψ(s),

0 ≤ s ≤ L, (2)

and the boundary conditions,{
v(0, t) = f1(t),
v(L, t) = f2(t),

t ≥ 0, (3)

where (s, t) ∈ ∆ = [0, L]× [0, T], 1 < α < 2, g ∈ C[0, T], and f1(t), f2(t), φ(s), ψ(s) are
known functions. Moreover, CF

a Dα
t v(s, t) is the Caputo-Fabrizio derivative given by

CF
a Dα

t v(s, t) =
M(α)

2− α

∫ t

a
v′′(s, x)exp[σ(t− x)]dx,

where M(0) = M(1) = 1 and σ = 1−α
2−α .
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For mathematical modeling of real-world problems, fractional differential equations
are often used. Scientists in a variety of fields are pushed to improve the interpretations of
their findings by utilizing the fractional order derivatives, which are particularly useful. In
mathematical modeling of many scientific situations, fractional order differential equations
provide more accurate information than regular differential equations. Fractional deriva-
tives are used to describe a variety of physical phenomena [2]. This is owing to the fact that
fractional operators assess both global and local properties when analyzing system evolu-
tion. In addition, integer-order calculus can sometimes contradict the experimental results;
therefore, non-integer order derivatives may be preferable [3]. It is difficult to determine
the solution to fractional differential equations (FDEs). As a result, a numerical method
must be used to obtain the solution to these partial differential equations. To tackle these
problems numerically, many approaches have been developed and extended. The existence
of solution of FDEs can be seen in [4]. Diethelm et al. presented the predictor-corrector
method [5] for the numerical solution of FDEs. Meerschaert and Tadjern [6] developed a
finite difference method for a fractional advection–dispersion equation. The homotopy
analysis method [7] for the fractional initial value problem was developed by Hashim et
al. An eigenvector expansion method for motion containing fractional derivatives was
presented by Suarez and Shokooh [8].

When compared to the finite difference approach, other spectral methods, such as the
operational matrix method, are particularly popular since they provide good accuracy and
take less time to compute. This method works well with fractional ordinary differential
equations (ODEs), fractional partial differential equations (PDEs), and variable order PDEs.
Jafari et al. [9] gave applications of Legendre wavelets in solving FDEs numerically. The
Haar wavelet operational matrix of fractional order integration and its applications in
solving fractional order differential equations can be seen in [10]. Chebyshev wavelets [11]
were used by Yuanlu for solving a nonlinear fractional order differential equation. Li and
Sun [12] developed a generalized block pulse operational matrix method for the solution of
FDEs. Obidat [13] used Legendre polynomials to approximate the solution of nonlinear
FDEs. Genocchi polynomials [14] were used by Araci to find numerical solutions of FDEs.
Grbz and Sezer [15] solved a class of initial and boundary value problems arising in science
and engineering using Laguerre polynomials. Caputo and Fabrizio proposed one of the
most recent fractional order derivatives. For more applications of this new derivative and
the related work, the reader is referred to [1,16–29].

In comparison to polynomials, the B-splines based collocation methods provide a good
approximation rate, are computationally quick, numerically consistent, and have second-
order continuity. To obtain numerical solutions to differential equations, multiple numerical
approaches based on various forms of B-splines functions were recently utilized. Inspired
by the popularity of spline approaches in finding numerical solutions of fractional partial
differential equations, various splines-based numerical techniques have been developed for
the numerical solution of the Cattaneo equation involving the Caputo–Fabrizio derivative.
The main motivation behind this work is that to the authors’ knowledge, this equation
has not been solved using the B-splines basis functions. In the current work, B-splines
are used to approximate the space derivative, while the Caputo–Fabrizio derivative is
approximated using finite differences. Moreover, the presented schemes are tested for
stability and convergence analysis.

2. Numerical Schemes

In this section, the cubic B-splines, extended cubic B-splines and the trigonometric
cubic B-splines are used to develop numerical techniques for the numerical solution of time
fractional Cattaneo equation (TFCE) (1).

2.1. Numerical Scheme Based on Cubic B-Splines

Let τ = T
N and h = L

M be the step length in space and time direction, respectively. Set
tm = mτ, sj = jh, where the positive integers, N and M, are used. The knots sj divide the
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solution domain ∆ equally into M equal subintervals [sj, sj+1], j = 0, 1, . . . , M− 1, where
a = s0 < s1 < · · · < sM = b. The approximate solution V(s, t) to the exact solution v(s, t)
in the following form is acquired by our scheme for solving (1)

V(s, t) =
M+1

∑
j=−1

Cj(t)Bj(s), (4)

where Cj(t) are unknowns to be found, and Bj(s) [30] are cubic B-splines basis (CuBS)
functions given by

Bj(s) =
1

6h3



(s− sj)
3, s ∈ [sj, sj+1]

h3 + 3h2(s− sj+1)

+3h(s− sj+1)
2 − 3(s− sj+1)

3, s ∈ [sj+1, sj+2]

h3 + 3h2(sj+3 − s)
+3h(sj+3 − s)2 − 3(sj+1 − s)3, s ∈ [sj+2, sj+3]

(sj+4 − s)3, s ∈ [sj+3, sj+4]

0, otherwise.

(5)

Here, Bj−1(s), Bj(s) and Bj+1(s) are survived due to the local support characteristic of
the cubic B-splines so that the approximation vm

j at the grid point (sj, tm) at the mth time
level is given as

v(sj, tm) = vm
j =

j+1

∑
w=j−1

Cm
w (t)Bw(s). (6)

The time-dependent unknowns Cm
j (t) are found using the specified initial and bound-

ary conditions as well as the collocation conditions on Bj(s). As a result, the approximation
vm

j and its required derivatives are
vm

j = a1Cm
j−1 + a2Cm

j + a1Cm
j+1,

(vm
j )s = −b1Cm

j−1 + b1Cm
j+1,

(vm
j )ss = c1Cm

j−1 + c2Cm
j + c1Cm

j+1,

(7)

where a1 = 1
6 , a2 = 4

6 , b1 = 1
2h , c1 = 1

h2 , and c2 = − 2
h2 . Let g = {gm : 0 ≤ m ≤ N}

be the collection of grid functions on a uniform mesh of the interval [0, T] such that

δtgm = gm−gm−1

τ . A discrete approximation to CF
0 Dα

t v(s, t) at (sj, tm+ 1
2
) can be obtained

as [1]

CF
0 Dα

t v(sj, tm+ 1
2
) =

1
(1− α)τ

(M0δtvm+1
j −

m

∑
l=1

(Mm−l −Mm−l+1)δtvl
j −Mmψj) + Rm+ 1

2
j , (8)

where,

Mj = exp(
1− α

2− α
τ j)− exp(

1− α

2− α
τ(j + 1)), (9)

and
|Rm+ 1

2
i | = O(τ2).

Lemma 1 ([1]). From the definition of Mj in (9), we have Mj > 0 and Mj+1 < Mj, ∀j ≤ m.

Lemma 2 ([1]). Suppose that v(t) ∈ C4,4
s,t ([0, L]× [0, T]), then

0 ≤ Mj ≤ Cτ
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and
0 ≤ Mj −Mj+1 ≤ CτMj.

Now, we employ the Caputo–Fabrizio fractional derivative and CuBS to establish
the numerical scheme for solving (1). Using CuBS and the approximation given in (8),
we obtain

(vm
j )t +

1
(α− 1)τ

(M0δtvm+1
j −

m

∑
l=1

(Mm−l −Mm−l+1)δtvl
j −Mmψj) = (vm+1

j )ss + gm+1
j + Rm+1, (10)

where Rm+1 = O(τ2 + h2). Thus, by ignoring Rm+1 and using the discretization (vm
j )t =

vm+1
j −vm

j
τ , we have

(α− 1)(vm+1
j − vm

j ) +
M0

τ
(vm+1

j − vm
j )−

1
τ

m

∑
l=1

(Mm−l −Mm−l+1)(vl
j − vl−1

j )

−Mmψj) = (α− 1)(vm+1
j )ss + (α− 1)τgm+1

j .

Rearranging the above equation, we obtain

σvm+1
j − µ(vm+1

j )ss = σvm
j +

1
τ

m

∑
l=1

(Mm−l −Mm−l+1)(vl
j − vl−1

j ) + Mmψj + µgm+1
j , (11)

where σ = (α− 1 + M0
τ ) and µ = (α− 1)τ. Using the CuBS approximation (7) in (11), we

obtain

η1Cm+1
j−1 + η2Cm+1

j + η1Cm+1
j+1 = η3Cm

j−1 + η4Cm
j + η3Cm

j+1

+
1
τ

m

∑
l=1

(Mm−l −Mm−l+1)[(a1Cl
j−1 + a2Cl

j + a1Cl
j+1)

− (a1Cl−1
j−1 + a2Cl−1

j + a1Cl−1
j+1)] + Mmψj + µgm+1

j , (12)

where η1 = σa1 − µc1, η2 = σa2 − µc2, η3 = σa1 ,and η4 = σa2. In matrix notation, the
above equation is expressed as

A1Cm+1 = A2Cm + B1(
1
τ

m

∑
l=1

(Mm−l −Mm−l+1)(Cl − Cl−1)) + MmΨ+µG,

where the matrices A1, A2, B1, Ψ and G are

A1 =



η1 η2 η1 0 . . . 0

0 η1 η2 η1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η1 η2 η1 0
0 . . . 0 η1 η2 η1

,

A2 =



η3 η4 η3 0 . . . 0

0 η3 η4 η3
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η3 η4 η3 0
0 . . . 0 η3 η4 η3

,
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B1 =



a1 a2 a1 0 . . . 0

0 a1 a2 a1
. . .

...
...

. . . . . . . . . . . .
...

0 . . . a1 a2 a1 0
0 . . . 0 a1 a2 a1

,

Ψ =
[
ψm+1

0 , ψm+1
1 , . . . , ψm+1

M
]T

,

and

G =
[
gm+1

0 , gm+1
1 , . . . , gm+1

M
]T

.

The above system gives (M + 1) equations in (M + 3) unknowns. For a unique
solution, two additional linear equations are necessary. For this purpose, the boundary
conditions are utilized as{

a1Cm+1
−1 + a2Cm+1

0 + a1Cm+1
1 = f1(tm+1),

a1Cm+1
M−1 + a2Cm+1

M + a1Cm+1
M+1 = f2(tm+1).

(13)

By combining Equations (12) and (13), we have (M + 3)× (M + 3), a system of linear
equations which can be solved uniquely.

2.2. Initial State

First of all, it is essential to find the initial vector C0 =
[
C0
−1, C0

0 , . . . , C0
M, C0

M+1
]T

to initiate the iteration procedure. This vector is obtained from initial conditions as
v′0 = φ′(s0),
v0

j = φ(sj), j = 0, 1, 2, 3, . . . , M,

v′M = φ′(sM).

Thus, (M + 3)× (M + 3) a system of linear equations results, and this system can be
written in matrix notation as

A3C0 = B2,

where the matrices A3, C0 and B2 are

A3 =



−b1 0 b1 0 . . . 0
a1 a2 a1 0 . . . 0

0 a1 a2 a1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 a1 a2 a1
0 . . . 0 −b1 0 b1


,

C0 =
[
C0
−1, C0

0 , . . . , C0
M, C0

M+1
]T ,

and

B2 =
[
φ′(s0), φ(s0) , . . . , φ(sM), φ′(sM)

]T .
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2.3. Numerical Scheme Based on Extended Cubic B-Splines

A cubic B-spline of degree four with a free parameter η is called an extended cubic
B-spline. This kind of cubic B-spline was introduced by Han and Liu in 2003. We follow the
same notations for the time and space discretizations that we used before. The extended
cubic B-spline (ECuBS) basis functions, B4

j (s, η) are given by

B4
j (s, η) =

1
24h4



4h(1− η)(s− sj)
3 + 3η(s− sj)

4, s ∈ [sj, sj+1]

(4− η)h4 + 12h3(s− sj+1) + 6h2(2 + η)(s− sj+1)
2

−12h(s− sj+1)
3 − 3η(s− sj+1)

4, s ∈ [sj+1, sj+2]

(4− η)h4 + 12h3(sj+3 − s) + 6h2(2 + η)(sj+3 − s)2

−12h(sj+3 − s)3 − 3η(sj+1 − s)4, s ∈ [sj+2, sj+3]

4h(1− η)(sj+4 − s)3 + 3η(sj+4 − s)4, s ∈ [sj+3, sj+4]

0, otherwise,

(14)

where η ∈ [−8, 1]. Here, B4
j−1(s), B4

j (s) and B4
j+1(s) are survived due to local support

characteristic of the cubic B-splines so that the approximation vm
j at the grid point (sj, tm)

at mth time level is given as

v(sj, tm) = vm
j =

j+1

∑
w=j−1

Cm
w (t)B4

w(s, η). (15)

The time-dependent unknowns Cm
j (t) are found using the specified initial and bound-

ary conditions as well as the collocation conditions on Bj(s). As a result, the approximation
vm

j and its required derivatives are
vm

j = ω1Cm
j−1 + ω2Cm

j + ω1Cm
j+1,

(vm
j )s = −ω3Cm

j−1 + ω4Cm
j + ω3Cm

j+1,

(vm
j )ss = ω5Cm

j−1 + ω6Cm
j + ω5Cm

j+1,

(16)

where ω1 = 4−η
24 , ω2 = 8+η

12 , ω3 = 1
2h , ω4 = 0, ω5 = 2+η

2h2 and ω6 = − 2+η

2h2 . By following
the same procedure as was done for cubic B-splines and using the ECuBS approximation
given in (16), we obtain the following approximation to the solution of (1)

η5Cm+1
j−1 + η6Cm+1

j + η5Cm+1
j+1 = η7Cm

j−1 + η8Cm
j + η7Cm

j+1

+
1
τ

m

∑
l=1

(Mm−l −Mm−l+1)[(ω1Cl
j−1 + ω2Cl

j + ω1Cl
j+1)

− (ω1Cl−1
j−1 + ω2Cl−1

j + ω1Cl−1
j+1)] + Mmψj + µgm+1

j , (17)

where, η5 = σω1 − µω5, η6 = σω2 − µω5, η7 = σω1 and η8 = σω2. In matrix notation, the
above Equation (17) is expressed as

A4Cm+1 = A5Cm + B3(
1
τ

m

∑
l=1

(Mm−l −Mm−l+1)(Cl − Cl−1)) + MmΨ+µG,
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where the matrices A4, A5 and B3 are

A4 =



η5 η6 η5 0 . . . 0

0 η5 η6 η5
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η5 η6 η5 0
0 . . . 0 η5 η6 η5

,

A5 =



η7 η8 η7 0 . . . 0

0 η7 η8 η7
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η7 η8 η7 0
0 . . . 0 η7 η8 η7

,

and

B3 =



ω1 ω2 ω1 0 . . . 0

0 ω1 ω2 ω1
. . .

...
...

. . . . . . . . . . . .
...

0 . . . ω1 ω2 ω1 0
0 . . . 0 ω1 ω2 ω1

.

The above system gives (M + 1) equations in (M + 3) unknowns. For a unique
solution, two additional linear equations are necessary. From the boundary conditions, we
obtain the required equations as follows{

ω1Cm+1
−1 + ω2Cm+1

0 + ω1Cm+1
1 = f1(tm+1),

ω1Cm+1
M−1 + ω2Cm+1

M + ω1Cm+1
M+1 = f2(tm+1).

(18)

By combining Equations (17) and (18), we have (M + 3)× (M + 3), a system of linear
equations, which can be solved uniquely.

2.4. Numerical Scheme Based on Trigonometric Cubic B-Splines

We follow the same notations for the time and space discretizations used before. The
trigonometric cubic B-spline (TCuBS) basis functions are given by [31]

TB4
j (s) =

1
p


l3(sj), s ∈ [sj, sj+1)

l(sj)(l(sj)m(sj+2) + m(sj+3)l(sj+1)) + m(sj+4)l2(sj+1), s ∈ [sj+1, sj+2)

m(sj+4)(l(sj+1)m(sj+3) + m(sj+4)l(sj+2)) + l(sj)m2(sj+3), s ∈ [sj+2, sj+3)

m3(sj+4), s ∈ [sj+3, sj+4),

(19)

where l(sj) = sin(
s−sj

2 ), m(sj) = sin(
sj−s

2 ) and p = sin( h
2 ) sin(h) sin( 3h

2 ).
Here, TB4

j−1(s), TB4
j (s) and TB4

j+1(s) are survived due to the local support character-
istic of the trigonometric cubic B-splines so that the approximation vm

j at the grid point
(sj, tm) at mth time level is given as

v(sj, tm) = vm
j =

j+1

∑
w=j−1

Cm
w (t)TB4

w(s). (20)
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The time-dependent unknowns Cm
j (t) are found using the specified initial and bound-

ary conditions as well as the collocation conditions on Bj(s). As a result, the approximation
vm

j and its required derivatives are
vm

j = ζ1Cm
j−1 + ζ2Cm

j + ζ1Cm
j+1,

(vm
j )s = −ζ3Cm

j−1 + ζ4Cm
j+1 + ζ3Cm

j+1,

(vm
j )ss = ζ5Cm

j−1 + ζ6Cm
j + ζ5Cm

j+1,

(21)

where 

ζ1 = csc(h) csc( 3h
2 ) sin2( h

2 ),

ζ2 = 2
1+2 cos(h) ,

ζ3 = 3
4 csc( 3h

2 ),

ζ4 = 0,

ζ5 = 3+9 cos(h)
4 cos( h

2 )
− 4 cos( 5h

2 ),

ζ6 = − 3 cot2( h
2 )

2+4 cos(h) .

By following the same procedure as was done for cubic B-splines and using the
approximation (8) in (1), we obtain

σvm+1
j − µ(vm+1

j )ss = σvm
j +

1
τ

m

∑
l=1

(Mm−l −Mm−l+1)(vl
j − vl−1

j ) + Mmψj + µgm+1
j , (22)

where σ = (α− 1 + M0
τ ) and µ = (α− 1)τ. Using the CuTBS approximation given in (21),

we obtain the following approximation to the solution of (1)

η9Cm+1
j−1 + η10Cm+1

j + η9Cm+1
j+1 = η11Cm

j−1 + η12Cm
j + η11Cm

j+1

+
1
τ

m

∑
l=1

(Mm−l −Mm−l+1)[(ζ1Cl
j−1 + ζ2Cl

j + ζ1Cl
j+1)

− (ζ1Cl−1
j−1 + ζ2Cl−1

j + ζ1Cl−1
j+1)] + Mmψj + µgm+1

j , (23)

where η9 = σζ1 − µζ5, η10 = σζ2 − µζ6, η11 = σζ1, and η12 = σζ2. In matrix notation, (23)
is expressed as

A7Cm+1 = A8Cm + B5(
1
τ

m

∑
l=1

(Mm−l −Mm−l+1)(Cl − Cl−1)) + MmΨ+µG,

where the matrices A7, A8 and B5 are

A7 =



η9 η10 η9 0 . . . 0

0 η9 η10 η9
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η9 η10 η9 0
0 . . . 0 η9 η10 η9

,
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A8 =



η11 η12 η11 0 . . . 0

0 η11 η12 η11
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η11 η12 η11 0
0 . . . 0 η11 η12 η11

,

and

B5 =



ζ1 ζ2 ζ1 0 . . . 0

0 ζ1 ζ2 ζ1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . ζ1 ζ2 ζ1 0
0 . . . 0 ζ1 ζ2 ζ1

.

The above system gives (M + 1) equations in (M + 3) unknowns. For a unique
solution, two additional linear equations are necessary. From the boundary conditions, we
obtained these equations as follows{

ζ1Cm+1
−1 + ζ2Cm+1

0 + ζ1Cm+1
1 = f1(tm+1),

ζ1Cm+1
M−1 + ζ2Cm+1

M + ζ1Cm+1
M+1 = f2(tm+1).

(24)

By combining Equations (23) and (24), we have (M + 3)× (M + 3), a system of linear
equations, which can be solved uniquely.

2.5. Stability Analysis

This section deals with stability analysis of the scheme based on cubic B-splines. The
stability analysis of the schemes based on extended and cubic trigonometric B-splines can
be carried out by a similar argument. We use the Fourier method to study the stability
analysis of the scheme. Let Ṽ0 be the perturbation vector of initial values V0 and Ṽm,
1 ≤ m ≤ N − 1 be the approximate solution of the scheme (12). The error vector δm is
defined as

δm = Vm − Ṽm, 0 ≤ m ≤ N − 1, (25)

where,

Vm =
[
Vm

1 , Vm
2 , . . . , Vm

M−1
]T ,

Ṽm =
[
Ṽm

1 , Ṽm
2 , . . . , Ṽm

M−1
]T ,

and

δm
j = Vm

j − Ṽm
j =

[
δm

1 , δm
2 , . . . , δm

M−1
]T .

Define the grid functions as follows:

δm(s) =


δm

j , sj −
h
2
< s < sj +

h
2

,

0, 0 ≤ s ≤ h
2

or L− h
2
< s < L.

We can expand δm(s) into Fourier series as

δm(s) =
∞

∑
l=−∞

dm(l) exp(
I2πls

L
),

where,

dm(l) =
1
L

∫ L

0
δm(s) exp(

−I2πls
L

)ds.
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Denoting

‖δm‖2 = (
∫ L

0
‖δm(s)‖2ds)

1
2 ,

and using the Parseval’s equality,

∫ L

0
‖δm(s)‖2ds =

∞

∑
l=−∞

‖dm(l)‖2,

we obtain

‖δm(s)‖2 =
∞

∑
l=−∞

‖dm(l)‖2.

We can expand δm
j into Fourier series, and because the difference equations are linear,

we can analyze the behavior of total error by tracking the behavior of an arbitrary nth
component. Based on the above analysis, we can suppose that the solution of (11) has the
following form

δm
j = dm exp(Iσs jh), (26)

where σs =
2πl

L , I =
√
−1. Substituting the above expression into (11), we obtain

σ(δm+1)− µ(δm+1
ss ) =

m

∑
l=1

(Mm−l −Mm−l+1)δt(δ
l) + σ(δm). (27)

Using the CuBS approximation given in (7) and Equation (26) in the above equation,
we obtain

dm+1(σ(a1 exp(−Iσsh) + a2 + a1 exp(Iσsh)− µ(c1 exp(−Iσsh) + c2 + c1 exp(Iσsh)))

=
m

∑
l=1

(Mm−l −Mm−l+1)δtdl(a1 exp(−Iσsh) + a2 + a1 exp(Iσsh)) + σdm(a1 exp(−Iσsh))

+ a2 + a1 exp(Iσsh)),

⇒ dm+1(σ(a2 + a1(2 cos(σsh))− µ(c2 + c1(2 cos(σsh)))

=
m

∑
l=1

(Mm−l −Mm−l+1)δtdl(a2 + a1(2 cos(σsh)) + σdm(a2 + a1(2 cos(σsh)),

which, on further simplification, reduces to

dm+1 =
1

σ− µr

m

∑
l=1

(Mm−l −Mm−l+1)(
dl − dl−1

τ
) +

σ

σ− µr
dm, 1 ≤ m ≤ M− 1, (28)

where, r = ( c2+2c1 cos(σsh)
a2+2a1 cos(σsh) ).

Definition 1 ([32,33]). A scheme is called stable if there exists a positive number C, independent
of j and m such that

||Vn − Ṽn|| ≤ C||V0 − Ṽ0||,

where Vn and Ṽn are the exact solutions of the difference scheme and its perturbed equation,
respectively.

Theorem 1. Suppose that dm, (1 ≤ m ≤ N − 1) are defined by (28), then for α ∈ (1, 2), we have

|dm| ≤ (1 + 2Cτ)m|d0|, m = 1, 2, . . . , M− 1.
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Proof. We use the mathematical induction for proof. For m = 1, we have from (28),

|d1| = |
σ

σ− µr
||d0| ≤ (1 + 2Cτ)|d0|.

Now, suppose that

|dm| ≤ (1 + 2Cτ)m|d0|, m = 1, 2, . . . , M− 2.

Then, by using Lemmas 1 and 2, we obtain

|dm+1| ≤
Cτ

σ− µr

m

∑
l=1
|(dl − dl−1)|+

σ

σ− µr
|dm|

=
Cτ

σ− µr
|(dm − d0)|+

σ

σ− µr
|dm|

≤ 2C′τ + σ

σ− µr
(1 + 2Cτ)m|d0| ≤ (1 + 2Cτ)m+1|d0|.

This completes the proof.

Theorem 2. The scheme (12) is unconditionally stable for α ∈ (1, 2).

Proof. By using Theorem 1, Parseval’s equality and mτ ≤ T, we obtain

‖Vm − Ṽm‖2
l2 =

∞

∑
−∞
‖dm(l)‖2

≤ (1 + 2Cτ)2m
∞

∑
l=−∞

‖d0(l)‖2

= (1 + 2Cτ)2m‖δ0(l)‖2
l2

≤ exp(4Cτm)‖V0 − Ṽ0‖2
l2 .

so that
‖Vm − Ṽm‖l2 ≤ exp(2

√
Cτ)‖V0 − Ṽ0‖l2 .

which means that the scheme is unconditionally stable.

3. Convergence Analysis

The convergence of the scheme based on cubic B-splines is presented in this section.
The convergence analysis of the extended and cubic trigonometric B-splines based nu-
merical scheme follows accordingly. Let em

j = vm
j − Vm

j , 1 ≤ j ≤ M− 1, 1 ≤ m ≤ N − 1
and

em = (em
1 , em

2 , . . . , em
M−1),

Rm = (Rm
1 , Rm

2 , . . . , Rm
M−1), 0 ≤ m ≤ N − 1.

From Equation (11) and Rm+1
j = O(τ2 + h2) and noting that e0

j = 0, we have

σem+1
j − µ(em+1

j )ss =
m

∑
l=1

(Mm−l −Mm−l+1)δtel
j + σem

j + Rm+1
j . (29)

Define the functions

em(s) =


em

j , sj −
h
2
< s ≤ sj +

h
2

, 1 ≤ j ≤ M− 1,

0, 0 ≤ s ≤ h
2

or L− h
2
< s ≤ L.
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and

Rm(s) =


Rm

j , sj −
h
2
< s ≤ sj +

h
2

, 1 ≤ j ≤ M− 1,

0, 0 ≤ s ≤ h
2

or L− h
2
< s ≤ L.

We expand the above functions into Fourier series expansions as
em(s) =

∞

∑
l=−∞

ξm(l) exp
I2πls

L ,

Rm(s) =
∞

∑
l=−∞

λm(l) exp
I2πls

L .

where, 
ξm(l) =

1
L

∫ L

0
em(s) exp

−I2πls
L ds,

λm(l) =
1
L

∫ L

0
Rm(s) exp

−I2πls
L ds,

Applying Parseval’s equalities,

∫ L

0
‖em(s)‖2ds =

M−1

∑
j=1

h‖em
j ‖2, and

∫ L

0
‖Rm(s)‖2ds =

M−1

∑
j=1

h‖Rm
j ‖2

to the above expression, we have{
‖em‖2

2 = ∑∞
l=−∞ ‖ξm(l)‖2,

‖Rm‖2
2 = ∑∞

l=−∞ ‖λm(l)‖2.
(30)

Now, we suppose that {
em

j = ξm expIσs jh,

Rm
j = λm expIσs jh,

(31)

where σs =
2πl

L . Substituting relations (31) in Equation (29).

ξm+1[σ(a1 expIσs(j−1)h +a2 expIσs(j)h +a1 expIσs(j+1)h)− µ(c1 expIσs(j−1)h

+ c2 expIσs(j)h +c1 expIσs(j+1)h)] =
m

∑
l=1

(Mm−l −Mm−l+1)δtξl [a1 expIσs(j−1)h

+ a2 expIσs(j)h +a1 expIσs(j+1)h] + σξm[a1 expIσs(j−1)h +a2 expIσs(j)h

+ a1 expIσs(j+1)h] + λm+1[a1 expIσs(j−1)h +a2 expIσs(j)h +a1 expIσs(j+1)h].

⇒ ξm+1[σ(a2 + 2a1 cos(σsh))− µ(c2 + 2c1 cos(σsh))]

=
m

∑
l=1

(Mm−l −Mm−l+1)δtξl(a2 + 2a1 cos(σsh)) + σξm(a2 + 2a1 cos(σsh))

+ λm+1(a2 + 2a1 cos(σsh)).
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The above expression is further simplified as

ξm+1 =
1

(σ− µr)

m

∑
l=1

(Mm−l −Mm−l+1)(
ξl − ξl−1

τ
) +

σ

(σ− µr)
ξm

+
1

(σ− µr)
λm+1, 1 ≤ m ≤ M− 1. (32)

Theorem 3. Let ξm be the solution of (32), then, there is a positive constant C such that

|ξm| ≤ C(1 + τ)m|λ1|, m = 0, . . . , N − 1.

Proof. We use the mathematical induction to prove this claim. For m = 1, we have
from (32)

|ξ1| ≤ |
λ1

σ− µr
| ≤ C(1 + τ)|λ1|.

Assume that
|ξm| ≤ C(1 + τ)m|λ1|, m = 0, . . . , N − 2.

Now by using the convergence of the series on the RHS of (30), we know that there
exists a constant C2 such that

|λm| ≤ C2τ|λ1|, m = 1, . . . , N − 1.

From (32), we have

|ξm+1| ≤
Cτ

σ− µr

m

∑
l=1
|ξl − ξl−1|+

σ

σ− µr
|ξm|+ |

λm+1

σ− µr
|

=
Cτ

σ− µr

m

∑
l=1
|ξm − ξ0|+

σ

σ− µr
|ξm|+ |

λm+1

σ− µr
|

= C1τ(1 + τ)m|λ1|+ C3τ(1 + τ)m|λ1|+ C2τ|λ1|
≤ (1 + τ)m+1C|λ1|.

Theorem 4. The scheme (12) is convergent, and the order of convergence is O(τ2 + h2).

Proof. By Theorem 3, Equation (30) and mτ ≤ T, we have

‖em‖2
l2 =

∞

∑
l=−∞

‖ξm(l)‖2 ≤
∞

∑
l=−∞

C2(1 + τ)2m‖λ1(l)‖2

= C2(1 + τ)2m‖R1‖2
l2

≤ C2C2
1e2mτ(τ2 + h2)2

≤ C′2(τ2 + h2)2.

This completes the proof.

4. Numerical Findings and Discussion

The efficiency and the validity of the suggested methodologies are confirmed in this
part using various test problems by utilizing the L2 and L∞ error norms. The numerical
results obtained by the proposed schemes are compared. Mathematica 12 was used to
obtain the numerical and graphical results.
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Example 1. Consider the time fractional Cattaneo equation,

∂v(s, t)
∂t

+CF
0 Dα

t v(s, t) =
∂2v(s, t)

∂2s
+ g(s, t), 1 < α < 2,

with initial constraint,
v(s, 0) = 0, vt(s, 0) = 0, s > 0,

and with boundary constraint,

v(0, t) = 0, v(1, t) = 0, 0 6 t 6 1.

The corresponding source term is

g(s, t) = 2(1− s2)s
16
3 [t +

1
α− 1

(1− exp(
1− α

2− α
t))] + t2(

418
9

s
16
3 − 208

9
s

10
3 ).

The analytic solution of the given problem is v(s, t) = t2(1− s2)s
16
3 . The suggested

schemes are implemented on the aforementioned problem to obtain the numerical re-
sults. The errors obtained by the schemes are compared with each other in Tables 1–3.
Figure 1 presents an efficient comparison of approximate and exact solutions at various
times. Figure 2 exhibits the 2D error profile. The 3D comparison between the exact and
approximate solutions is depicted in Figure 3. The approximate solution using the scheme
based on cubic B-splines when τ = 0.01 and M = 20 at T = 0.5 and T = 1 for Example 1
are given by

V(s, 0.5) =



−2.3293× 10−21 + 1.9849× 10−4s− 3.03577× 10−18s2 + 1.5661× 10−3s3, s ∈ [0, 1
20 )

−8.7474× 10−7 + 2.5097× 10−4s− 1.0497× 10−3s2 + 8.5639× 10−3s3, s ∈ [ 1
20 , 1

10 )

−1.7230× 10−5 + 7.4162× 10−4s− 5.9562× 10−3s2 + 0.0249s3, s ∈ [ 1
10 , 3

20 )
...
...
1.5989− 6.1887s + 8.0414s2 − 3.4502s3, s ∈ [ 17

20 , 9
10 )

2.5132− 9.2363s + 11.4277s2 − 4.7044s3, s ∈ [ 9
10 , 19

20 )

3.8346− 13.4089s + 15.8199s2 − 6.2455s3, s ∈ [ 19
20 , 1).

and

V(s, 1) =



−8.3009× 10−20 + 1.4517× 10−3s + 2.9490× 10−17s2 + 6.8016× 10−3s3, s ∈ [0, 1
20 )

−3.5058× 10−6 + 1.6620× 10−3s− 4.2069× 10−3s2 + 3.485× 10−2s3, s ∈ [ 1
20 , 1

10 )

−6.8991× 10−5 + 3.6266× 10−3s− 2.3853× 10−2s2 + 0.1003s3, s ∈ [ 1
10 , 3

20 )
...
...
6.3895− 24.7327s + 32.1435s2 − 13.7945s3, s ∈ [ 17

20 , 9
10 )

10.0419− 36.9074s + 45.6709s2 − 18.8046s3, s ∈ [ 9
10 , 19

20 )

15.3213− 53.5792s + 63.2202s2 − 24.9623s3, s ∈ [ 19
20 , 1).

respectively.
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Table 1. Comparison of errors using various B-splines when α = 1.1, dt = 0.001, T = 1 for Example 1.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 1.63× 10−3 2.60× 10−3 1.65× 10−3 2.64× 10−3 9.46× 10−4 1.47× 10−3

40 4.11× 10−4 6.55× 10−4 4.16× 10−4 6.65× 10−4 2.45× 10−4 3.94× 10−4

80 1.08× 10−4 1.71× 10−4 1.09× 10−4 1.73× 10−4 6.61× 10−5 1.04× 10−4

160 3.20× 10−5 5.00× 10−5 3.23× 10−5 5.06× 10−5 2.03× 10−5 3.25× 10−5

Table 2. Comparison of errors using various B-splines with α = 1.5, dt = 0.001, T = 1 for Example 1.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 1.54× 10−3 2.49× 10−3 1.56× 10−3 2.53× 10−3 1.42× 10−3 8.89× 10−4

40 3.90× 10−4 6.27× 10−4 3.94× 10−4 6.37× 10−4 2.33× 10−4 3.77× 10−4

80 1.02× 10−4 1.64× 10−4 1.04× 10−4 1.67× 10−4 6.42× 10−5 9.99× 10−5

160 3.08× 10−5 4.83× 10−5 3.11× 10−5 4.89× 10−5 2.00× 10−5 3.21× 10−5

Table 3. Comparison of errors using various B-splines with α = 1.9, dt = 0.001, T = 1 for Example 1.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 1.39× 10−3 2.31× 10−3 1.41× 10−3 2.35× 10−3 8.01× 10−4 1.30× 10−3

40 3.50× 10−4 5.85× 10−4 3.56× 10−4 5.95× 10−4 2.09× 10−4 3.44× 10−4

80 9.18× 10−5 1.51× 10−4 9.30× 10−5 1.54× 10−4 5.70× 10−5 9.18× 10−5

160 2.73× 10−5 4.29× 10−5 2.75× 10−5 4.35× 10−5 1.85× 10−5 2.96× 10−5

Figure 1. The exact and approximate (triangles, stars, circles) solutions using cubic B-spline-based
scheme for Example 1 at various times when h = 1

60 .
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Figure 2. The 2D error profile using cubic B-spline-based scheme for Example 1 when h = 1
60 , T = 1,

dt = 0.01, α = 1.5.

Figure 3. The approximate (left) and exact (right) solutions using cubic B-spline-based scheme for
Example 1 when h = 1

60 , T = 1, dt = 0.01, α = 1.5.

Example 2. Consider the time fractional Cattaneo equation,

∂v(s, t)
∂t

+CF
0 Dα

t v(s, t) =
∂2v(s, t)

∂2s
+ g(s, t), 1 < α < 2,

with ICs,
v(s, 0) = 0, vt(s, 0) = sin x, 0 6 s 6 1,

and BCs,
v(0, t) = 0, v(1, t) = t sin(1), t > 0.

The corresponding source term is g(s, t) = (1 + t) sin s. The analytic solution of the
given problem is v(s, t) = t sin s. In order to achieve the desired numerical results the
presented schemes are applied on Example 2. The errors obtained by the schemes are
compared with each other in Tables 4–6. For various time stages, a sharp contrast between
the exact and approximate solutions is presented in Figure 4. The 2D absolute error profile
is plotted in Figure 5. Figure 6 depicts a 3D comparison between the exact and approximate
solutions.

The approximate solution using cubic B-spline-based scheme when τ = 0.01 and
M = 20 at T = 0.5 and T = 1 for Example 2 are given by
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V(s, 0.5) =



3.0358× 10−17 + 0.499995s + 4.4409× 10−15s2 − 0.08331s3, s ∈ [0, 1
20 )

−2.6046× 10−8 + 0.499996s− 3.12551× 10−5s2 − 0.08311s3, s ∈ [ 1
20 , 1

10 )

−4.4227× 10−7 + 0.50001s− 1.56124× 10−4s2 − 0.08267s3, s ∈ [ 1
10 , 3

20 )
...
...
−7.78029× 10−3 + 0.5336s− 0.05168s2 − 0.05339s3, s ∈ [ 17

20 , 9
10 )

−0.01016 + 0.5415s− 0.06050s2 − 0.05013s3, s ∈ [ 9
10 , 19

20 )

−0.01307 + 0.5507s− 0.07016s2 − 0.04673s3, s ∈ [ 19
20 , 1).

and

V(s, 1) =



−4.5103× 10−17 + 0.99997s− 5.32907× 10−14s2 − 0.1666s3, s ∈ [0, 1
20 )

−5.2096× 10−8 + 0.99998s− 6.25146× 10−5s2 − 0.1662s3, s ∈ [ 1
20 , 1

10 )

−8.8457× 10−7 + s− 3.12256× 10−4s2 − 0.1654s3, s ∈ [ 1
10 , 3

20 )
...
...
−1.5548× 10−2 + 1.0671s− 0.1033s2 − 0.1068s3, s ∈ [ 17

20 , 9
10 )

−2.0307× 10−2 + 1.08297s− 0.1209s2 − 0.1003s3, s ∈ [ 9
10 , 19

20 )

−2.6118× 10−2 + 1.10132s− 0.1402s2 − 0.0935s3, s ∈ [ 19
20 , 1).

respectively.

Table 4. Comparison of errors using various B-splines with α = 1.1, dt = 0.001, T = 1 for Example 2.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 7.15× 10−6 9.97× 10−6 6.71× 10−6 9.35× 10−6 2.87× 10−7 3.99× 10−7

40 1.79× 10−6 2.49× 10−6 1.68× 10−6 2.34× 10−6 1.43× 10−8 1.98× 10−8

80 4.47× 10−7 6.23× 10−7 4.19× 10−7 5.84× 10−7 6.15× 10−9 8.57× 10−9

160 1.12× 10−7 1.56× 10−7 1.05× 10−7 1.46× 10−7 1.79× 10−10 2.50× 10−10

Table 5. Comparison of errors using various B-splines with α = 1.5, dt = 0.001, T = 1 for Example 2.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 7.04× 10−6 9.81× 10−5 6.60× 10−6 9.20× 10−6 2.82× 10−7 3.93× 10−7

40 1.76× 10−6 2.45× 10−6 1.65× 10−6 2.30× 10−6 1.40× 10−8 1.96× 10−8

80 4.40× 10−7 6.13× 10−7 4.12× 10−7 5.75× 10−7 6.05× 10−9 8.44× 10−9

160 1.09× 10−7 1.53× 10−7 1.03× 10−7 1.44× 10−7 1.76× 10−10 2.46× 10−10

Table 6. Comparison of errors using various B-splines with α = 1.9, dt = 0.001, T = 1 for Example 2.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 7.20× 10−6 1.01× 10−5 6.75× 10−6 9.43× 10−6 2.89× 10−7 4.03× 10−7

40 1.80× 10−6 2.51× 10−6 1.69× 10−6 2.36× 10−6 1.44× 10−8 2.01× 10−8

80 4.50× 10−7 6.29× 10−7 4.22× 10−7 5.90× 10−7 6.19× 10−9 8.65× 10−9

160 1.12× 10−7 1.57× 10−7 1.05× 10−7 1.47× 10−7 1.80× 10−10 2.52× 10−10
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Figure 4. The exact and approximate (triangles, stars, circles) solutions using cubic B-spline-based
scheme for Example 2 at various times when h = 1

60 .

Figure 5. The 2D error profile using cubic B-spline-based scheme for Example 2 when h = 1
60 , T = 1,

dt = 0.01, α = 1.5.

Figure 6. The approximate (left) and exact (right) solutions using cubic B-spline-based scheme for
Example 2 when h = 1

60 , T = 1, dt = 0.01, α = 1.5.



Fractal Fract. 2022, 6, 50 19 of 22

Example 3. Consider the time fractional Cattaneo equation,

∂v(s, t)
∂t

+CF
0 Dα

t v(s, t) =
∂2v(s, t)

∂2s
+ g(s, t), 1 < α < 2,

with ICs,
v(s, 0) = 0, vt(s, 0) = (1− s) cos s, 0 6 s 6 1,

and BCs
v(0, t) = t, v(1, t) = 0, t > 0.

The corresponding source term is g(s, t) = (1 + t)(1− s) cos s− 2t sin s. The analytic
solution of the given problem is v(s, t) = t(1− s) cos s. The proposed methodologies are
utilized to acquire the numerical results for Example 3.

A comparison of computed errors is provided in Tables 7–9. For various time stages, a
close comparison between the exact and approximate solutions is displayed in Figure 7.
The 2D error function is plotted in Figure 8. Figure 9 depicts a 3D comparison between the
exact and approximate solutions.

The approximate solution using cubic B-spline-based scheme when τ = 0.01 and
M = 20 at T = 0.5 and T = 1 for Example 3 are given by

V(s, 0.5) =



0.5− 0.5s− 0.25s2 + 0.2519s3, s ∈ [0, 1
20 )

0.5− 0.49997s− 0.2505s2 + 0.2551s3, s ∈ [ 1
20 , 1

10 )

0.499998− 0.4999s− 0.2511s2 + 0.2571s3, s ∈ [ 1
10 , 3

20 )
...
...
0.5282− 0.6185s− 0.07785s2 + 0.1681s3, s ∈ [ 17

20 , 9
10 )

0.5375− 0.6496s− 0.04329s2 + 0.1553s3, s ∈ [ 9
10 , 19

20 )

0.5491− 0.6860s− 4.990× 10−3s2 + 0.1419s3, s ∈ [ 19
20 , 1).

and

V(s, 1) =



1− 0.9999s− 0.5s2 + 0.5039s3, s ∈ [0, 1
20 )

0.9999− 0.9999s− 0.5009s2 + 0.5101s3, s ∈ [ 1
20 , 1

10 )

0.9999− 0.9998s− 0.5022s2 + 0.5142s3, s ∈ [ 1
10 , 3

20 )
...
...
1.0563− 1.2367s− 0.1560s2 + 0.3364s3, s ∈ [ 17

20 , 9
10 )

1.0750− 1.2989s− 0.0869s2 + 0.3108s3, s ∈ [ 9
10 , 19

20 )

1.0980− 1.3716s− 0.0103s2 + 0.2839s3, s ∈ [ 19
20 , 1).

respectively.

Table 7. Comparison of errors using various B-splines with α = 1.1, dt = 0.001, T = 1 for Example 3.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 2.21× 10−5 3.19× 10−5 2.23× 10−6 3.55× 10−6 4.04× 10−6 1.47× 10−6

40 5.53× 10−6 7.99× 10−6 5.58× 10−7 8.89× 10−7 1.01× 10−6 3.94× 10−6

80 1.38× 10−6 1.99× 10−6 1.40× 10−7 2.23× 10−7 2.97× 10−7 1.04× 10−7

160 3.46× 10−7 4.99× 10−7 3.49× 10−8 5.57× 10−8 6.71× 10−8 3.25× 10−8
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Table 8. Comparison of errors using various B-splines with α = 1.5, dt = 0.001, T = 1 for Example 3.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 2.18× 10−5 3.14× 10−5 2.24× 10−6 3.56× 10−6 4.06× 10−6 6.07× 10−6

40 5.44× 10−6 7.88× 10−6 5.60× 10−7 8.90× 10−7 1.01× 10−6 1.51× 10−6

80 1.36× 10−6 1.97× 10−6 1.40× 10−7 2.23× 10−7 2.98× 10−7 4.58× 10−7

160 3.40× 10−7 4.92× 10−7 3.50× 10−8 5.57× 10−8 6.74× 10−8 9.56× 10−8

Table 9. Comparison of errors using various B-splines with α = 1.9, dt = 0.001, T = 1 for Example 3.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 2.23× 10−5 3.23× 10−5 2.33× 10−6 3.69× 10−6 4.22× 10−6 6.30× 10−6

40 5.57× 10−6 8.08× 10−6 5.81× 10−7 9.24× 10−7 1.05× 10−6 1.57× 10−6

80 1.39× 10−6 2.02× 10−6 1.45× 10−7 2.32× 10−7 3.09× 10−7 4.76× 10−7

160 3.48× 10−7 5.05× 10−7 3.63× 10−8 5.79× 10−8 7.20× 10−8 9.96× 10−8

Figure 7. The exact and approximate (triangles, stars, circles) solutions using cubic B-spline-based
scheme for Example 3 at various times when h = 1

60 .

Figure 8. The 2D error profile using cubic B-spline-based scheme when for Example 2 when h = 1
60 ,

T = 1, dt = 0.01, α = 1.5.
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Figure 9. The approximate (left) and exact (right) solutions using cubic B-spline-based scheme for
Example 3 when h = 1

60 , T = 1, dt = 0.01, α = 1.5.

5. Concluding Remarks

The spline-based collocation schemes are developed for the numerical solution of the
time fractional Cattaneo differential equation involving the Caputo–Fabrizio time fractional
derivative. To begin with, the space derivative involved is approximated using the cubic
B-spline. Secondly, using finite differences, the Caputo–Fabrizio derivative is approximated.
The stability and convergence analysis of the schemes are also discussed in detail. The
splines used are the cubic B-splines, extended cubic B-splines and the trigonometric cubic
B-splines. The key advantage is that the approximate solution is obtained as a piecewise
continuous function so that approximate solution at any desired position in the domain can
be tracked. The efficiency and accuracy of the proposed approaches are confirmed by the
experimental findings. The suggested schemes can be applied to a wide range of problems
in varied fields of applied sciences.
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