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Abstract: In this article, we develop a numerical method based on the operational matrices of shifted
Vieta–Lucas polynomials (VLPs) for solving Caputo fractional-order differential equations (FDEs).
We derive a new operational matrix of the fractional-order derivatives in the Caputo sense, which
is then used with spectral tau and spectral collocation methods to reduce the FDEs to a system of
algebraic equations. Several numerical examples are given to show the accuracy of this method.
These examples show that the obtained results have good agreement with the analytical solutions
in both linear and non-linear FDEs. In addition to this, the numerical results obtained by using our
method are compared with the numerical results obtained otherwise in the literature.

Keywords: fractional-order differential equations; operational matrices; shifted Vieta–Lucas polyno-
mials; Caputo derivative

1. Introduction

Fractional calculus has been playing a very important role in scientific computations.
Scientists are able to describe and model many physical phenomena with fractional-order
differential equations. As a result, fractional-order differential operators are widely used
to solve systems by developing more accurate models [1–4]. The nonlocal property of the
fractional-order operators makes them more efficient for modeling the various problems
of physics, fluid dynamics and their related disciplines [1,5–9]. For example, consider a
thin rigid plate of mass a1 and area R immersed in a Newtonian fluid of infinite extent and
connected by a massless spring of stiffness K to a fixed point. A force g(z) is applied to
the plate. Assume that the spring has no effect on the fluid and that the area of the plate
is large enough to produce the fluid adjacent to the plate, whereas stresses σ(z, x) can be
defined by the following relation:

σ(z, x) =
√

µρD0.5v(z, x); (1)

where x is the distance of a point in the fluid from the spring to the submerged plate.
By some assumptions discussed in [10], the dynamics of the system are given by

a1D2υ(z) = g(z)− Kυ(z)− 2Rσ(z, 0) (2)
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where σ(z, 0) = Dυ(z). Equation (2), with some assumptions considered in [10], takes the
following form of a Bagley–Torvik-type problem solved in (Section 6, Example 1):

a1D2υ(z) + a2D3/2υ(z) + a3υ(z) = g(z), z ∈ [0, 1]. (3)

The existence and uniqueness results of fractional-order differential equations (FDEs)
have been investigated extensively in the literature. Some of them are presented as follows:
Fazli and Nieto [11] investigated the existence and uniqueness of the solution of FDEs of
Bagley–Torvik type by considering the existence of coupled lower and upper solutions.
Pang et al. [12] investigated the existence and uniqueness of the solution of the generalized
FDEs with initial conditions by proposing a novel max-metric containing a Caputo deriva-
tive. Abbas [13] studied the existence and uniqueness of the solution of FDEs by using
Banach’s contraction principle together with Krasnoselskii fixed point theorem. For more
works on existence and uniqueness results, we refer the reader to [14–17].

As most FDEs do not have closed-form solutions, different numerical techniques,
including the finite difference method, variational iteration method and spectral methods,
are preferably used. Among them, spectral methods have received considerable attention
from the fractional community for solving FDEs, both ordinary and partial. Spectral
methods are classified into three types, known as the collocation, tau and Galerkin methods.
The basic idea of the spectral methods is to write the solution as a linear combination of
basis vectors of global polynomials, typically Legendre, Jacobi and Chebyshev. The speed
of convergence is considered the best advantage of the spectral methods, as the rate
of convergence is exponential in these methods, which gives a high level of accuracy.
Many efficient spectral techniques are obtained in the literature using the various global
polynomials [18–21].

The construction of the operational matrices of fractional derivative operators defined
with singular or nonsingular kernels has played a key role in the development of spectral
methods. Many researchers have worked on the construction of the operational matrices
of fractional derivatives using different types of global polynomials. For example, Benat-
tia et al. [22] introduced the operational matrix of the fractional derivatives to develop
a numerical method that is based on the Chebyshev wavelet for solving FDEs. Saadat-
mandi et al. [23] derived an operational matrix of derivatives of fractional order using the
fractional-order Chebyshev functions. They also extended the results of [23] for solving the
coupled system of FDEs with variable coefficients [24]. Additionally, Bharway et al. [25]
introduced a new shifted Chebyshev operational matrix of fractional integration for solving
linear FDEs. Moreover, Talib et al. [26] developed a new operational matrix based on
the orthogonal shifted Legendre polynomials to numerically solve the fractional partial
differential equations. Meanwhile, Rahimkhani et al. [27] introduced a Bernoulli wavelet
operational matrix of fractional integration for obtaining the approximate solution of a
fractional delay differential equation. Kazem et al. [18] derived an operational matrix that
generalized the results presented in [19]. Recently, Dehastani et al. [28] calculated modified
operational matrices of integration and pseudo-operational of fractional derivatives for the
Lucas wavelet functions to compute the numerical solution of fractional Fredholm–Volterra
integro-differential equations. Moreover, Dehastani et al. [29,30] also derived operational
matrices of fractional-order derivatives and integration for fractional-order Bessel func-
tions and fractional-order hybrid Bessel functions. In the derived numerical techniques,
the operational matrices are applied to reduce the FDEs to a system of algebraic equations.

Dehestani et al. [31] also presented a novel collocation method based on the Genocchi
wavelet for the numerical solution of FDEs and time-fractional partial differential equations
with delay.

Motivated by the aforementioned works, we extend the study of the spectral methods
by constructing a numerical algorithm that is based on the fractional-order derivative
operational matrix of VLPs in Caputo sense, together with the spectral tau method and
spectral collocation method. The basis vectors of VLPs are used to approximate the solution
of the problems. The derivative terms are approximated by using the fractional-order
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derivative operational matrix of VLPs. It is important to mention that the proposed
algorithm is computer-oriented and is capable of reducing the FDEs to a system of algebraic
equations, which greatly simplifies the problems. Subsequently, we use the operational
matrices approach together with the spectral tau method in the case of linear FDEs, and the
operational matrices approach together with the spectral collocation method in the case of
nonlinear FDEs. Our proposed numerical algorithm produces highly efficient numerical
results as obtained otherwise in the literature [32–34].

The novel aspects of our proposed study are the development of the new fractional-
order derivative operational matrix of VLPs in Caputo sense and the construction of the
numerical algorithm that is based on this newly developed operational matrix. To the best
of our knowledge, this is the first result where the numerical algorithm is presented by
using the operational matrix of VLPs. Moreover, the proposed numerical algorithm is fit to
solve both linear and nonlinear FDEs with initial conditions. In addition, our proposed
method has advantages over other methods, such as the Homotopy perturbation method,
because, in our case, the perturbation, linearization or discretization are not necessary to
be implemented.

The structure of this paper is set in the following way. In Section 2, we discuss the
VLPs along with their properties. In Section 3 , the Vieta–Lucas operational matrix of
fractional-order derivatives is derived. In Section 4, the numerical method is developed
by using the operational matrices of VLPs. In Section 5, the error bound is determined.
In Section 6, the accuracy and the stability of the proposed method are analyzed by taking
some numerical examples. In Section 6, we conclude and give the summary of this paper.

2. Preliminaries

In this section, we summarize some definitions, properties and results of fractional
calculus that are essential to construct the numerical algorithm to solve the linear and
nonlinear FDEs.

Definition 1. The Riemann–Liouville fractional integral operator of order α > 0, of a function υ,
is defined as:

αυ(z) =
1

Γ(α)

∫ z

0
(z− s)α−1υ(s)ds, α > 0,

0υ(z) = υ(z).

Definition 2. The Caputo operator of the fractional derivative is defined as follows:

Dαυ(z) =
1

Γ(n− α)

∫ z

0

υ(n)(s)

(z− s)α+1−n ds, α > 0, z > 0, (4)

where n− 1 < α ≤ n, n ∈ N, and υ ∈ Cn[0, 1].
Hence, the Caputo operator follows:

Dαzk =

{
0, k ∈ 0, 1, 2, . . . , dαe − 1,

Γ(1+k)
Γ(1+k−α)

zk−α, k ∈ N∧ k ≥ dαe.
(5)

2.1. Vieta–Lucas Polynomials

Vieta–Lucas polynomials belong to the class of orthogonal polynomials and can be
created by using the recurrence relation [35]. Consider |z| ≤ 2; then, the Vieta–Lucas
polynomials of degree n ∈ N0 in the variable z can be defined as

VLn(z) = 2 cos(nθ), θ = cos−1
(

z
2

)
, θ ∈ [0, π]. (6)
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The VLPs can be created by using the following recurrence relation:

VLn(z) = z VLn−1(z)−VLn−2(z), n = 2, 3, . . . ,

VL0(z) = 2, VL1(z) = z.

Moreover, VLn(z) can be expressed using the following power series formula:

VLn(z) =
d n

2 e

∑
j=0

(−1)j nΓ(n− j)
Γ(j + 1)Γ(n + 1− 2j)

zn−2j, n = {2, 3, . . .}, (7)

where d n
2 e is the ceiling function.

Moreover, the orthogonality of VLn(z) can be expressed as:

〈
VLm(z), VLn(z)

〉
=
∫ 2

−2

1√
4− z2

VLm(z)VLn(z) dz =


0, m 6= n 6= 0,
4π, m = n = 0,
2π, m = n 6= 0,

(8)

where 1√
4−z2 is the weight function.

2.2. Shifted VLPs

As a new class of orthogonal polynomials, the shifted VLPs, VL∗n(z) of degree n,
defined on the closed interval [0, 1], can be obtained as follows:

VL∗n(z) = VLn(4z− 2) = VL2n(2
√

z). (9)

Moreover, VL∗n(z) are created by the following formula:

VL∗n+1(z) = (4z− 2)VL∗n(z)−VL∗n−1(z), n = 1, 2, . . . , (10)

with the starting values

VL∗0(z) = 2, VL∗1(z) = 4z− 2. (11)

Moreover, analytically, VL∗n(z) can be expressed as:

VL∗n(z) = 2n
n

∑
j=0

(−1)j 4n−jΓ(2n− j)
Γ(j + 1)Γ(2n− 2j + 1)

zn−j, n = {2, 3, . . .}. (12)

Let the function u(z) be Lebesgue-square-integrable on the interval [0, 1], which can
be expressed in terms of VLn(z) as follows:

u(z) =
∞

∑
j=0

cj VL∗j (z), (13)

where the undetermined coefficients, cj, j = 0, 1, 2, . . . , n, can be determined through the
following expression:

cj =
1

δjπ

∫ 2

−2

u( z+2
4 )VLj(z)√

4− z2
dz, (14)

or

cj =
1

δjπ

∫ 1

0

u(z)VL∗j (z)√
z− z2

dz, (15)
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where

δj =

{
4, j = 0,
2, j = {1, 2, . . . , n}.

(16)

For approximation, we can take the first n + 1 terms of the series; therefore, u(z) can
be expanded in the form

un(z) '
n

∑
j=0

cj VL∗j (z) = CTΨ(z), (17)

where the shifted VLP coefficient vector C and the shifted VLP vector Ψ(z) are given by

CT = [c0, c1, c2, . . . , cn],

Ψ(z) = [VL∗0(z), VL∗1(z), . . . , VL∗n(z)]
T . (18)

3. Operational Matrices of Differentiation

Theorem 1. Let Ψ(z) be the shifted VLP vector defined in (18) and also suppose that α > 0; then,

Dα(Ψ(z)) ' PαΨ(z),

where Pα is the (m + 1)× (m + 1) operational matrix of the fractional derivative of order α in the
Caputo sense and is defined as follows:

Pα =



0 0 . . . 0
...

... . . .
...

0 0 . . . 0
i−dαe

∑
k=0

ξi,0,k

i−dαe

∑
k=0

ξi,1,k . . .
i−dαe

∑
k=0

ξi,m,k

...
... . . .

...
m−dαe

∑
k=0

ξm,0,k

m−dαe

∑
k=0

ξm,1,k . . .
m−dαe

∑
k=0

ξm,m,k


and ξi,j,k is given by

ξi,j,k =



i ∑
i−dαe
k=0 (−1)k 4i−kΓ(2i−k)Γ(i−k+1)Γ(i−k−α+1/2)√

πΓ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)2 , j = 0,

2i ∑
i−dαe
k=0 ∑

j
r=0

(−1)k+r
√

π

4i−kΓ(2i−k)Γ(i−k+1)
Γ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)

× 4j−rΓ(2j−r)Γ(i+j−k−r−α+1/2)
Γ(r+1)Γ(2j−2r+1)Γ(i+j+k−r−α+1) , j = 1, 2, 3, . . . .

(19)

Proof. Applying the Caputo derivative to (12), we have

Dα(VL∗i (z)) = Dα

(
i

∑
k=0

(−1)k 4i−k2iΓ(2i− k)
Γ(k + 1)Γ(2i− 2k + 1)

zi−k

)
. (20)

Applying the linearity of the Caputo derivative, and using (5), we have

Dα(VL∗i (z)) =
i−dαe

∑
k=0

(−1)k 4i−k2iΓ(2i− k)Γ(i− k + 1)
Γ(k + 1)Γ(2i− 2k + 1)Γ(i− k + 1− α)

zi−k−α, i = dαe, . . . , n, (21)

and
Dα(VL∗i (z)) = 0, i = 0, 1, . . . , dαe − 1. (22)
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Now, approximate zi−k−α by (m + 1) terms of the series, as

zi−k−α '
m

∑
j=0

ckj VL∗j (z), (23)

where

ckj =
1

δjπ

∫ 1

0

u(z)VL∗j (z)√
z− z2

dz, (24)

and u(z) = zi−k−α.
Now, inserting the value of u(z)and VL∗j (z) into Equation (24), we obtain

ckj =


1

4π

∫ 1
0

2zi−k−α
√

z−z2 dz, j = 0,
1

2π

∫ 1
0

zi−k−α
√

z−z2 ∑
j
r=0

(−1)r2j4j−rΓ(2j−r)
Γ(r+1)Γ(2j−2r+1) zj−rdx, j = 1, 2, 3, . . . ,

=


1

2π

∫ 1
0

zi−k−α
√

z−z2 dz, j = 0,
1
π

∫ 1
0 ∑

j
r=0

(−1)r j4j−rΓ(2j−r)
Γ(r+1)Γ(2j−2r+1)

zi+j−k−r−α
√

z−z2 dz, j = 1, 2, 3, . . . ,

=


1

2
√

π

Γ(i−k−α+1/2)
Γ(i−k−α+1) , j = 0,

1√
π ∑

j
r=0

(−1)r j4j−rΓ(2j−r)Γ(i+j−k−r−α+1/2)
Γ(r+1)Γ(2j−2r+1)Γ(i+j−k−r−α+1) , j = 1, 2, 3, . . . ,

(25)

by inserting the value of zi−k−α into Equation (21), we obtain

Dα(VL∗i (z)) '
m

∑
j=0

Sv(i, j)VL∗j (z)), (26)

where Sv(i, j) = ∑
i−dαe
k=0 ξi,j,k, and

ξi,j,k =



(−1)k 4i−k iΓ(2i−k)Γ(i−k+1)Γ(i−k−α+1/2)√
πΓ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)2 , j = 0,

∑
j
r=0

(−1)k+r
√

π

4i−k2iΓ(2i−k)Γ(i−k+1)
Γ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)

× 4j−r jΓ(2j−r)Γ(i+j−k−r−α+1/2)
Γ(r+1)Γ(2j−2r+1)Γ(i+j+k−r−α+1) , j = 1, 2, 3, . . . .

(27)

Rewriting Equation (26) in vector form, we obtain

Dα(VL∗i (z)) '
(

i−dαe

∑
k=0

ξi,0,k,
i−dαe

∑
k=0

ξi,1,k, . . . ,
i−dαe

∑
k=0

ξi,m,k

)
Ψ(z). (28)

For simplicity, we can write Equation (28) as:

Dα(VL∗i (z)) = P(α)Ψ(z), (29)

where

P(α) =

(
i−dαe

∑
k=0

ξi,0,k,
i−dαe

∑
k=0

ξi,1,k, . . . ,
i−dαe

∑
k=0

ξi,m,k

)
. (30)

Equations (22) and (29) prove the required result.

4. Application of Operational Matrices Method

In this section, we apply the Vieta–Lucas operational matrix method to find the
analytical-approximate solution of linear and nonlinear FDEs.
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4.1. Linear FDEs

Consider the linear FDE

Dαυ(z) = b1Dϑ1 υ(z) + b2Dϑ2 υ(z) + . . . + bkDϑk υ(z) + bk+1υ(z) + bk+2g(z), (31)

with initial conditions
υ(i)(0) = di, i = 0, . . . , n, (32)

where bl , for l = 1, . . . , k + 2, are real constant coefficients and also n < α ≤ n + 1,
and 0 < ϑ1 < ϑ2 < . . . < ϑk < α.

The unknown function υ(z) and the source term g(z) can be approximated as:

υ(z) '
M

∑
i=0

ci VL∗i (z) = CTΨ(z), (33)

g(z) '
M

∑
i=0

hi VL∗i (z) = HTΨ(z), (34)

where H = [h0, . . . , hM]T is known, and C = [c0, . . . , cM]T is an unknown to be determined.
Now, using Equations (29) and (33), we have

Dαυ(z) ' CT DαΨ(z) ' CT PαΨ(z), (35)

Dϑj υ(z) ' CT Dϑj Ψ(z) ' CT Pϑj Ψ(z), j = 1, . . . , k. (36)

Using Equations (33)–(36), the residual R(x) for Equation (31) can be written as

RM(z) ' (CT Pα − b1CT Pϑ1 − . . .− bkCT Pϑk − bk+1CT − bk+2GT)Ψ(z). (37)

Using the spectral tau method [36], a system of linear equations is generated by applying

〈RM(z), Ψ(z)〉 =
∫ 1

0
RM(z)Ψ(z)dz, j = 0, 1, . . . , M− n− 1. (38)

Moreover, by substituting Equation (33) in the initial conditions given in Equation (32),
we obtain

υ(i)(0) = CT P(i)Ψ(0) = di, i = 0, 1, . . . , n. (39)

Equations (38) and (39) generate the (M − n) and (n + 1) set of linear equations,
respectively. This system of linear equations can then be solved easily for the unknown
coefficients. Consequently, we can approximate υ(z) given in Equation (33).

4.2. Nonlinear FDEs

Consider the nonlinear fractional-order differential equation

F(z, υ(z), Dϑ1 υ(z), Dϑ2 υ(z), . . . , Dϑk υ(z)) = 0, (40)

with boundary conditions

Hj(υ(ς j), υ
′
(ς j), . . . , υ(s)(ς j)) = dj, (41)
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where 0 ≤ s < max{ϑj, j = 1, . . . , k} ≤ s + 1, ς j ∈ [0, 1], j = 0, . . . , s and Hj are linear com-
binations of υ(ς j), υ

′
(ς j), . . . , υ(s)(ς j). Now, using Theorem 1 and Equation (33), the terms

of Equation (40) can be approximated as

υ(z) = CTΨ(z),
Dϑ1 υ(z) = CT Pϑ1 Ψ(z),
Dϑ2 υ(z) = CT Pϑ2 Ψ(z),
...

...
Dϑk υ(z) = CT Pϑk Ψ(z).

(42)

Similarly, the terms of Equation (41) can be approximated as

υ(ς j) = CTΨ(ς j),
υ
′
(ς j) = CT P(1)Ψ(ς j),

υ
′′
(ς j) = CT P(2)Ψ(ς j),

...
...

υ(s)(ς j) = CT P(s)Ψ(ς j).

(43)

In light of (42) and (43), we may write Equations (40) and (41), respectively, as

F(z, CTΨ(z), CT Pϑ1 Ψ(z), . . . , CT Pϑk Ψ(z)) = 0, (44)

Hj(CTΨ(ς j), CT P(1)Ψ(ς j), . . . , CT P(s)Ψ(ς j)) = dj. (45)

Now, to find the solution υ(z), we first collocate Equation (44) at (M− s) points. These
equations, along with Equation (45), generate a system of algebraic equations, which can
be solved to find ci, i = 0, . . . , M. Consequently, the function υ(z) can be approximated.

5. Error Estimate

Lemma 1. ([37]) The following assumptions for the function g(z), such that g(k) = bk, must
hold true:

1. The function g(z) is positive, decreasing and continuous for z ≥ m.
2. ∑ bm is convergent, and Pm = ∑∞

k=m+1 bk.

Then,

Pm ≤
∫ ∞

m
g(z)dz.

Theorem 2. If v(z) ∈ L2
w(∆), ∆ = [0, 1], v(z) = ∑∞

k=0 bk VL∗k (z), bk is introduced in
Equation (15), and v′′(z) ≤ N, then we have

‖v(z)− vm(z)‖w ≤
N√

96m3π
. (46)

Proof. It is evident that the shifted VLPs are orthogonal on the interval [0, 1] with respect
to the weight function, w(z) = 1√

z−z2 . Hence, these polynomials form a complete L2
w(∆)

orthogonal set, where L2
w(∆) represents the space of functions defined as v : ∆→ R. Thus,

the error in space L2
w(∆) is determined as

‖v(z)− vm(z)‖2
w =

(∫ 1

0
|v(z)− vm(z)|2w(z)dz

) 1
2

. (47)
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Using Equations (13) and (17) in Equation (47), we have

‖v(z)− vm(z)‖2
w =

∫ 1

0

∣∣∣∣∣ ∞

∑
k=m+1

bk VL∗k (z)

∣∣∣∣∣
2

w(z)dz

 1
2

. (48)

Now, by applying the orthogonality property of shifted VLPs to Equation (48), we have

‖v(z)− vm(z)‖2
w =

1
δkπ

∞

∑
k=m+1

|bk|2. (49)

Now, by using the substitution 4x − 2 = 2 cos(θ) in Equation (15), the coefficients,
bk, k = 0, 1, · · · , m, can be determined as

bk =
1

4δkπ

∫ π

0
v′′
(

1 + cos(θ)
2

)
sin(θ)

(
sin(k− 1)θ

k− 1
− sin(k + 1)θ

k + 1

)
dθ. (50)

Equation (50) can also be expressed as

|bk| =
∣∣∣∣ 1
4δkπ

∫ π

0
v′′
(

1 + cos(θ)
2

)
sin(θ)

(
sin(k− 1)θ

k− 1
− sin(k + 1)θ

k + 1

)∣∣∣∣dθ. (51)

Using v′′(z) ≤ N, and the properties of trigonometric functions, we may express
Equation (51) as

|bk| ≤
N

4k(k− 1)(k + 1)
, k > 2. (52)

Now, using Equation (52) in Equation (49), we have

‖v(z)− vm(z)‖2
w ≤

N2

32π

∞

∑
k=m+1

1
k4 . (53)

Now, by using the Lemma 1, we have

‖v(z)− vm(z)‖2
w ≤ N2

32π

∫ ∞

m
z−4dz (54)

=
N2

32π
× 1

3m3 =
N2

96m3π
. (55)

Finally, we have

‖v(z)− vm(z)‖w ≤
N√

96m3π
. (56)

6. Illustrative Examples

In this section, we give some numerical examples to show the accuracy of our pro-
posed method.

Example 1. Consider the following fractional Bagley–Torvik equation

a1D2υ(z) + a2D3/2υ(z) + a3υ(z) = g(z), z ∈ [0, 1], (57)

subject to the initial conditions with integer order

υ(0) = 1 = υ(0)′. (58)
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The source term g(z) is as follows:

g(z) = 1 + z. (59)

The exact solution of the problem in Example 1 is:

υ(z) = 1 + z. (60)

Now, we apply the technique that is described in Section 4.1 by choosing the first three terms
of VLPs. We may write the approximation solution as

υ(z) = CTΨ(z)⇐⇒ y(0) = CTΨ(0) = d0 = 1,

υ
′
(z) = CT HυΨ(z)⇐⇒ y

′
(0) = CT HυΨ(0) = d1 = 1.

(61)

Now, we have Vieta–Lucas polynomials

Ψ(z) = (VL∗0(z), VL∗1(z), VL∗2(z)),

= (2, 4z− 2, 16z2 − 16z + 2),
(62)

and

GT =

 0.75
0.25

0

. (63)

The Vieta–Lucas operational matrices can be expressed as

D2 =

 0 0 0
0 0 0

16 0 0

,

D3/2 =

 0 0 0
0 0 0

11.4936 7.6624 −1.5325

, (64)

D1 =

 0 0 0
2 0 0
0 8 0

.

The residuals can be evaluated as

R(z) =
(

CD2 + a2CD3/2 + a2C− a3G
)

Ψ(z),

where C = [c0, c1, c2]. Now, using initial conditions, we have:

2c0 − 2c1 + 2c2 = 1,

4c1 − 16c2 = 1.
(65)

Moreover, using the inner product of the residual with the Vieta–Lucas polynomials, we obtain
a system of equations. If we take one equation from this system and two equations from Equation (65),
then, by simultaneously solving these equations, we obtain c0 = 0.75, c1 = 0.25, c2 = 0, hence

υ(z) = (
3
4

,
1
4

, 0)

 2
4z− 2

16z2 − 16z + 2

 = 1 + z, (66)

which is the exact solution.



Fractal Fract. 2022, 6, 79 11 of 20

Remark 1. The numerical results computed using our method are compared with the method
of [33] by choosing various n. We observe that our proposed method produces efficient numerical
results as compared to the numerical results obtained by using the method of [33] (see Tables 1 and 2
and Figure 1). Moreover, for a small value of n = 2, the exact solution and the approximate solution
computed by using our method coincide (see Table 1 and Figure 1).

Table 1. Comparison of approximate solution of Example 1.

z υ(z) Our Method at n = 2 The Method of [33] at n = 10

0 1.00 1.00 1.024862
0.1 1.10 1.10 1.121206
0.2 1.20 1.20 1.220821
0.3 1.30 1.30 1.323041
0.4 1.40 1.40 1.426952
0.5 1.50 1.50 1.531330
0.6 1.60 1.60 1.634569
0.7 1.70 1.70 1.734591
0.8 1.80 1.80 1.828738
0.9 1.90 1.90 1.913640
1.0 2.00 2.00 1.985057

Table 2. Comparison of absolute errors of Example 1.

z Absolute Errors at n = 10 Using [33] Absolute Errors at n = 2, 8, 10 Using Our Method

0 2.30× 10−2 0
0.1 2.69× 10−2 0
0.2 3.13× 10−2 0
0.3 3.45× 10−2 0
0.4 3.45× 10−2 0
0.5 2.87× 10−2 0
0.6 1.36× 10−2 0
0.7 1.49× 10−2 0
0.8 2.30× 10−2 0
0.9 2.69× 10−2 0
1.0 3.13× 10−2 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

υ
(z
)

Approximate solution using proposed method
Approximate solution using other method
Exact solution

Figure 1. Approximate solutions of Example 1 computed by our method at n = 2 is compared with
the method of [33] computed at n = 10.

Remark 2. The numerical results of Example 1 computed at n = 2 by using our method are
compared with the results obtained by using the methods of [32,34] at n = 6. We observe that, for a
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small value of n = 2, the approximate solution obtained using our method coincides with the exact
solution of Example 1 (see Tables 3 and 4). However, the exact solution and the approximate solution
computed by using the methods of [32,34] coincide at n = 6. This shows that our proposed method
is numerically more efficient.

Table 3. Comparison of approximate solution of Example 1.

z υ(z) Our Method at at n = 2 The Method of [32] at n = 6

0 1.00 1.00 1.00
0.1 1.10 1.10 1.10
0.2 1.20 1.20 1.20
0.3 1.30 1.30 1.30
0.4 1.40 1.40 1.40
0.5 1.50 1.50 1.50
0.6 1.60 1.60 1.60
0.7 1.70 1.70 1.70
0.8 1.80 1.80 1.80
0.9 1.90 1.90 1.90
1.0 2.00 2.00 2.00

Table 4. Comparison of approximate solution of Example 1.

z υ(z) Our Method at at n = 2 The Method of [34] at n = 6

0 1.00 1.00 1.00
0.1 1.10 1.10 1.10
0.2 1.20 1.20 1.20
0.3 1.30 1.30 1.30
0.4 1.40 1.40 1.40
0.5 1.50 1.50 1.50
0.6 1.60 1.60 1.60
0.7 1.70 1.70 1.70
0.8 1.80 1.80 1.80
0.9 1.90 1.90 1.90
1.0 2.00 2.00 2.00

Example 2. Consider the following linear initial value problem [38]:

Dαυ(z) + υ(z) = 0, 0 < α < 2,

υ(0) = 1, υ
′
(0) = 0.

(67)

The exact solution of the problem is υ(z) = ∑∞
k=0

(−zα)k

Γ(αk+1) [39].
To solve the problem, we use the technique described in Section 4.1. The absolute error for

α = 0.85 and n = 2 , 5 and 8 is shown in Table 5. An error plot is also shown in Figure 2 for
these values.

We can see in Table 5 that a good approximation has been achieved by using some initial terms
of VLPs. Moreover, the numerical results for υ(z) when n = 10 and α = 0.5, 0.65, 0.8, 0.95 and
1 are plotted in Figure 3. The exact solution for α = 1 is υ(z) = exp(−z). It can be noted that
the numerical solution converges to the analytical solution when α approaches 1. We also analyze
the nonlocal behavior of the fractional derivative by computing the results at various non-integer
values of α, which highlights the advantage of using the fractional derivatives, as the next state of
the system depends not only upon its current state by also upon all of its historical states.



Fractal Fract. 2022, 6, 79 13 of 20

Table 5. Absolute error for α = 0.85 and n = 2, 5 and 8 in Example 2.

z n = 2 n = 5 n = 8

0.0 0 0 0
0.1 2.04× 10−2 7.16× 10−3 1.12× 10−3

0.2 7.61× 10−3 5.08× 10−3 1.38× 10−3

0.3 1.44× 10−2 1.86× 10−3 2.73× 10−3

0.4 4.06× 10−2 4.55× 10−3 1.56× 10−3

0.5 6.85× 10−2 1.55× 10−3 1.78× 10−3

0.6 9.64× 10−2 3.39× 10−3 3.82× 10−4

0.7 1.23× 10−1 4.98× 10−3 2.52× 10−3

0.8 1.48× 10−2 3.24× 10−3 1.52× 10−4

0.9 1.71× 10−2 7.04× 10−3 1.16× 10−3

1.0 1.91× 10−2 3.07× 10−3 4.68× 10−4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Error

errorplot n=2
errorplot n=5
errorplot n=8

Figure 2. Error plots of Example 2 at different scale levels.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Z

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(z)

Exact solution
=0.5
=0.65
=0.8
=0.95

Figure 3. Exact and approximate solutions of Example 2 are compared at different scale levels.

Example 3. Consider the following initial value problem [10]:

CDυ(z) = a1CD
1
4 υ(z)− υ(z) + g(z), z ∈ [0, 1], (68)
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subject to the initial condition with integer order

υ(0) = 0. (69)

The source term is given as

g(z) =
5 z

3
2

2
+ z

5
2 +

15
√

π z
9
4

8Γ( 13
4 )

.

The exact solution at a1 = −1 is given below:

υ(z) = z2√z.

We test the behavior of our proposed method by solving Example (3) at various values of n.
In Table 6, we list the L∞ and L2 errors for different values of n. We compare the numerical results
obtained by using our proposed method with the numerical results obtained in [10]. It can be
observed that the errors computed by using our method are much smaller than those computed by
using the method presented in [10]; see Table 6. This highlights the efficiency of our method for this
problem. Note that the symbol “− ” means that the result for n is unavailable for the method [10].

Table 6. Approximate results of Example 3 at various values of n.

Our Method Method in ([10], Example 3)

n L∞ L2 L∞ L2

3 1.1× 10−3 2.2× 10−3 – –

4 2.29× 10−4 3.45× 10−4 1.21× 10−3 5.92× 10−4

6 2.11× 10−5 3.56× 10−5 – –

8 7.52× 10−6 1.85× 10−5 5.80× 10−5 2.50× 10−5

16 4.85× 10−9 7.35× 10−8 2.45× 10−6 9.89× 10−7

Example 4. Consider the following nonlinear initial value problem [40]:

Dαυ(z) =
40320

Γ(9− α)
z8−α − 3

Γ(5 + α/2)
Γ(5− α/2)

z4−α/2 +
9
4

Γ(α + 1) + (
3
2

zα/2 − z4)
3
− υ(z)

3
2 ,

υ(0) = 0, z
′
(0) = 0, 0 < α < 2. (70)

The exact solution of the problem is υ(z) = z8 − 3z(4+α/2) + 9
4 zα [39].

We have solved the problem using the technique described in Section 4.2. The absolute error
for α = 0.85 and n = 2, 5 and 8 is shown in Table 5. An error plot is also shown in Figures 4 and 5
for these values. We can see in Table 7 that a good approximation has been achieved. Numerical
results for υ(z) when n = 6 and α = 0.6, 0.7, 0.8, 0.9 and 1 are plotted in Figure 6, along with
the exact solutions at the given values of α. It can be noted that, as α approaches 1, the solution of
the FDEs approaches that of the integer-order differential equations. We also analyze the nonlocal
behavior of the fractional derivative by computing the results at various non-integer values of α,
which highlights the advantage of using the fractional derivatives, as the next state of the system
depends not only upon its current state but also upon all of its historical states (Table 8).
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Table 7. Absolute error for α = 0.85 and n = 2, 5 and 8 in Example 4.

z n = 2 n = 5 n = 8

0.0 0.00× 1000 4.02× 10−41 3.30× 10−41

0.1 3.88× 10−2 2.68× 10−2 2.60× 10−3

0.2 6.48× 10−2 1.36× 10−2 5.08× 10−3

0.3 4.21× 10−2 6.53× 10−3 9.28× 10−3

0.4 2.20× 10−2 1.14× 10−2 6.92× 10−3

0.5 1.08× 10−1 2.53× 10−3 5.38× 10−3

0.6 1.89× 10−1 8.36× 10−3 4.18× 10−3

0.7 2.38× 10−1 1.14× 10−2 6.41× 10−3

0.8 2.38× 10−1 5.73× 10−3 4.10× 10−3

0.9 1.98× 10−1 2.61× 10−4 4.16× 10−3

1.0 1.86× 10−1 8.01× 10−4 1.59× 10−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z

10-10

10-8

10-6

10-4

10-2

Error

error plot n=2
error plot n=5
error plot n=8

Figure 4. Error plots of Example 4 at different scale levels.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Exact Solution at =0.8
Approximate Solution at n=20 and =0.8

Figure 5. Exact and approximate solutions of Example 4 are compared at n = 20.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(z)
Exact Sol at =0.6

Approx. Sol at =0.6

Exact Sol at =0.7

Approx. Sol at =0.7

Exact Sol at =0.8

Approx. Sol at =0.8

Exact Sol at =0.9

Approx. Sol at =0.9

Exact Sol at =1

Approx. Sol at =1

Figure 6. Exact and approximate solutions of Example 4 are compared at different scale levels.

Table 8. Approximate results of Example 4 at various values of α.

Our Method Method in ([19], Example 3)

α z = 0.5 z = 0.9 z = 0.5 z = 0.9
0.2 6.94× 10−1 6.2× 10−1 3.6× 10−2 1.7× 100

0.4 1.97× 10−1 1.39× 10−1 2.4× 10−2 3.0× 10−1

0.6 4.81× 10−2 2.18× 10−2 9.6× 10−3 3.7× 10−2

0.8 8.87× 10−3 1.36× 10−3 2.3× 10−3 2.1× 10−3

Example 5. Consider the following nonlinear initial value problem:

D3υ(z) +D5/2υ(z) + υ2(z) = z4, υ(0) = υ
′
(0) = 0, υ

′′
(0) = 2. (71)

We solved this problem by using the same technique as described in Section 4.2 with
n = 3.

The exact solution of the problem is υ(z) = z2, whereas the source term is g(z) = z4.
The operational matrices can be expressed as

D3 =


0 0 0 0
0 0 0 0
0 0 0 0

192 0 0 0

,

D5/2 =


0 0 0 0
0 0 0 0
0 0 0 0

137.9229 91.9486 −18.3897 7.8813

, (72)

D1 =


0 0 0 0
2 0 0 0
0 8 0 0
6 0 12 0

,

D2 =


0 0 0 0
0 0 0 0

16 0 0 0
0 96 0 0

,

where C = [c0, c1, c2, c3].
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Now, using the initial condition, we obtain three equations:

2c0 − 2c1 + 2c2 − 2c3 = 0,

4c1 − 16c2 + 36c3 = 0,

32c2 − 192c3 = 2.

(73)

Meanwhile, using the technique in Section 4.2, we obtain the following equation:

CTD(3)Ψ(z) + CTD( 5
2 )Ψ(z) + [CTΨ(z)]

2 − z4 = 0. (74)

Now, we collocate Equation (74) at the first root of P4(z), and we obtain z0 = 0.06698.
Now, solving Equations (73) and (74), we obtain

υ(z) = (
3

16
,

1
4

,
1

16
, 0)


2

4z− 2
16z2 − 16z + 2

64z3 − 96z2 + 36z− 2

 ≈ z2, (75)

which is the exact solution.

Example 6. Consider the following non-homogenous multi-order fractional problem:

cDαυ(z) = aCDβ0 υ(z) + bCDβ1 υ(z) + cCDβ2 υ(z)

+dCDβ3 υ(z) + g(z), z ∈ [0, 1], 0 < α < 2,
(76)

subject to the following initial conditions

υ(0) = 0, υ
′
(0) = 0.

The source term is as below:

g(z) = 4z− z2 − 6776
4503

z
3
2 + 42z5 − 14z6 + z7 +

1516
5629

z
13
2 − 2. (77)

The exact solution corresponding to α = 2 ,a = c = −1, b = 2, d = 0, β0 = 0, β1 = 1,
β2 = 1

2 is given below:
υ(z) = z7 − z2.

We can observe in Example 6 that a good approximation of the function has been
achieved while using n = 7 as a scale level. The absolute error Table 9 at different scale
levels is given below. (see Figure 7).

Table 9. Absolute error for n = 2, 5 and 8 in Example 6.

z n = 2 n = 5 n = 8

0.0 0.00× 1000 0.00× 1000 0.00× 1000

0.1 3.26× 10−3 7.98× 10−06 1.40× 10−7

0.2 5.13× 10−3 6.95× 10−6 5.90× 10−8

0.3 1.98× 10−3 1.49× 10−5 1.61× 10−6

0.4 3.39× 10−3 1.39× 10−5 1.79× 10−5

0.5 6.59× 10−3 9.92× 10−5 1.18× 10−4

0.6 4.97× 10−3 5.49× 10−4 5.59× 10−4

0.7 1.14× 10−3 2.11× 10−3 2.10× 10−3

0.8 9.60× 10−3 6.63× 10−3 6.63× 10−3

0.9 2.08× 10−2 1.83× 10−2 1.83× 10−2

1.0 4.52× 10−2 4.56× 10−2 4.56× 10−2
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-0.15

-0.1

-0.05

0

(z)

Exact Solution
Approximate Solution

Figure 7. Graphs of exact solution and approximate solution of Example 6 with n = 7.

Moreover, a comparison between the exact solution and approximate solution at
different scale levels for the values of z is given in Table 10.

Table 10. Comparison of exact solution with approximate solution (AS) at m = 2, 5 and 8 in Example 6.

z υ(z) AS at n = 2 AS at n = 5 AS at n = 8

0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.0100 0.0133 0.0100 0.0100
0.2 0.0400 0.0451 0.0400 0.0400
0.3 0.0898 0.0918 0.0898 0.0898
0.4 0.1584 0.1550 0.1584 0.1584
0.5 0.2422 0.2356 0.2423 0.2423
0.6 0.3320 0.3270 0.3326 0.3326
0.7 0.4076 0.4088 0.4098 0.4097
0.8 0.4303 0.4399 0.4369 0.4369
0.9 0.3317 0.3525 0.3500 0.3500
1.0 0.0000 0.0452 0.0456 0.0456

7. Conclusions

In the present study, we introduce a new fractional-order derivative operational
matrix of VLPs in Caputo sense. The newly derived operational matrix is used to develop
a computer-oriented numerical algorithm to solve the linear and nonlinear FDEs that
include the Caputo fractional-order derivative. The proposed numerical algorithm has the
advantage of transforming the problems into a system of algebraic equations that are easy
to solve using any computational software. To the best of our knowledge, this is the first
result where the numerical algorithm is presented using the operational matrix of VLPs
and the solution of the problems is approximated using its basis vectors.

We tested the accuracy and efficiency of the algorithm by solving various linear and
nonlinear FDEs with initial conditions. We found that with an increase in the values of
n, the approximate solutions were in good agreement with the exact solutions. We also
demonstrated the high efficiency of the method by determining the amount of absolute error
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and observed that as we increased n, this amount was decreased significantly. In addition to
this, the numerical efficiency was also demonstrated by comparing the results obtained by
using our method with results obtained otherwise in the literature [10,32–34]. We observed
that our method produced more efficient results.
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