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Abstract: Noise tends to limit the quality of wide field electromagnetic method (WFEM) data and
exploration results. The existing WFEM denoising methods lack the signal identification process
and are only able to filter or eliminate abnormalities in the time or frequency domain, which easily
leads to the loss of more abundant real data and to low data quality. Thus, we built the WFEM data
sample library to extract the multi-domain features. Then, neighborhood search and location sharing
were used to improve the grey wolf optimizer (IGWO) algorithm. The support vector machine (SVM)
parameters were optimized by IGWO to train multi-domain features, and an IGWO-SVM data model
was generated. We used the data model to quantitatively test the WFEM signal and noise in the
simulation and measured data. This method can effectively identify the WFEM signal and noise,
eliminate the identified noise, and use the identified signal to reconstruct the effective data. Finally,
the digital coherence technique was used to extract the spectrum amplitude of the effective frequency
points. The experiments demonstrated the advantage of the convergence of IGWO algorithms and
the comparison of the SVM parameters optimization techniques. The proposed method can quickly
and effectively search the optimal SVM parameters, significantly improve the identification effect of
WFEM signal noise, and completely remove the abnormal noise waveform in the reconstructed data.
The more stable electric field curves in the results verify the effectiveness of the algorithm design and
optimized identification method.

Keywords: wide field electromagnetic method (WFEM); multi-domain features; improved grey wolf
optimizer (IGWO); support vector machine (SVM); signal-noise identification

1. Introduction

The wide field electromagnetic method (WFEM) is an important geophysical method,
which is a controlled source frequency domain electromagnetic method with completely
independent intellectual property rights in China [1]. With a complete theoretical system
and mature instruments, WFEM overcomes the shortcoming of weak and random signals
of the natural source electromagnetic method and improves the signal-to-noise ratio and
resolution when the field sources are periodic signals and pseudo-random signals [2].
WFEM improves the work efficiency and anti-interference ability in the field, eliminates
the weak signal caused by observing only in the “far region”, organically integrates the
“transition region” and the “far region”, and significantly increases the observation scope
and detection depth. Geoelectric information of multiple frequencies can be sent and
received at one time. WFEM defines the wide field apparent resistivity for the whole
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region by retaining the high-order term in the calculation formula and by observing one
component that can obtain the electric field curve and the apparent resistivity curve [3,4].

Electromagnetic noise is more intense in a modern city and working area. To a certain
extent, noise limits the further development of the electromagnetic method. Therefore,
most electromagnetic method researchers are concerned with the denoising technique.
However, WFEM data are also disturbed by noise, and the denoising technique is still
the first prerequisite for the collected data. In addition, the high-quality of WFEM data
are the foundation of inversion calculation and geological interpretation. To improve
the longitudinal resolution and exploration effect of WFEM detection technology, it is
necessary to strengthen the research on the WFEM data denoising method. The traditional
WFEM data processing method uses frequency-domain processing, which can improve
data quality with less interference. When most frequency points are distorted by persistent
strong noise, these frequency-domain denoising methods rely on the selection of power
spectrum, resulting in an unreliable data processing effect [5–7]. However, the signal
processing methods in the time domain are all integrated processing of electromagnetic
data collected [8–10], which improves the data quality to a certain extent but lacks the
identification link of signal and noise. Therefore, how to effectively eliminate WFEM noise
by using the new method is one of the key technical problems to be solved urgently. The
comprehensive evaluation method is the smoothness of the curve and the frequency points
without abnormal change. The WFEM 7 frequency wave data include 7-0/7-1/7-2/7-3/7-
4/7-5 frequency groups, respectively. In this paper, we focus on the data analysis of 7-2/7-3
frequency groups, which are 64, 32, 16, 8, 4, 2, 1 Hz corresponding to 7-2 frequency group
data and 48, 24, 12, 6, 3, 1.5, 0.75 Hz corresponding to 7-3 frequency group data [11].

Here, the time domain feature information is the time variable used to describe the sig-
nal waveform. Frequency domain feature analysis can observe signal features by frequency
spectrum. Time-frequency domain features can represent multiple statistical values of the
sample data to be tested. The multi-domain features’ fusion can accurately characterize the
details of WFEM data and quantitatively describe the difference between signal and noise.
Support vector machine (SVM) is a generalized linear classifier, which classifies binary
data through supervised learning [12]. Its decision boundary is the maximum margin
hyperplane to be solved by learning samples. SVM usually solves the two-class problems
by establishing a hyperplane and distinguishing positive and negative examples as much
as possible [13]. When the WFEM data only need to be divided into signal and noise,
the SVM is a suitable classification algorithm. However, the penalty factor c and kernel
parameter g are the main factors that affect the SVM classification results [14,15]. Grey wolf
optimizer (GWO) is a new type of swarm intelligence optimization algorithm [16]. GWO
optimizes searches by simulating the social hierarchy relationship and hunting behavior
of grey wolves in nature. The algorithm divides a population into four social levels, and
the individuals in the population represent the solution of the optimization problem [17].
However, the convergence speed of the GWO algorithm is slow, and it is easy to fall into the
local optimal solution but difficult to obtain the global optimal solution. In this paper, we
propose a new method to improve the GWO algorithm, which uses neighborhood search
and location sharing to enhance the balance between local sand global searches, maintain
diversity and improve convergence speed.

In this paper, we propose a novel WFEM signal-noise identification method, which
is based on multi-domain features and an improved grey wolf optimizer support vector
machine (IGWO-SVM). We constructed a WFEM sample library, extracted the peak-to-peak
value and pulse factor in time domain features, the mean frequency in frequency domain
features, the wavelet singular entropy in time-frequency domain features, and analyzed
the signal and noise feature of WFEM data. An IGWO algorithm was used to search
the best parameters of the SVM, which learned the sample library’s feature and trained
data model. The results were compared with those of K-means clustering, Fuzzy C mean
(FCM) clustering and the K nearest neighbor (KNN) algorithm. Then, the IGWO-SVM data
model was used to directly remove the identified WFEM noise and retain the WFEM signal
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for data reconstruction. Finally, the digital coherence technique was used to extract the
reconstructed data spectrum amplitude of the effective frequency points. We compared
the convergence of multiple intelligent optimization algorithms and optimization SVM
models. The proposed method confirms that the fusion of multi-domain features and
the IGWO-SVM can accurately and quickly recognize WFEM signals. We applied the
proposed method to the simulation experiment and measured WFEM data for validation.
The electric field curves were more stable, and data quality was improved. The satisfactory
performance in the application and discussion verifies the effectiveness of the design and
optimization method.

Note that the aim of this paper is to achieve the high precision WFEM signal-noise
identification. The contributions of this paper are summarized as follows:

(1) The principle of multi-domain features and improved grey wolf optimizer are intro-
duced. And the convergence of various optimization methods is illustrated.

(2) Four optimized SVM algorithm are quantified to demonstrate the advantages of
the proposed method. Meanwhile, the K-means clustering, FCM clustering, KNN
classification method and PSO-SVM method are compared.

(3) The validity of the proposed method is verified in many experiments and measured
WFEM data.

The remainder of this paper is arranged as follows: Section 2 introduces the multi-
domain features, and the principle and convergence of the grey wolf optimizer and the
improved grey wolf optimizer. Section 3 presents the experiments and results that illustrate
the effectiveness of the proposed method. Sections 4 and 5 show the applications and
discussions in the measured WFEM data, respectively. Section 6 summarizes and highlights
the major contributions of this paper.

2. Methodology

Based on a pseudo-random signal as the transmitting source, WFEM data will in-
evitably be affected by electromagnetic noise, resulting in abnormal waveform of the signal,
and changing the electric field value. Considering that the normal WFEM signal should
be a pseudo-random signal waveform, the signal is simple, regular and easy to identify.
The feature extraction and intelligent identification are beneficial to WFEM signals and
noise processing. Therefore, the fusion of multi-domain features and the IGWO-SVM
were applied to WFEM signal identification. The proposed method was processed for the
time-series waveform. Firstly, we extracted peak-to-peak values and the pulse factor feature
in the time domain, the mean frequency feature in the frequency domain and the wavelet
singular entropy in the time-frequency domain and introduced them for analyzing the
WFEM signal and noise feature. The comparison of the convergence of several intelligent
optimization algorithms and SVM parameters optimization methods followed. Finally, the
multi-domain features and the IGWO-SVM was used in WFEM signal-noise identification.
Next, multi-domain features and the IGWO algorithm were mainly introduced.

2.1. Multi-Domain Features

Feature extraction is a method and process of extracting object feature information by
computer. It is mainly used for images, signal processing and machine learning to describe
information. Multi-domain features are extracted from the time domain, the frequency
domain and the time-frequency domain. In this paper, we focus on the peak-to-peak values
and pulse factor features in the time domain, the mean frequency feature in the frequency
domain, and the wavelet singular entropy in the time-frequency domain, respectively.

The peak-to-peak value is the difference between the maximum and minimum value
of the signal, which is expressed as follows:

Fpp= max(x(i))−min(x(i)) (1)
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The pulse factor is the peak signal divided by the mean absolute value and can also
indicate whether the signal contains instantaneous spike, which is calculated as follows:

Fp f =
max|x(i)|(

1
N

√
∑N

i=1|x(i)|
)2 (2)

where x is time domain signal and N is the length of signal. According to the difference
of WFEM signal and noise, the dimension feature value changes correspondingly, and
the dimensionless index can show the noisy state of electromagnetic data more directly.
Therefore, the dimension and dimensionless feature are used together.

Frequency domain analysis performs the Fourier transform through the time domain
signal. The signal component and the time domain signal are interrelated and complement
each other. Thus, the frequency domain is more concise. Frequency domain feature is
extracted from the signal frequency spectrum feature by FFT. Among them, the mean
frequency is expressed as follows:

Fm f =
1
N

N

∑
i=1

u(i) (3)

Wavelet singular entropy is the most typical feature in the time-frequency domain [18].
Based on the theory of singular value decomposition, the wavelet singular entropy of
the signal by wavelet transform method is decomposed into a series of singular values,
which can reflect the basic feature of the original coefficient matrix. The uncertainty of
the singular value set is analyzed by the statistical feature of information entropy, and a
definite measure of the complexity of the original signal is given.

The singular value decomposition (SVD) of any m× n order matrix B can be expressed
as follows:

B = UΛVT (4)

where U and V are orthogonal matrices of m × m order and n × n order, respectively.
Λ = diag

(
λ1, λ2, λ3, . . . , λp

)
is the diagonal matrix, among them, p = min(m, n), its

non-negative diagonal elements are arranged in descending order and are the singular
eigenvalues of matrix A. SVD can represent the m× n order matrix A of rank K as the sum
of K m× n order submatrices of rank 1. At this moment, the wavelet transform coefficient
matrix of the signal can reflect the time-frequency distribution feature of the signal by SVD.

To quantitatively describe the frequency components and distribution feature of the
signal, the wavelet singular entropy is defined as follows:

WSE =
N

∑
i=1

∆pi (5)

where ∆pi = −
(

λi/
N
∑

i=1
λi

)
log
(

λi/
N
∑

i=1
λi

)
is the incremental wavelet singular entropy

of the ith nonzero singular value λi. The simpler the signal being analyzed, the more
concentrated the energy is in a few modes, and the smaller the wavelet singular entropy.
Conversely, the more complex the signal, the more dispersed the energy, and the larger the
wavelet singular entropy.

2.2. Grey Wolf Optimizer

Inspired by the predation behavior of grey wolves, Mirjalili et al. proposed the grey
wolf optimizer (GWO) algorithm [16]. By simulating the predation behavior of grey wolves,
the GWO was optimized based on the mechanism of pack cooperation [19]. The GWO
algorithm is characterized by its simple structure in which few parameters need to be
adjusted, its ease of implementation, its adaptive convergence factors and its information
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feedback mechanism. It can achieve the balance between local optimization and global
search, so it has good performance in precision and convergence speed to solve the problem.

Grey wolves encircle prey during a hunt, and the encircling behavior can be modeled
as follows:

D =
∣∣C · Xp(t)− X(t)

∣∣ (6)

X(t + 1) = Xp(t)− A · D (7)

Equation (6) is the distance between an individual and the prey, and Equation (7) is the
location update of the grey wolf, where t is the current iteration, C and A denote coefficient
vectors, Xp is the position vector of the prey, and X indicates the position vector of the grey
wolf. The vectors A and C are calculated as follows:

A = 2c · r1 − c (8)

C = 2 · r2 (9)

where the components of c are linearly decreased from 2 to 0 over the course of iterations
and r1 and r2 are random vectors in [0,1]. The hunt is usually guided by α wolves, that is
leaders, followed by β and δ wolves, which can also occasionally participate in hunting.
However, in the search space, we have no idea about the location of the optimum solution.

Thus, the hunt, in which the hunters are moving toward the prey or solution over
the provided search space, is the main approach of the GWO algorithm. To simulate the
hunting behavior of grey wolves, we assume that α (best candidate solution), β and δ have
better knowledge about the potential location of prey. Thus, we save the three best solutions
obtained so far and oblige the other search agents to update their position by the position
of the best search agent. The mathematical representation of such hunts is as follows:

Dα = |C1 · Xα − X|
Dβ =

∣∣C2 · Xβ − X
∣∣

Dδ = |C3 · Xδ − X|
(10)


X1 = Xα − A1 · Dα

X2 = Xβ − A2 · Dβ

X3 = Xδ − A3 · Dδ

(11)

X(t + 1) =
X1 + X2 + X3

3
(12)

where Dα, Dβ and Dδ represent the distance between the current candidate grey wolf
and the α, β and δ wolves, respectively. Xα, Xβ and Xδ are the position of α, β and δ,
respectively. C1, C2 and C3 are random vectors, and X is the position of the current grey
wolves. A1, A2 and A3 are random vectors. The ω wolves, considered to be the remaining
possible solutions in the pack, follow other solutions and update themselves with the other
three best solutions expressed with Equation (11). The X(t + 1) is the final position of the
ω wolves.

2.3. Improved Grey Wolf Optimizer

In the GWO, the search process is guided by three best wolves in each iteration,
which shows a strong convergence toward these wolves [20]. In contrast, it suffers from a
lack of the population diversity, an imbalance between the exploitation and exploration,
and premature convergence [21]. Neighborhood search and location sharing are used
to improve grey wolf optimization, namely IGWO, and enhance the ability of global
optimization to avoid premature convergence [22].

The IGWO algorithm benefits from a new movement strategy, namely a dimensional-
learning based hunting (DLH) search strategy, which is inherited from the individual
hunting behavior of wolves in nature. DLH uses different methods to construct a neighbor-
hood for each wolf, and neighboring information can be shared among wolves. Dimension
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learning used for the DLH search strategy enhances the balance between local and global
searches and maintains diversity.

In the DLH search strategy, each dimension of the new position of each wolf is
calculated. This individual wolf is learned by its different neighbors, and a wolf from
the top 3 wolves (α, β and δ) is randomly selected. First, a radius Ri(t) is calculated
using Euclidean distance between the current position of Xi(t) and the candidate position
Xi−GWO(t + 1) as follows:

Ri(t) = ‖Xi(t)− Xi−GWO(t + 1)‖ (13)

The neighbors of Xi(t) defined by Ni(t) is constructed as follows:

Ni(t) =
{

Xj(t)
∣∣Di
(
Xi(t), Xj(t)

)
≤ Ri(t), Xj(t) ∈ (α, β, δ)

}
(14)

where Ni(t) respected to radius Ri(t), Di is Euclidean distance between Xi(t) and Xj(t).
The neighborhood of Xi(t) is constructed, multi-neighbors learning is performed

as follows:
Xi−DLH,d(t + 1) = Xi,d(t) + rand× (Xn,d(t)− Xr,d(t)) (15)

where Xi−DLH,d(t + 1) is the dth dimension of a random neighbor Xn,d(t) selected from
Ni(t), and a random wolf Xr,d(t) from α, β and δ wolf.

Selecting and updating the new position of Xi(t + 1) as follows:

Xi(t + 1) =
{

Xi−GWO(t + 1) i f f (Xi−GWO) < f (Xi−DLH)
Xi−DLH(t + 1) otherwise

(16)

To verify the optimization performance of the IGWO algorithm. We give four bench-
mark functions to compare their convergence accuracy. Among them, the comparison of
methods such as the GWO, the particle swarm optimization (PSO) [23], the multi-verse
optimizer (MVO) [24], the moth-flame optimization (MFO) [25], the artificial bee colony
(ABC) algorithm [26], the sine cosine algorithm (SCA) [27] and the imperialist competitive
algorithm (ICA) [28]. Note that the population size is 10, and the maximum number of
iterations is 100. Figure 1 shows convergence comparison of the four benchmark functions.

From Figure 1, we can see that the solution accuracy and convergence speed are better
than other intelligent optimization algorithms at the same population and the iteration
number. Through the convergence of the IGWO algorithm, we can see that this algorithm
has obvious advantages in the optimization ability and stability of benchmark function and
can better jump out of local optimization and obtain higher global optimization ability.
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3. Experiments and Results

In this section, we validate the proposed method by analyzing the feature extraction
and the SVM parameters optimization. We also present our comprehensive comparison
with the k-means clustering algorithm, the fuzzy c means (FCM) clustering algorithm, the
k nearest neighbor (KNN) algorithm, the PSO-SVM method and the IGWO-SVM method
in the sample library signals and the simulated analysis.

3.1. Sample Library Analysis

In order to analyze the quantitative identification relationship between pseudo-random
signals and abnormal noise waveforms in the WFEM 7 frequency wave data, we built a
data sample library of typical noise types and pseudo-random signals.

As shown in Figure 2, a group of time-domain waveforms of five types of signals and
their corresponding spectra were randomly selected from the sample library. Among them,
the sample library contained 30 pseudo-random signals, 30 impulse noises, 30 attenuation
noises, 30 triangle wave noises and 30 square wave noises. The sampling length of each
sample signal was 1200, and the sampling rate was 400 Hz.

We observed in the group of sample library signals, the time domain signal with
noise results in abnormal mutation of the original pseudo-random signals, disorder of the
signal and an increase of waveform amplitude (Figure 2). The signal was also seriously
chaotic in the frequency domain, which could not reflect the inherent features of the original
pseudo-random 7 frequency wave signal. However, the pseudo-random signal had the
characteristics of periodicity, stable amplitude, relatively stable spectrum, and its frequency
point information could be completely retained.
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We observed in the group of sample library signals, the time domain signal with 
noise results in abnormal mutation of the original pseudo-random signals, disorder of 
the signal and an increase of waveform amplitude (Figure 2). The signal was also seri-
ously chaotic in the frequency domain, which could not reflect the inherent features of 
the original pseudo-random 7 frequency wave signal. However, the pseudo-random 
signal had the characteristics of periodicity, stable amplitude, relatively stable spectrum, 
and its frequency point information could be completely retained.  
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To test the performance of the IGWO optimization of SVM parameters, we set the
upper bound of the parameters as 100, the lower bound of the parameters as 0.01, the
maximum iteration times as 100, and the population size as 10, respectively. To optimize the
penalty factor and kernel function parameters of the SVM, we compared with the sample
library signals of SVM parameters optimized by the PSO, the cuckoo search (CS) [29] and
the GWO, respectively. Note that the learning factors c1 and c2 in the PSO algorithm are 1.5.
In the CS algorithm, the probability of being discovered by the host is 0.25. The performance
comparison of the four optimization algorithms is shown in Tables 1 and 2. Among them,
the best parameters value (c and g), mean square error (MSE), square correlation coefficient
(SCC), algorithm iteration number and model accuracy were used for quantitative analysis.

MSE =
1
n

n

∑
j=1

(
pj
)2 (17)

SCC =

1−
∑
j

(
pj
)2

∑
j

(
Pj − pjave

)2

 (18)

where n is predicted sample size, pj is absolute prediction error, Pj is real value and Pjave is
the average of the real value. In the evaluation, the smaller the MSE is, the better, and the
larger the SCC is, the better.

Table 1. The mean square error as the objective function of optimization.

Method/Parameter c g MSE SCC Iteration Accuracy Time (s)

PSO-SVM 64.3989 13.7455 0.0096 0.9996 214 100 137
CS-SVM 55.0840 0.4135 0.0059 0.9953 45 100 34

GWO-SVM 95.2429 0.4137 0.0058 0.9950 46 100 37
IGWO-SVM 24.4877 0.4138 0.0057 0.9955 43 100 29
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Table 2. The prediction error rata as the objective function of optimization.

Method/Parameter c g MSE SCC Iteration Accuracy Time (s)

PSO-SVM 15.2018 52.7497 0.0096 0.9996 278 100 174
CS-SVM 0.01 100 0.1552 0.8247 124 80 97

GWO-SVM 0.01 0.01 0.1529 0.8516 30 80 36
IGWO-SVM 28.1274 93.9011 0.0096 0.9996 275 100 166

From Table 1, although four type of the optimization algorithm can optimize SVM
parameters, their performance and efficiency are lower than the IGWO algorithm. We can
see that the IGWO algorithm optimized SVM parameters can obtain the smallest MSE
and the minimum iteration and running time by using the MSE as the objective function
for optimization. As can be seen from Table 2, when the prediction error rate is taken
as the objective function, the IGWO algorithm can obtain the best SVM parameters with
the minimum iterations on the premise of ensuring the accuracy of the model. However,
the CS and GWO algorithms cannot guarantee the model accuracy in Table 2, resulting
in unreliable optimization results. Therefore, the MSE was subsequently used as the
objective function to optimize SVM parameters, that more accurately classified WFEM
signals and noises.

Furthermore, we extracted the multi-domain features of the sample library signal for
clustering and classification analysis. Figure 3 shows the signal noise classification of the
sample library.

As shown in Figure 3, the multi-domain features are extracted from the sample library
signals; the K-means clustering method can classify the 150 samples into two types in the
sample library. When the multi-domain feature values of the WFEM data are close and
chaotic, the K-means clustering method cannot select an appropriate clustering center, re-
sulting in an unsatisfactory clustering effect. By calculating the Euclidean distance between
each sample point and the cluster center [30], the FCM clustering method automatically
divides the sample library signals and classifies the noisy signals and pseudo-random
signals into different types. When the feature values of signal and noise in the sample
library are similar, the Euclidean distance is only used to divide the sample library signal,
which leads to the wrong division results. The KNN is one of the simplest methods in
the supervised learning [31]. KNN is a kind of lazy learning without an explicit learning
process or training process [32]. KNN is classified by measuring the distance between
different feature values. Although the sample library can be effectively classified, it is
impossible to accurately determine the K value for the recognition of the measured data,
and the misjudgment phenomenon will also exist. The proposed method is completely
adaptive to optimize parameters without artificial settings. By using the feature extraction,
training and testing of the sample library, the signals and noises can be accurately divided
in the sample library. Then the accuracy of the optimized SVM can be verified through the
prediction effect. As a result, the multi-domain features and parameters of the optimized
SVM method are suitable for WFEM data samples and for nonlinear and high-dimensional
classification problems.

3.2. Simulation Analysis

To verify the identification effect of the proposed method, the simulated sample library
noise types were used to analyze the synthesized WFEM signals. Figure 4 shows the signal-
noise identification and spectrum results of the synthesized 7-2 frequency group signal and
a comparison of the K-means method, the KNN method and the PSO-SVM method.
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Figure 4 shows that different noise types and abnormal waveforms appear in the time
domain waveforms, that the frequency spectrum affected by noise is chaotic, and that the
main frequency information changes to varying degrees with unstable main frequency
value. Compared with the K-means clustering in the unsupervised learning method, due
to the inconspicuous difference of the feature parameter values at the different noise types,
some noise types cannot be identified, which makes it impossible to restore the original
pseudo-random signal. In addition, different frequency points in its spectrum appear
distorted. Compared with the KNN method, this method also has misidentification in the
time domain, and part of the square wave noise is retained in the reconstructed signal, and
the spectrum also produces corresponding distortion. Although the PSO-SVM method can
effectively identify signal noise in the simulation 7-2 frequency group signal, we combined
it with the convergence of the above optimization algorithm (Figure 1), which showed that
the efficiency of the PSO algorithm is much lower than the IGWO algorithm (Tables 1 and 2).
Even the final optimization parameters are not reliable in the next measured WFEM data.
After processing by the proposed method, multi-domain feature extraction and the IGWO-
SVM analysis can accurately identify the abnormal interference part of the signal, retain
the part of the pseudo-random signal that is not affected by noise, filter out the noise
spectrum and reconstruct the effective waveform of the pseudo-random signal and its
original spectrum feature.

To quantitatively analyze the effectiveness of the proposed method, the electric field
values and error of synthetic 7-2 frequency group signals at different frequencies are shown
in Table 3. Among them, the error is calculated as follows:

error =
(

Unoise −Ureal
Ureal

)
× 100% (19)

where Unoise is the noisy signal of electric field value and Ureal is the real electric field value.
Table 3 shows that when the noise is added at different moments, the noisy signal

shows mutation and chaos in the time domain and the frequency domain, the electric field
values exceed the true values at 16-1 Hz frequencies, the distortion of the electric field
value is 0.7154 mV at 2 Hz and the corresponding error increases to 49.85%. The reason is
that noise affects the pseudo-random signal waveform in the time domain and the main
frequency values and the harmonic component in the frequency domain. Compared with
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the K-means clustering method, the main frequency value is alleviated, but the error is still
large. The KNN method especially is only severely affected by noise at 2 Hz, resulting in a
decrease of the main frequency value and an error increase to 32.59%, while the other main
frequencies are relatively stable. The electric field value obtained by the PSO-SVM method
and the proposed method is closer to the real electric field value, and the maximum error is
reduced to 0.40% and 0.38%, respectively. Therefore, the proposed method can provide an
effective way for WFEM signal processing.

Table 3. The electric field values and errors at different frequencies.

Frequency Real Noisy K-means KNN PSO-SVM Proposed Method
F

(Hz)
U

(mV)
U

(mV)
Error
(%)

U
(mV)

Error
(%)

U
(mV)

Error
(%)

U
(mV)

Error
(%)

U
(mV)

Error
(%)

1 1.4465 1.7278 19.44 1.2578 13.04 1.4446 0.13 1.4523 0.40 1.4521 0.38
2 1.4264 0.7154 49.85 0.7459 47.70 0.9614 32.59 1.4298 0.24 1.4297 0.23
4 1.4026 1.3388 4.54 1.3487 3.84 1.3987 0.27 1.4050 0.17 1.4051 0.17
8 1.3607 1.5062 10.69 1.3286 2.35 1.3631 0.17 1.3645 0.28 1.3644 0.27

16 1.2678 1.4314 12.90 1.2455 17.58 1.2709 0.24 1.2719 0.32 1.2720 0.33
32 1.2175 1.2285 0.90 1.2095 0.65 1.2164 0.09 1.2152 0.18 1.2152 0.18
64 1.1922 1.1955 0.27 1.1927 0.04 1.1929 0.05 1.1923 0.008 1.1923 0.008

4. Applications
4.1. Measured Data Analysis

Based on the analysis of noise types in the measured data, we added four kinds of
noise to the measured data without abnormal waveform that analyzed and compared the
signal noise identification effect and the electric field curve effect as shown in Figure 5.

As can be seen from Figure 5, the measured data without abnormal waveform shows
periodicity, and the regularity in each cycle (among them, a cycle length is 19,200) belongs
to the pseudo-random signal. When we observed the corresponding main frequency
information, we noted that the data were almost unaffected by noise. By artificially adding
noise, the time domain waveform appeared abnormal and frequency domain information
became confused. Compared with the existing FCM clustering method based on feature
extraction in the time domain, the FCM clustering method is an unsupervised learning
method [33], which cannot effectively carry out feature learning and fine classification of
signals and noises. When calculating the Euclidean distance between the feature parameter
values and the clustering center, the signal and noise cannot be studied and classified
effectively due to the high similarity or the large difference. The KNN method needs to
obtain an effective K value through many experiments to identify the noise in the measured
data. Therefore, the KNN method is only suitable for signal noise identification of small
sample data and cannot effectively divide massive datasets. The proposed method is a
completely adaptive optimization technique that uses peak-to-peak values and a pulse
factor feature in the time domain, a mean frequency feature in the frequency domain, and
wavelet singular entropy in the time-frequency domain for feature extraction, to effectively
identify and remove the noise. Then, the identified signals without abnormal waveform
are reconstructed, and the frequency spectrum information is highly restored. Furthermore,
Figure 5b shows that the original electric field curve is stable and without abnormal changes.
After adding noise, the electric field curve fluctuates at different frequency points. The
electric field curve obtained by the FCM clustering method is still unstable and fluctuating
because noise cannot be accurately identified. Although the KNN method can obtain the
stable electric field curve, it cannot adaptively obtain the optimal parameter due to the
influence of K value. This method will also affect the results and efficiency. The proposed
method can accurately identify noise and restore the shape of the original electric field
curve.

Figure 6 shows the signal-noise identification and reconstructed effect of measured
signals. We can see that the measured signals are affected by a variety of the abnormal
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mutations. The multi-domain features are extracted and the IGWO-SVM classification is
combined to identify the noise with high precision, and the identified signal is retained
and reconstructed.
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4.2. Applied to Electric Field Curve

We conducted the electric field curve analysis of the measured sites. We used the
digital coherence technique to extract the spectrum amplitude of the effective frequency
points and analyze the medium and low frequency data of WFEM. The measured data
of the 7-2/7-3/7-4/7-5 frequency groups were analyzed and processed in detail. Among
them, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625 Hz corresponded to 7-4 frequency group
data, and 0.75, 0.375, 0.1875, 0.09375, 0.046875, 0.0234375, 0.01171875 Hz corresponded to
7-5 frequency group data. Figure 7 shows the electric field curve effect of the measured
sites (S1, S2, S3) by the proposed method in a certain industrial area in China.

From Figure 7a, the trend of the original electric field curve can be maintained after the
processing of the high-quality WFEM data by the proposed method. Figure 7b,c show the
electric field curve of the medium frequency of 7-2/7-3 frequency groups data and the low
frequency of 7-4/7-5 frequency groups data, respectively. The original time domain data
contained typical noise types that resulted in several frequency points falling or rising at
the corresponding frequencies band. The high-precision identification technology not only
eliminates the noise, but also improves the data quality of WFEM, and the electric field
curve also eliminates the abnormal change of frequency points. The completely adaptive
optimization method is proposed that can provide a novel technique for future inversion
interpretation using the high-quality of WFEM data.
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5. Discussions

The electromagnetic method is an important geophysical exploration method, which
mainly includes the natural source electromagnetic method and the artificial source electro-
magnetic method. Compared to the natural source electromagnetic method, the artificial
source electromagnetic method overcomes the weak and random signal in the natural field
source and further improves the signal-to-noise ratio and resolution of signal. Incidentally,
the field source is mainly composed of periodic square waves and pseudo-random signals.
With the development of modern industry and technology, electromagnetic interference
has become stronger and stronger, and noise suppression has always been a key problem
for many electromagnetic workers, restricting the development of technical methods to
a certain extent. The WFEM uses an artificial field source with a very powerful signal
transmitter. In actual experiments, the observed signals were inevitably affected by various
types of strong interference. To improve the longitudinal resolution and exploration effect
of the WFEM detection technology, it is necessary to strengthen the research on the denois-
ing method of the WFEM data. Therefore, how to effectively eliminate the noisy data of
WFEM by using the new method is one of the key technical problems that urgently needs
to be solved.

In recent years, time domain and frequency domain processing methods have been
proposed for WFEM data processing, but the WFEM signal and noise recognition tech-
nology of time domain waveform is rarely proposed. Therefore, a WFEM signal-noise
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identification method based on multi-domain features and the IGWO-SVM has been pro-
posed in this paper. We first introduced the characteristic parameters to describe the WFEM
signal-noise and the improved intelligent optimization algorithm and compared the con-
vergence of multiple intelligent algorithms (Figure 1) to provide effective parameters for
optimizing SVM classification. In the experiment, we introduced the signal and noise types
and their frequency spectrums in the WFEM sample library (Figure 2). At the same time,
we conducted parameter selection and performance comparison of the four optimized
SVM algorithms to compare the sample library signals, highlighting the advantages of the
IGWO-SVM (Tables 1 and 2). We further used clustering and classification algorithms to
divide the sample library (Figure 3). To verify the identification effect, we conducted a
comparison and quantitative analysis of the simulated synthetic data (Figure 4 and Table 3).
In the applications, a noiseless measured site was selected for artificial noise-added pro-
cessing, and the electric field curve compared results are shown (Figure 5). When the
measured data were affected by noise, the proposed method identified the noise with high
accuracy and reconstructed a high-quality effective signal (Figure 6). The effectiveness of
the proposed method was further verified by comparing the electric field curves before and
after data processing (Figure 7).

In a word, the proposed method improves the process of insufficient signal-noise
identification in existing methods, reduces the excessive denoising processing of valid
signals, and improves the data quality. However, applying the results of this paper to the
inversion and interpretation of geophysical data will be the focus of further research.

6. Conclusions

A novel WFEM signal identification method, which uses multi-domain feature param-
eters to analyze the WFEM signal noise feature and applies the IGWO-SVM to identify
signal and noise, while reconstructing the high-quality of WFEM data, has been developed.

The proposed method has been proven in the feature extraction of a sample library
signal, IGWO convergence performance, optimal parameter of IGWO-SVM search ability
and optimal classification effect, as well as analysis of the simulated and measured WFEM
data. The results show that the WFEM signal-noise can be accurately identified. The
reconstructed signal and its spectral information completely conform to the essential feature
of WFEM pseudo-random data, and electric field curve is also more stable. The proposed
method lays the foundation for feature extraction, improved intelligent optimization and
WFEM signal processing. However, when the distinction between signal and noise is
gradually fuzzy or complex or is subject to persistent strong interference, how to identify
and denoise with high precision will be the focus of the future research.
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