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Abstract: This manuscript mainly focuses on the exact controllability of Sobolev-type Hilfer fractional
neutral delay Volterra-Fredholm integro-differential systems. The principal findings of this discussion
are established by using the theories on fractional calculus, the measure of noncompactness and
Monch fixed point technique. Initially, the exact controllability of the system is presented and then
we improve the discussion to the system with nonlocal conditions. Finally, abstract and filter systems
are provided for the illustration.
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1. Introduction

In many physical processes, fractional differential equations incorporating not only one
fractional derivative but also several fractional derivatives are heavily concentrated. The
meaning of fractional systems has recently attracted a lot of attention due to its astonishing
applications in showcasing the wonders of science and engineering. The use of fractional
order differential equations allows for the management of a wide range of issues in a variety
of fields, including fluid flow, electrical systems, visco-elasticity, electro-chemistry, and so
on. The monographs [1-9] and the research articles [8-13] show the interlinking in the same
way that the separation between classical and fractional differential representations seems
to. Applications of the differential systems can be found in [14-16]. Neutral structures with
delays or without delays, in particular, serve as a summary association of a large number
of partial neutral structures that appear in problems involving heat flow in substances,
visco-elasticity, and a variety of natural processes. Neutral systems appear in many areas
of applied mathematics; as a result, the most successful neutral structures have gotten a lot
of attention in the current generation; readers can look at [12,13,17-21].

Recently, in [22,23], the author initiated another kind of derivative of fractional or-
der, that including Riemann-Liouville and Caputo fractional derivative. In [24], the au-
thors proved the existence of mild solution for evolution equation with Hilfer fractional
derivative which generalized the famous Riemann-Liouville fractional derivative by using
the semigroup theory, measure of noncompactness and fixed point approach. In [25],
the authors proved the approximate controllability of Hilfer fractional neutral stochastic
integro-differential systems by using fractional calculus and Bohenblust-Karlin’s theorem.
In [18,26,27], the authors proved the existence and controallbility of various extensions
related with Hilfer fractional derivative by using semigroup theory, measure of noncom-
pactness and various fixed point theorems.

In [28], the authors discussed the approximate controllability of non-densely de-
fined Sobolev-type Hilfer fractional neutral delay differential system by using Bohenblust-
Karlin’s fixed point theorem. In [29], the authors proved the existence of nonlocal functional
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integro-differential equations via Hilfer fractional derivative by using Ménch fixed point
theorem. In [13], the authors discusssed the existence of Sobolev-type Hilfer fractional neu-
tral integro-differential equations with infinite delay by uisng Monch fixed point theorem.
In [30], the authors proved the approximate controllability of Hilfer fractional differential
inclusions with nonlocal conditions by using Bohenblust-Karlin’s fixed point theorem. The
existence and exact controllability described in our paper have still to be investigated, and
it is the motivation of this article.

Motivated by the monograph, nowadays, several authors focus on this Hilfer fractional
derivative, and we refer to [13,18,22,24-27,29-32]. The potential of controllability is an
important part of engineering and mathematical control theory. Finding a suitable control
function to the point where one may guide the considered dynamic system to a final
state is the controllability problem. As a result, many researchers have investigated the
controllability of a variety of nonlinear systems in recent years, and the articles are available
for viewing. For instance, refs. [12,13,18,19,30,32-45] and references therein.

Assume that the Hilfer fractional neutral delay Volterra-Fredholm integro-differential
system of Sobolev-type has the following form

Dyt [Ju(t)=Fy(t,ur)] = Au(t) + Bx(t)

t c
+ 5 (t,ut,/ e(t,T,uT)dT,/ fl(t, T,ur)dT>, tel=(0,c, 1)
0 0

1-v)(1—
57 0u0) = g e Ry, @
where DS’E stands for the Hilfer fractional derivative, 0 < v < 1; % < { < 1;and x(-) takes
value in Banach Space X with || - [|. The histories u, : (—00,0] — Ry, uy(s) = u(e +s),

s < Owithphasespace R;. F1 : IXR; = X, h: IXxRyxXxX =X, e:IXxIxR =X
and f : I x I x R; — X are appropriate functions. u(-) is a control function and B is a
bounded linear operator from ¥ — X.

The rest of the paper is organized as follows:

1. Section 2: Theoretical notions linked to fractional calculus and the measure of non-
compactness are presented.

2. Section 3: This section is focused on exact controllability results of the fractional

system (1) and (2).

Section 4: Our findings are expanded to include the concept of nonlocal situations.

4. Section 5: Finally, abstract and filter systems are provided for the illustration of the
obtained theory.

W

2. Preliminaries

We now provide some fundamental theories, lemmas, and facts to discuss our main
results. C(I, X)- the spaces of all continuous functions. Let us take # = v + { — v(, then
(1—9) =1 —v)(1—=7). Assume C;_,(I,X) = {u : ! Tu(t) € C(I,X)} with || - ||, by
llulle = sup{t*"||u(t)|,t € Iy = (v+ —vQ)}. Clearly, C1-4 (I, X) is a Banach space.
Define H with ||H||p(;r+) if H € LP(I,R") for any p with1 < p < 0. A%, 0<a <1,a
closed linear operator on D(A%) with inverse A™%, see [46].

Definition 1 ([46]).

(i)  D(A"), a Banach space with ||u||, = ||A%u|| for u € D(A%).

(i) T(t):X — X, fort>0.

(iti) A*T(t)u = T(t)A%u, foru € D(A%)and t > 0.

(iv) A*T(t) is bounded on X and there exists My > 0 such that
My

JarT ()] < S
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Definition 2 ([47]). The operators define A : D(A) C X — Xand ] : D(A) C X — X satisfy
the following:

(J1) Aand ] are closed linear operators.
(J2) D(J) C D(A) and ] is bijective.
(J3) J~': X — D(J) is continuous.

Additionally, because of (J1) and (J2) ]~ is closed, by (J3) and by referring closed graph theorem,
we obtain the boundedness of A] ! : X — X. Define ||] || = Ju and ||J|| = Jn-

Definition 3 ([4]). The left sided Riemann-Liouville fractional integral of order { having lower
limit c for F : [c, +00) — R is presented as

1
(4

if the right side is pointwise determined on [c, +00), where IT'(-) denotes gamma function.

I§+ F(o) = ] /CQ T f(:))lédl—’ 0>c (>0,

Definition 4 ([4]). The left-sided Riemann-Liouville fractional derivative of order { € [k —1,k),
k € X for F : [c,+00) — R is given by

1 F(1)

Q
Lpt  F _ / [ S — | k—1 k.
ct (Q) r(k _ g) ko . (Q — T)g“"l*k T, Q > c, < g <

Definition 5 ([4]). The left-sided Hilfer fractional derivative of order 0 <v <1and 0 < { <1
function of F(o) is given by
DYEF(o) = (119D I R)) (o).

Remark 1 ([23]).

(i) Given{ =0,0 <v < 1alsoc = 0, the Hilfer fractional derivative identical with standard
Riemann-Liouville fractional derivative:

d 1_
DyfF(o) = ﬁlgf F(o) = D%+ F(o).

(ii) Given { =1,0 <v < lalso c = 0, the Hilfer fractional derivative identical with standard
Caputo derivative:

_cd
DyfF(o) = Iy

o dQF(e) = CD: F(o).

We define the abstract phase space R; by referring [33]. Consider [ : (—o0,0] —
(0, +00) is continuous along with j = [ Eoo I(y)dy < +oco. Now for every a > 0,we define
Ry = {5 : [-a,0] — X such that 5(y) is bounded and measurable },

and

I7ll—a0 = sup ()|, forally € R.
ée[_”ro]

Now, we define

R = {17 : (—00,0] = X such that for some ¢ > 0,77|[_.q) € R

0
and [ Q) lgode < +oo1
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and

0
Ilw, = [ _i@lnlgods, ¥ € R,

therefore (R, || - ||%,) is a Banach space.
Consider

={u: (—oo,c] — X such that uly € C(I,X),u(0) = ¢(0) € R;}.
Set || - ||c be a seminorm in R} which is defined by
ulle = Ip0) I3, +sup{ly(Z)] : £ € [0,c]}, u € Ry
Lemma 1 ([48]). Ifu € R/, then fory € I, uy € Ry. Furthermore,

illu(nll < [luqll, < l9(0)[I%, +1 sup [u(Z)],
Cel0]

where j = ff’oo I(y)dy < +oo.

Lemma 2. The function u : [0,c] — X is said to be an integral solution of the fractional system (1)
and (2) if it satisfies the following:

e u:[0,c] — Xis continuous.

. zgfu( ) € D(A), fort € 1.

*  The fractional system (1)—(2) is similar with

] [¢(0) — Fi(0,¢(0))]
0= Ti-0 10
1

r(g) /.t(t —5)e1y1 [Au(s) + Bx(s)
+ 5 (s, us,/os e(s, T,u¢)dr, /ch(s, T, uT)dT)]ds, tel

JH=D0=0) 4 7 R (1 uy)

Remark 2. By referring Wright function M (s), we present the mild solution of the fractional
system (1)—(2) is as follows:
)k 1

Z —1 T —k7)

k:l

0<l<1,s€eC,

and satisfies

0 (1
/0 s°Mg(s)ds = M,fors > 0.

Lemma 3. If the fractional system (1)—(2) are satisfied, then there exists Fy : I x R; — X and
F:I X Ry x X x X — Xsuch that

u(t) =] 12, (H](9(0) = Fi(0,¢(0)) + ] ' Fu(t,u) + /0 t Y%, (t) AFy (s, us)ds
+ /Ot ] % (t)F (s, us,/ose(s, T,U7)dT, /ch(s, T, uT)dT> ds

n /O g (0)Bx(s)ds, tel,
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where
Py () = B0V (1); B (1) = 17, (1); S(1) = /Ow {wMz(w)S(tw)dew.

Definition 6 ([20]). A function u : (—oo,c] — X is said to be a mild solution of the fractional sys-
tem (1)—(2) provided that uy = ¢(0) € R; on (—oo,0] and satisfies the following integral equation

u(t) = ]2, (][9(0) — Fi(0,$(0))] + ] Fu(t,uy)
+ /Ot(t — )L (b 5) AT R (s, us)ds
+/Ot(t—s)€*1rlyg(t—s)5 (s,us,/ose(s,T,uT)dT,/ch(s,"r,uT)dT)ds
+/Ot(t—s)€_1]_1Yg(t—s)Bx(s)dS, el 3)
where

Pyo(t) = /O T (M), S =1 /0 " Wi (@) M(Fw)dw,

and for w € (0, c0)

& (w) :% T w ) 20,
_ 15 qynetpnga L+ 1)
Wy (w) = nn:l( 1"t o sin(nmnq),

where &7 is a probability density function defined on (0, c0), that is,
Zr(w) >0, we(0,00) and / Gr(w)dw = 1.
0

Lemma 4 ([20]). The operators &, ; and /7 satisfies the following:
(i) Fort >0, Py ¢ and S are linear and bounded, that is, for every u € X,

M
[ull and |77 (ul] < == [lul,

M1
|2y, (Hull < T Q)

(v(1-9¢)+9)
where 2,7 (1) = I 920, (t), %, (1) = £-1.,(1).
(ii) The operators {2, ¢ (t)}1>0 and {77 (t) } >0 are strongly continuous.
(iii) Foreveryu € X, u,{ € (0,1], we have

AF(Hu = A" F (A U, 0 < t < ¢
CCuI'(2—p)

1470 < mra T+ za =)

,0<t<e.

Lemma 5. The operators {77 (t)}i~0 and { P, ;(t)}i>0 are strongly continuous, that is,
0<t <t'<g,

() A (P yu— () LA (P ul| = 0and || Py () u— Py (P ul — 0ast” — t.

Definition 7 ([49,50]). The Measure of noncompactness of Hausdorff 7 (-) determined on every
bounded subset ¢ of X by 7 (0) = inf{e > 0 : ¢ can be covered by a finite number of balls of radii
lesser than €.
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Definition 8 ([35]). Let F' be the positive cone of an order Banach space (F, <). The value E of
F is said to be measure of noncompactness on X of 9 determined on the set of all bounded subsets
of X ifand only if E(coo) = E(0) for all bounded subsets 0 C X, where too is a closed convex hull

of o.

Definition 9 ([49,51]). For every bounded subsets 0,01, 02 of X.

(i) Monotone if and only if for all bounded subsets o, 01, 02 of X we get: (01 € 02) = (Z(01) <

2(02));

(ii) Non singular if and only if 2({a} U o) = 2(0) foreacha € X, 0 C U;

(iii) Regular if and only if (o) = 0 if and only if o is relatively compact in X;

(iv) T(e1+02) < T(01) + T (02), where 1 + 02 = {x1+x2: x1 € 01, %2 € 02 };

(v) F(e1U02) <max{7(e1), 7 (02)};

(vi) Z(ve) <77 (o) forall y € R;

(vii) If Q : D(Q) € X — Y is a Lipschitz continuous function with k > 0, then Fy(Qo) <
k7 (0), for 0 C D(Q) and Y is a Banach space.

Lemma 6 ([49]). Assume that 2 C C([a, b], X) is bounded and equicontinuous, then 7 (2 (t))
is continuous for any t € [a,b],

T(X) = f;g{f(%(t)),t € [a,b]}, whereby 2 (t)={u(t):ue 2} CX.

Theorem 1 ([45,52]). Assume {uy};_, is a sequence of Bochner integrable functions from I — X

with |luy (t)| < e(t), forall t € I and every n > 1, wheree € L'(I,R), then o(t) = 7 ({un(t) :
n >1}) € LY(I,R) and satisfies ﬂ{fot o(t)dt:n>1} < ZfOtQ(T)dT.

Lemma 7 ([53]). Assume F be closed convex subset of X and 0 € F, K : F — X is continuous
and that satisfies Minch’s condition, that is, (P C F is countable, P C co({0} UK(P)) = P is
compact ). Then K has a fixed point in F.

3. Existence

The reason for this part is to examine the existence of the fractional system (1)—(2).

(Ho)If F C Xand w € F, then
IT(t50)w — T(t]o)w|| — 0, when tp — f1,

for each fixed ¢ € (0,0).

(H1) The function F; : I x R; — X is continuous and there exists 4 € (0,1) such that
F, € D(A"), foreveryw € X, t € I, A¥] _1F1(-,w) is strongly measurable, there exists
Mg >0, Mé > O such thatr,s € X, A¥F(t, -) satisfies the following

|AFT R (7 (t) — AMT TR s(8) < Mgt [r() —s(8) |1,

IAM T Rt w ()| < My(1+ £ feollg, ).
(Hz) The function F> : I x R; x X x X — X satisfies the following:

(i) The function F(+, ¢,y,z) is measurable for all (¢,y,z) € R; x X and F(t, -, -, )
is continuous fora.e. t € I, u € R, (-, ¢,y,z) : I — X is strongly measurable.

1
(ii) There exists g1 € (0,9) and €; € L% (I,R") and the integrable function « :
R* — R* such that ||E(t,¢,y,2)[| < ex(t)x(t'(|gpll=, + 7|yl + £7]),

forall (t,¢,y,z) € N x R; x X x X, where « satisfies nlgn inf @ =0.



Fractal Fract. 2022, 6, 81 7 of 21

1
(iii) There exists g € (0,9) and €; € L% (I, R") such that for any bounded subset
D; C Xand G; C R,

7(E(t,G1, D1, D2)) S ()| sup T(Gilg)) + 7(D1) + 7(Da),

—00<p<0

forae. t € I, Gi(0) = {v(e) : v € G1} and 7 is the Hausdorff MNC.

(H3) The functione : [ x I x R; — X satisfies the following:

(i) e(-, ¢, z)is measurable for all (¢,z) € R; x X, f(t,-,-) is continuous for a.e. t € I.
(ii) There exists Eg > 0 such that |le(t, T, ¢)|| < Eo(1+ ||¢[l%,), forallt € I, T € X,
P ER,.

1
(iii) There exists g3 € (0,9) and €3 € L% (I, R™") such that for any bounded subset
D3 C X,

T (Fy(t,t,D3)) < e3(t, T) [ sup ﬂ(Dg,((p))] forae. t €1,
—oo<t<0
. % T
with € = sup_ . [y €3(t,€)de < co.
(Hyg) The function f : I x I x R; — X satisfies the following:

(i) f(-,¢,z)ismeasurable for all (¢,z) € R; x X, f(t,-,-) is continuous for a.e. t € I.
(ii) There exists Ey > 0 such that ||f(t,7,¢)| < E1(1+ [|¢[|®,), forallt € [, T € X,
PR

1
(iii) There exists q4 € (0,9) and €4 € L% (I, R") such that for any bounded subset
Dy C X,

T (B(t,7,Dy)) < ealt, r)[ sup 9(134((,)))] forae. tel,
—oo<t<0
with €] = sup_ . [y €a(t,e)de < 0.

(Hs) The operator B : L2(I, %) — L'(I,%) is bounded and W : L*(I, %) — L'(I, %) is
defined by

Wx = /Oc(c —5)s LA (t — 5)Bx(s)ds,

which satisfies the following:

(i) W have an inverse W~! acquires the value in L?(I, ) /KerW, there exists €}, >
0,€w > 0 such that ||B]| < ey and [[W™1|| < ey.

1
(ii) Forgs € (0,q) and for every bounded subset D € X, there exists €4 € L% (I, R™)
such that #(W1(D) (1)) < &(1)#(D). Here ¢, € Lis (I, RY).

(iii) For g9 € (0,9) and My, € L%UR ) such that for any S C X, 7((W~1S)(t)) <
My (t)7(S),qn € (0,9),n =0,1,2,3.

We present the following for our convenience:
Ki=hkillell 1oee), Ke=klell g, Ks=ksllesll 1ope, A= Mo,
Ky = k4\|€4|\ Lugey Ks =ksllesl 1 oze) Ko=kollMy || iz

k, = [(E:Z:)C(Hz)}l_q", n=0,1,2,34 K= f:;, K* = m
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Theorem 2. Suppose that the hypotheses (Ho)—(Hs) are satisfied, then the fractional system (1)
and (2) is controllable if

2M Ko (1 + 2€; + 2€;)ct 1+ 2MTmKoec
r'() I'(¢)

Proof. We now define the operator ® : R} — R by

L* =

|, for some 1

5 <i<l (4)

p(t), te (—00,0],
f—lﬂvg(tmwm F1(0,¢(0))] + ] LFy (£, uz)
ou(t) = 4+ Jo(t =) AL (t = 5)] Fi(s, us)ds

)
+f0 =) A (t—5)F (s, us, [o e(s, T, uc)dt, focf(s,r,ur)dr>ds
—I—fot — )5 LA (t — 5)Bx(s)ds, t € L.

For ¢ € R, we present 3 as follows:

o _ ) Ot t € (—o0,0],
At = {yv,g(t)¢(o), tel,

A

then B € R). Letu(t) = p(t) + B(t), —oo < t < d. Clearly u satisfies (3), if and only if p
satisfies pp = 0 and

p() = — L P (DIE(0,(0)) + T Rt pr + )
~|—/t(t—s SAYAS (= 5)] TFi(s, ps + PBs)ds
+/ §)EU LS4 (1 — 5)Bay (s)ds
[ = -9)
COR(s,pt B | els,mpe Bold, [, pe+ pode s
where
B0) =W [ul = T2, 01100) - ROPO)] - T R
— [[e=9 Y AT e =) Ris w)ds
+ [e= 9 ele 9B (s, [ els,rucla, [ (s, uc)de Jas] ),
Take R} = {p € R} : po =0 € R;}. For every p € R/,

lplle = llpollr, +sup{llp(s)]| : 0 <s <c},
= sup{||p(s)[| : 0 <5 < c}.

Hence (R}, || - ||c) is a Banach space. Forr > 0, fix F, = {p € R} : ||w||c < r}, thus

F, C R;’ is uniformly bounded, and for p € F;, by referring Lemma 1, we have

lpe + Bellr, < llpellw, + 1Bt %,

| i’ |
<I(r+ mpag g o) + el =7 o
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Introduce Y : R — R} by

0, te€(—00,0],

~ 2, (H)FL(0,¢) + ] 'Fi(t, pi + Br)

+ fOt(t - s)g’lj’lAyé(t —8)] " F (s, ps + Bs)ds
Yp(t) =1 + fot(t —5)S LA (t — 5)Bxp(s)ds

+ (= 8)E T A (b —5)

(x)E (s, ps + Bs, f; e(s, T, pr + Br)dr, focf(s, T,pr + ﬁﬁdt) ds.

Clearly, Y having a fixed point and which is similar to Y. To prove Y having a fixed
point, we subdivide the whole proof as follows:

Step 1: We state that there exists » > 0 such that Y(F,) C F,.

If it is not correct, then there exists p’(-) € F, and t € I such that |[Y(p")(t)|| > 7,
ie,Y(p") ¢ F.

Fix r > 0, and assume {F, = u € C: ||u||. < r}. Clearly, F, is a closed, bounded and
convex set of C.

Now, we need to check there exists ¥ > 0 such that ¢(F,) C F.. If it fails, then p" € F..
However, ¢(u") ¢ Fr. Hence,

1Y (u")l|e = sup{t'"||s"[lc : 5" € p(u") > r}.
Using assumptions (Hz) and (H3) and Lemma 4, we have

r<supt'7||(Yp")(1)]

tel

< (” — I Pz (DIFL0,9(0)) | + [T Fu(t pr + )|
+ H/Ot(f—s)g_lf_lAyg(t_s)]—lpl(slps+3S)ds||
+ | /Ot(f—s)“]‘léﬂg(t—s)Bxp(s)dsH
[

(X)F (s, ps + Bs,/os e(s, T, pr + ,Br)dT/ /ch(s, T, pr + BT)dT> dsH)

where

Vi =] P, (1) TF(0, $(0)) |
o MoMJuJw
“Tw(1-¢)+¢)

Vo = | TYE(t pe + Br) |
< "M Mg (1+1).

4
My,

By referring the Holder’s inequality and Lemma 4, we have

t A~
Vs = cl‘”/ [(t— )¢ LAY S A (£ — 5) AS TV Fy (s, ps + fs)||ds
0
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le;t (1+p)~
uI(1+ ug)

By referring the Hypotheses (Hy)-(Hs), we get

< e ]mM’ (1+1").

Vy=c|| /Ot(t — ) LA (t—s)

(X)FZ (Srps+,551/() e(S/TrpT'F,BT)dT/‘/O f(S/T;PT+ﬁT)dT>dS ’

< cl_WTmH /t(t — 5)5_15%(1% —s)e1(s)Y(r' 4+ cEg(1 +7") + cEq (14 7'))ds||

<MD G By (14 7) 4 cEy(14 7)),

- T

and
t
Vs =c || /0 (t =) LA (t — 5)Bxp(s)ds||,

<

t
/ (t =) g (t—s)BW ! [ul — ] 20,1(c)][9(0) — F1(0,9)]
+J'F(c, pe + Be) +/ s)¢71y- 1A<5”§(c—s)] YEi (s, ps + Bs)ds
—0—/0 (c—s)7 1)~ 1Y€(c—s)

(X)F, (s, ps + ,BS, /Os e(s, T, pr + ,@T)df, /ch(s, T,pr+ ET)dv.') ds} ds

1_'7+§M7m€b€w 1 MTm]mC”_l M, 0 K
T [ iy oy Mol Ol + K3)

CrpyT(1+p)~
! I "
+M0]mM (l+r)+ H 7}”““‘ 0)

LK Y(r' + cEg(1+7") + cEr(1+7))].

<c

JnMg(1+1")

M
I(7)

Combining all the above results V;-Vs5, we get

+

< _ MoMuJm
BRAUCEORNY
+ cl_”%KlY(r’ +cEp(1+7") +cE1(1+7))
1N(9)
1—’7+§M7m€b€w[ 1 MoMJyJmc ™!

Ci—pl’ (T+p)~

M, + T Mo M (14 1") 4 c1 1 He
g 0]711 g( ) }lr(l—i- g)

]mM’ (1+71")

+c Mollp(0)

) TvI-0+0)
%MOKh + MoJuMy(1++) +c ”€W]mM/ (1+7)
n i‘féﬂ; KyY(r' + cEog(1+7") + cEy (1 + r’))]
< e Mencu . Minlcl oo |
P [ e + e+
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ley (1 + é)

1—n+ug !
e S M (L4 1)
+cl- r(gKlY(r +cEg(1+7") +cE1(1+7")) . (6)

If we divide (6) by 7, and assuming r — oo, we have 1 < 0, and this contradicts with(4),
then, ¢(F,) C F,.

Step 2: Y is continuous on F,.

For (E maps F,(I) into itself. For any (p" + ﬁ)

0B € B(I),n = 0,1,2,---, with
limy e p" + B = (p + B), we have lim, o (p" + B)(t) =

(1
(p+ B)(t) and

: 1—1(,,n Ry — ¢1-1
lim £7(p" + B) = 17 (p + B).

Assume u(t) = t'71(p + B), then {(p" + B) }nen C Fr with (p" +B) — (p+ ) in F,
when n — co. Define

b (t,un(t)r/ot6<t, T, (1) )d, /ch(t, T, rlﬂu"(r))dr>
= B(6 01+ B0, [ (TG + B
[ A (e pio)c)
= B(6 0+ B, [ e(tn T 1+ B
[ (e py)ac)
— 5 (t,u(t),/ote(t,T,Tl_”u(‘r))dl',/ch(t,‘r,‘rl_”u(T))dT>, as 1 — oo,

where

~ S
Fu(s) =F (s,sl_ﬂ(p” +ﬁ)s,/0 e(s T, T (p" + B)< )
¢ 1-n(n R
/0 f(s, T, 7 1 (p —i—ﬁ)T)dT) and
1 s
F(s) = Fz(s,s _’7(p+,3)s,/0 e(s T, 77 (p + B)e )
C 1717 N
/0 f(s, T, T T(p+ [S)T)dr>.
By referring (Hy) and Lebesgue’s dominated convergence theorem, we have
t
/O (t—8)F 1) Fu(s) — JLF(s)|lds — Oasn — oo, t € L. @)

In view of (Hy),

I = pllus < 3 [ 6= 91T = F s + M s = 5y,
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where

I = %ol =W [ (e = 95 e = 9)[Fals) — Fo)ds] (1)

MTmew
- I

By using (7) and (8), we have

[ =91 Rus) - Fo)las. ®

IYp" = Yp||rp — 0 when n — oo.

Therefore Y is continuous on F,.

Step 3: For p € F,, assume p(t) = t’7’1~u(t) , Y sends bounded sets into equicontinuous
sets of C, for all z € F,, there exists z € Y(z) such that ||z(t2) — z(t1)|| — 0 when t; — #;.

z2(t) =] Py ()] [9(0) — F1(0,0(0))] + ] ' Fy(t, pr + Br)
+/ s)¢ LS (t = s) AT (s, ps + fs)ds

+/0 (t—s)i Lo (t —s)
(x)E; (s, ps + Bs, /Os e(s, T, pr + Br)dr, /ch(s, T, pr + BT)dT) ds
+ /Ot(t — )5 LA (t — 5)Bxy(s)ds.

Assume 0 < 6 < tand 0 < t; < f, < c. Then Y(F,) is equicontinuous on I.

lz(t2) — ()|
= |lty "] P, (82) ] [9(0) — F1(0,(0))]
— 1 TP, (1)) (0) — Fi (0, (0))]]
+ | ATFT Tty T ARE (fy, wry + Bry) — 1y TAFFL (b, wr + Bry)]|

I /()tZ(tz =)A= ) AFT U Fi (s, w0, + fi)ds
- t}_ﬁ ./O‘t1 (t—s) AV A (1 — s) AP TR (s, ws + Bs)ds |
t

+ Hfé_q /o z(fz —5)s T A (k- s)

(x)F <s, ps + /SS,/O e(s, T, pr + ‘BT)dT,/O f(s, T, pr+ ﬁT)dT) ds
- t}ﬂ? /Otl(fl — )T A (- s)

(x)F (s, ps + BS//O e(s, T, pr + Br)dr,/o f(s, T, pr + ﬁT)dT) ds||
+ Ht;_'7 /Otz(tz —5)5 171 (ty — 5)Bxy(s)ds
- t}*”/ (t1 — )~ L (11 — 5) By (s)ds |

Fln [ 710 - 90 Q) 0) - R0.00)ls

- /0 ti"f(tl—s)v“*@* s 11p(0) — F1(0,9(0))]ds|
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~ 1_ A 1_ A
+ MoJmllty "AFF (2, pry + Bry) —t1 TAFFL(t1, pr + B |

o~ ty «
+h ”]mH/tl (ty — 5)F VA (ty — 5) AFJVE (5, ps + B )ds||

~ S
Full [ =) = 7 (= A (12— 9)
(x )A”I*Fl(s ps + ps)ds|
+h "fmu/ (1 —s)¢!
O)[ATH S (b —s) — AV (1 — 5)|AF] T Fi (s, ps + Bs)ds ||
AT [ (=) AT =) — AT (1 9)
(X)AMTVFy (s, ps + Bs)ds|
+t2 W]m”/ (ty — )~ 1y§(tzs)F2(s ps+ﬁs,/ e(s, T, pr + Br) dT)dsH
+ T /O Ity " (k2 = 5)5 1 = 17"t — )5 1) (12 — 5)
(x)E ( poct o [ el tipet podt, [ flspet Badr) as|
+h ”Jm||/ (= ) St —5) — Sty —5)]
(x)Fz(s,szrﬁs,/O e(S,T,pT+BT)dT,/O f(S,T,pTJrET)dT)dSH
~ ty
Y ARCER R CRDREURD)
(x)F <s,ps —i—,@s,/os e(s,r,pT—i—,@T)dT,/OCf(s,T,pT+Br)dr>ds]|
+ é_ﬂme /tz (tr —5)5 1.7 (tr — 5)Bxp(s)ds||
+]m/ B (ky — )61 — £7 (11 — )6 1.7 (1 — 5) By (s)ds||
+i ”]mH/ (t1 — ) A2ty — 5) — (11 — 5)] B, (s)ds||

+h ”]m||/t]75 t—5)* (2 — 5) — S (t — 5)] By (s)ds||

16
SZTZ'/
i=1
where
Ty =m!r/2 ty " (t2 = 9)" IS [(0) — Fy(0,¢(0))]
T =t anmme/ (t2— )¢ 1 = (1 =) 1)s“ 1 [p(0) — F1(0,¢(0))]ds],
() M”z’"“u [ 191 10(0) — 0,000

T4—M0]m[17]—t M, (147"),

oK T(1+ /
Ts =t ”M[(tz — 1) Mg (1+7"),
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T 0Ky, T (I+p)~
ST T+ 2p)

e [ e G CED L CER L

t) — 5)(:(1 1)

JmnM (1 +1’/)H

T (5)¢ .
T, :t}‘”(tl)gw) sup [A"H S (ts —s) — AVES(t — )| TuMy (1 +7'),
[0,t1—7]

¢ ~
Ty =612 sup [AV17 (1 — 5) — AT (1 — ) My (1 + 1),

[0,t,—4]
 MJuc T (b — £) AR Ap) . . )

PTG a1l Y ek R (),

MY (¥ + cEg(1 + 7' hoq_ _ _ B
g = R [ = 9 =)= e )]

o (t(1+K) — §(HK)y1=p
Ty =c ]y~ sup || S (th —s) — S (t1 —9)]|||e
n =g o, 1 =9 = i =l

(X)Y(r" +cEg(1+7") + cE; (1 +77)),

_, 61+K)(1=p) o1
T =t "o r(];”HelH VY(F 4 cEo(1+7) + cEr(147)),

M]m

T3 —t} 1 ) €b||/ ty —s)¢ Tw(s)ds||,

to_ _
T —A%b | [ = = 7 9 ()],

T )
Tis :dl—ﬂAﬁi’Zsbyy/() (t — ¥ w(s)ds|| sup [Qz(t2—s) — Qs — )|,

[0,t1—4]

Ay MJuey [0 -1
T =d " 0 ||/t]75(t1 s)* tw(s)ds||.

The right-hand side of T; to Ty, tends to ‘0" as 6 — 0. On implementing the absolute
continuity of the Lebesgue integral dominance convergence theorem for inequality, we
conclude that Ty to Ty gives ‘0’ when t, — t; — 0. Therefore, Y(F,) is equicontinuous on .

Step 4: Now, we need to prove that the Monch’s condition holds.

Consider (p° + B)(t) = t1712,,(t)¢(0), for all t € I and (p" 1 +B) = Y(p™" +
ﬁ), m=0,1,2,3,--- and Y is relatively compact.

Consider # C F, is countable and # C conv({0} UY(.#)). We need to verify
that 7 () = 0, where .7 is the Hausdorff measure of noncompactness. Consider ¢ =
{(p™ + B)}_,. Presently we have to verify that Y () (t) is relatively compact in X, for
all t € I. By referring Theorem 1,

T(x(1) = T{P" +B) (O} =) = TP + BB} U{(P" +B)(1)}5=1)
= 7{(p" +B) ()},

and

TP OYa) = 7 (1 [ (=7 1= 9)En(s) + B ()]}

< M [ ot (et s

T, Cl [eS)
+mlf'&)"/o (£ =) LT ({Bapn(s)} ™, )ds
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=U; + Uy.
Now,
U < :er(ng_”/ot(t—s)g_lﬂ({gm(p;" L) )ds
<M [t 7 (e 4B ) )
+ 9({/(:6('[,8, p+ ﬁg)de, /Obf(r,s, i+ ﬁg)de}:=1>] ds
2M et

< WKz(l +2€3 + 2¢;) 7;25@ T(Z(9)),

= 7({7 [t 57171 e~ 9B (s}

~ 1— ¢ o
B s (i o

(OZ W [ e =) e = )T (Bl + by )ds) |ds

T 1-n  ,t ¥
< M/o (t7s)’7_1MW(s)ds%K2]m(1+2€§+2€Z) sup 7 (2(¢))

N r(g) r(é) —00<p<0
27 1-y _
_WKOKZ]m(lJrZe;JrZeZ) sup T (2 (9)).
—00< <0
Now
2MJKa(1 +2€5 +2€5 )t 2MJuKoep
Uy + U, < R(X ().
e ) 1+=Tg | s #Z()

By referring Lemma 5, _
Z(Y(H)) < L*7(H).

Hence by using Moénch’s condition, we have
7(Y) < 7 (conv({0} U (Y(H))) = 7 (Y(H)) < L7 (H),

this implies .7 (H) = 0. Therefore, Y has a fixed point y € F,, in view of Lemma 6. Next,
u = p + Bis a mild solution of the fractional system (1)—(2) satisfying u(c) = u!, then the
fractional system (1)—(2) is controllable on X. [

4. Nonlocal Conditions

Physical problems prompted the development of evolution equations with nonlocal
conditions. In [54,55], the authors explored nonlocal issues for the first time in 1990,
obtaining the existence and uniqueness of mild solutions for nonlocal differential equations
of integer order. For more details on the systems with integer of fractional orders, one can
refer [29,30,32,35,45,54,55]. Assume that nonlocal Hilfer fractional delay Volterra-Fredholm
integro-differential system has the following form

DU Ju(t) — Fy(t,ur)] = Au(t) + Bx(t)
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t c
—i—Fz(t,ut,/ e(t,T,uT)dT,/ f(t,T,uT)dT>, tel=(0,, (9
0 0
I000(0) = ¢+ glusy, ey, s, -+ 1s,) € Ry, (10)

where0 <ty <th) <tz <---<t,<d, g: R} — R, and satisfies the following:
(Hg) g : R™ — R is continuous, there exists K;(g) > 0 such that

n
g (s, uz, - un) = g(wy, wp, -+, wa) [l < Y Ki(g) lui — willz,,
i=1
for all u;, w; € R; and consider Ky = sup{||g(u1,uz,-- -, un)| : u; € Ry}.

Definition 10. A function u : (—oo,c] — X is said to be a mild solution of (9) and (10) if
ug = ¢+ g(up, upy, ity -+, 1up,)(0)) € Ryon (—oo,0] and

u(t) =112, (O][9(0) = Fr(0,$(0) + (utey, sy sy, - -+ s, )(0))] + ' Fu(t, ur)
+ /Ot(t — ) LA (E— 5)) LR (s, us)ds
+/Ot(t—s)€*1rlyg(t—s)pz <s,us,/ose(s,T,uT)dT,/ch(s,r,uT)dT)ds
¥ /Ot(t —$)e LA (t —5)Bx(s)ds, t€ I,
is satisfied.

Theorem 3. Assume that the hypotheses (Ho)—(Hg) are satisfied, then the fractional system (9)
and (10) is controllable if

_ 2MJ Ko (1 + 26 + 2€ )t
')

2MJuKoey

o Q)

1
|, forsome = <7 < 1.

1+ 5

5. Examples
5.1. Abstract System

Assume that the Hilfer fractional differential system with control of the following form

v,2 9 ﬂ 0?
D,? [u(s,h) — ﬁu(s,h) —l—/o g(z,h)u(s,z)dz] = Wu(s,h)

+E<s,/s Ql(s—s)u(s,h)de,/og /j] & (T, x,e — T)u(e, h)dedr,

/OC /0 §3(T,x,£—r)u(£,h)dsdr> L V(s ), telo,nlselod, (11)

103 u(s, 1)) g = uo(h), 1 € [0, 7], (12)
u(s,0) =u(s,m)=0,s >0, (13)
u(O,p)=s(u), 0<p<m, (14)

where Dg;% denotes the Hilfer fractional derivative of order ({ = %) and type v, ¥ :
I x[0,1] x [0,1] x R — R is continuous.

To transform the fractional system (11)—(14) to abstract form, assume X = L?(0, 7r) and
A:D(A) Cc X = X,]:D(J) C X — X be defined by Aw = w”, and Pw = w — A where
D(A) and D(J) is given by {w € U : w, w’ are absolutely continuous, w(0) = w(7r) = 0}.
Then, A and | are presented as Aw = Y, _; (W, zm)zm, w € D(A), Jw = Yoo 1 (1+
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m?) (W, zm)zm, w € D(J) where z,(x) = \/%sin(mx), m=1,2,3,--- are the orthonormal
of vectors of A. Then, for z € U, we have

_ > 1
P 12 = 21 m<2,zm>2m,
m=
=) 2
_ m
AJ 1y = Zl 7(1 T mz) <Z,Zm>zm/
m=

and )
- m=6
Qu(0)z = - exp( 1 ) Gramban
m=1
Ais defined by T(0)z(t) = z(0 + 1) for z € X, T(0) is not compact on X with 7 (T(0)D) <
(D),  is the Hausdorff measure of noncompactness.

Here A is an infinitesimal generator of a semigroup {T(s),s > 0} in X and which is
presented as T(s)w(e) = w(s +¢), for w € U, T(s) is not compact on X with .7 (T(s)D) <
(D). Furthermore, s — w(s% + €)u is equicontinuous ([45]), where s > 0 and 71 € (0, c0).
We assume F; : [0,71] x X — Xand F, : [0, 71] X X x X x X — X by

f(05) = /C &3(0,T,€)s(e)de,

e(0,s) = /6 & (0,7,¢)s(e)de,

R)© = [ 8z euls e
F (9,5, Oee(s,s)ds, /ch(s,s)ds>

= E(s, /joo vi(e —s)u(e, {)de, /Oee(s,s)(r)ds, /ch(S,S>(T)d€),

and DY (1) 5) (1) = 2u(s, ), u(s)(e) = us,e).

M
Let B: X — X be given by (Bx)(s)(h) = ¥x(s,h), 0 <s < 1.Forh € (0,71), W is
given by

1

Wx(h) = /0 (1 —s)_Tl,Vg(l —s)¥x(s, h)ds,
where
2 o]
7 = 5/0 g ()x(E3n)dn,

and for 71 € (0, )

where &, is determined on (0, %), i.e.,
3

C%(h)ZO, h e (0,00) and /Ooogg(h)dhzl.
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Finally F;, F, and ¥ satisfy the hypotheses (H;)—(Hs), thus all the requirements of the
Theorem 2 are satisfied, then the fractional system (11)—(14) is controllable on I.

5.2. Filter System

An advanced filter is a framework that performs mathematical operations on an
inspected, digitized sign to decrease or upgrade certain highlights of the prepared signal.
Propelled by the plans examined in [13,19,29,56,57], we presented a filter design for our
framework which is shown in Figure 1. Figure 1 portrays the rough pattern of block
diagram which helps to improve the viability of arrangement with least measure of sources
of input and which is presented as follows.

Vg(t — S)
T@—» % » INTEGRATOR

INTEGRATOR

H

INTEGRATOR

B
— 4>| INTEGRATOR
x(s)

/S 2
rat), % N L
k=0

3

k=0

4

ouTPUT  u(t)

Figure 1. Filter System.

Product modulator (PM)-1 receives inputs u; and F; generates the output as F; (, u;).
PM-2 receives A and F(t,u;) generates AF;(t,uy). PM-4 receives u; and f generates
f(t,7,ur). PM-4 receives u; and F, produces F,(t, u;). PM-5 receives u; and e generates
e(t, T, ur). PM-6 receives F,(t, u;), e(t, T, ur) and f(t, T, ur) generates

t c
F <t,ut,/ e(t, T, MT)dT,/ f(t,T,uT)d'c).
0 0

PM-7 receives x(t) and B generates Bx(t). PM-8 receives [¢(0) — F;(0,¢(0))] and 2, ;(t)
at time t = 0, generates &, ;(t). The integrators execute the integral of

Z4(t) {AYg(t)Fl(t, ) +E (t,ut, ./; et T, u0)dT, ./O‘Cf(t, ., uT)dT) + Bx(t)],

over t.

Additionally, Inputs .7 (t), AF; (t, u;) are joined and multiplying with the output on
the interval (0, t). .77 (t), F» (t,ut, fot e(t, T, ur)dr, focf(t, T, MT)dT) are joined and multiply-
ing with the output on the interval (0,t). .#7(t), Bx(t) are joined and multiplying with the
output on the interval (0, t).

Finally, if we shift all the outputs from the integrators to summer network, then, the
output of u(t) is achieved, which is bounded and controllable.
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6. Conclusions

The exact controllability of Sobolev-type Hilfer fractional neutral integro-differential
systems via measure of noncompactness is the topic of our article. The main conclusions
of our paper are based on theoretical ideas such as fractional calculus, the measure of
noncompactness, and the fixed-point approach. First, we looked at the exact controllability
of mild solutions for fractional evolution systems. Then we expanded on our findings to
consider the system in nonlocal conditions. Finally, we presented theoretical and practical
applications to aid in the efficacy of the discussion.
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