Tuning of the Dielectric Relaxation and Complex Susceptibility in a System of Polar Molecules: A Generalised Model Based on Rotational Diffusion with Resetting
Abstract
:1. Introduction
2. Theoretical Background
3. Rotational Diffusion Equation with a Memory Kernel
3.1. Complex Susceptibility
3.2. Debye Relaxation: Standard Fokker–Planck Equation
3.3. Cole–Cole Relaxation: Fractional Fokker–Planck Equation
3.4. Mixing Debye and Cole–Cole Relaxation: Distributed Order Fokker–Planck Equation
3.5. Havriliak–Negami Relaxation: Generalised Fokker–Planck Equation
4. Relaxation Processes with Resetting
4.1. Debye Relaxation with Resetting
4.2. Cole–Cole Relaxation with Resetting
4.3. Mixing of Debye and Cole–Cole Relaxation with Resetting
4.4. Havriliak–Negami Relaxation with Resetting
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Debye, P. Polar Molecules; Chemical Catalog Company: New York, NY, USA, 1929. [Google Scholar]
- Perrin, F. Mouvement brownien d’un ellipsoide-I. Dispersion diélectrique pour des molécules ellipsoidales. J. Phys. 1934, 5, 497–511. [Google Scholar] [CrossRef]
- Kirkwood, J.G.; Fuoss, R. Anomalous dispersion and dielectric loss in polar polymers. J. Chem. Phys. 1941, 9, 329–340. [Google Scholar] [CrossRef]
- Budó, A. Dielectric Relaxation of Molecules Containing Rotating Polar Groups. J. Chem. Phys. 1949, 17, 686–691. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics 1. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Davidson, D.W.; Cole, R.H. Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 1951, 19, 1484–1490. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. Part C 1966, 14, 99–117. [Google Scholar] [CrossRef]
- Sack, R.A. Relaxation processes and inertial effects I: Free rotation about a fixed axis. Proc. Phys. Soc. B 1957, 70, 402. [Google Scholar] [CrossRef]
- Sack, R.A. Relaxation Processes and Inertial Effects II: Free Rotation in Space. Proc. Phys. Soc. B 1957, 70, 414. [Google Scholar] [CrossRef]
- Coffey, W.T.; Kalmykov, Y.P. (Eds.) Fractals, Diffusion, and Relaxation in Disordered Complex Systems, Part A; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 133. [Google Scholar]
- Coffey, W.; Kalmykov, Y.P. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering; World Scientific: Singapore, 2012. [Google Scholar]
- Hilfer, R. H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. Phys. Rev. E 2002, 65, 061510. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Hilfer, R. Analytical representations for relaxation functions of glasses. J. Non-Cryst. Solids 2002, 305, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. On fractional relaxation. Fractals 2003, 11, 251–257. [Google Scholar] [CrossRef]
- Stanislavsky, A.; Weron, K.; Weron, A. Diffusion and relaxation controlled by tempered α-stable processes. Phys. Rev. E 2008, 78, 051106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanislavsky, A.; Weron, K.; Trmziel, J. Subordination model of anomalous diffusion leading to the two-power-law relaxation responses. Europhys. Lett. 2010, 91, 40003. [Google Scholar] [CrossRef] [Green Version]
- Stanislavsky, A.; Weron, K.; Weron, A. Anomalous diffusion approach to non-exponential relaxation in complex physical systems. Commun. Nonlinear Sci. Numer. Simulat. 2015, 24, 117–126. [Google Scholar] [CrossRef]
- Stanislavsky, A.; Weron, K. Stochastic tools hidden behind the empirical dielectric relaxation laws. Rep. Prog. Phys. 2017, 80, 036001. [Google Scholar] [CrossRef] [Green Version]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. From stretched exponential to inverse power-law: Fractional dynamics, Cole–Cole relaxation processes, and beyond. J. Non-Cryst. Solids 2002, 305, 81–87. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. Anomalous stochastic processes in the fractional dynamics framework: Fokker-Planck equation, dispersive transport, and non-exponential relaxation. Adv. Chem. Phys. 2001, 116, 223–264. [Google Scholar]
- Coffey, W.T.; Kalmykov, Y.P.; Massawe, E.S.; Waldron, J.T. Exact solution for the correlation times of dielectric relaxation of a single axis rotator with two equivalent sites. J. Chem. Phys. 1993, 99, 4011–4023. [Google Scholar] [CrossRef]
- Waldron, J.T.; Kalmykov, Y.P.; Coffey, W.T. Rotational Brownian motion and dielectric relaxation of polar molecules subjected to a constant bias field: Exact solution. Phys. Rev. E 1994, 49, 3976. [Google Scholar] [CrossRef] [PubMed]
- Coffey, W.T.; Kalmikov, Y.P.; Titov, S.V. Anomalous dielectric relaxation in the context of the Debye model of noninertial rotational diffusion. J. Chem. Phys. 2002, 116, 6422–6426. [Google Scholar] [CrossRef]
- Crothers, D.S.F.; Holl, D.; Kalmykov, Y.P.; Coffey, W.T. The role of Mittag–Leffler functions in anomalous relaxation. J. Mol. Liquids 2004, 114, 27–34. [Google Scholar] [CrossRef]
- Coffey, W.T.; Kalmykov, Y.P.; Titov, S.V. Inertial effects in anomalous dielectric relaxation. Phys. Rev. E 2002, 65, 032102. [Google Scholar] [CrossRef]
- Kalmikov, Y. Fractional rotational Brownian motion in a uniform dc external field. Phys. Rev. E 2004, 70, 051106. [Google Scholar] [CrossRef]
- Feldman, Y.; Puzenko, A.; Ryabov, Y. Non-Debye dielectric relaxation in complex materials. Chem. Phys. 2002, 284, 139–168. [Google Scholar] [CrossRef]
- Titov, S.V.; Coffey, W.T.; Dowling, W.J.; Zarifakis, M.; Kalmykov, Y.P.; Titov, A.S. Anomalous diffusion of molecules with rotating polar groups: The joint role played by inertia and dipole coupling in microwave and far-infrared absorption. Phys. Rev. E 2020, 102, 052130. [Google Scholar] [CrossRef]
- Kowalik, B.; Daldrop, J.O.; Kappler, J.; Schulz, J.C.F.; Schlaich, A.; Netz, R.R. Memory-kernel extraction for different molecular solutes in solvents of varying viscosity in confinement. Phys. Rev. E 2019, 100, 012126. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelesticity: An introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Metzler, R.; Barkai, E.; Klafter, J. Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett. 1999, 82, 3563. [Google Scholar] [CrossRef] [Green Version]
- Petreska, I.; Pejov, L.; Kocarev, L. Exploring the possibilities to control the molecular switching properties and dynamics: A field-switchable rotor-stator molecular system. J. Chem. Phys. 2011, 134, 014708. [Google Scholar] [CrossRef]
- Sandev, T.; Metzler, R.; Chechkin, A. From continuous time random walks to the generalized diffusion equation. Fract. Calc. Appl. Anal. 2018, 21, 10–28. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.M.; Dissado, L.A. Debye and non-Debye relaxation. J. Phys. C Solid State Phys. 1985, 18, 3829. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag–Leffler function: Theory and application. Commun. Nonlin. Sci. Numer. Simul. 2018, 56, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Bazhlekova, E. Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives. Fract. Calc. Appl. Anal. 2021, 24, 88–111. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Gorenflo, R.; Sokolov, I.M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 2002, 66, 046129. [Google Scholar] [CrossRef] [Green Version]
- Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M.; Mainardi, F. A Guide to Prabhakar functions and operators. Fract. Calc. Appl. Anal. 2020, 23, 9–54. [Google Scholar] [CrossRef] [Green Version]
- Górska, K.; Horzela, A.; Pogány, T.K. Non-Debye relaxations: Smeared time evolution, memory effects, and the Laplace exponents. Commun. Nonlin. Sci. Num. Simul. 2021, 99, 105837. [Google Scholar] [CrossRef]
- Górska, K.; Horzela, A. Non-Debye Relaxations: Two Types of Memories and Their Stieltjes Character. Mathematics 2021, 9, 477. [Google Scholar] [CrossRef]
- Górska, K.; Horzela, A.; Pogány, T.K. Non-Debye relaxations: The characteristic exponent in the excess wings model. Commun. Nonlin. Sci. Numer. Simul. 2021, 103, 106006. [Google Scholar] [CrossRef]
- Garrappa, R.; Mainardi, F.; Maione, G. Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 2016, 19, 1105. [Google Scholar] [CrossRef] [Green Version]
- D’Ovidio, M.; Polito, F. Fractional Diffusion–Telegraph Equations and Their Associated Stochastic Solutions. Theory Probab. Appl. 2018, 62, 552–574. [Google Scholar] [CrossRef]
- Dos Santos, M.A.F. A fractional diffusion equation with sink term. Indian J. Phys. 2018, 94, 1123–1133. [Google Scholar]
- Evans, M.R.; Majumdar, S.N. Diffusion with stochastic resetting. Phys. Rev. Lett. 2011, 106, 160601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, M.R.; Majumdar, S.N. Diffusion with resetting in arbitrary spatial dimension. J. Phys. A Math. Theor. 2014, 47, 285001. [Google Scholar] [CrossRef]
- Evans, M.R.; Majumdar, S.N.; Schehr, G. Stochastic resetting and applications. J. Phys. A Math. Theor. 2020, 53, 193001. [Google Scholar] [CrossRef]
- Bell, W.J. Searching Behavior: The Behavioral Ecology of Finding Resources; Chapman and Hall: London, UK, 1999. [Google Scholar]
- Bartumeus, F.; Catalan, J. Optimal search behavior and classic foraging theory. J. Phys. A: Math. Theor. 2009, 42, 434002. [Google Scholar] [CrossRef] [Green Version]
- Falcón-Cortés, A.; Boyer, D.; Giugiolli, L.; Majumdar, S.N. Localization transition induced by learning in random searches. Phys. Rev. Lett. 2017, 119, 140603. [Google Scholar] [CrossRef]
- Pal, A.; Reuveni, S. First passage under restart. Phys. Rev. Lett. 2017, 118, 030603. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Kuśmierz, L.; Reuveni, S. Search with home returns provides advantage under high uncertainty. Phys. Rev. Res. 2020, 2, 043174. [Google Scholar] [CrossRef]
- Reuveni, S.; Urbakh, M.; Klafter, J. Role of substrate unbinding in Michaelis–Menten enzymatic reactions. Proc. Natl Acad. Sci. USA 2014, 111, 4391–4396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sornette, D. Critical market crashes. Phys. Rep. 2003, 378, 1–98. [Google Scholar] [CrossRef] [Green Version]
- Tal-Friedman, O.; Pal, A.; Sekhon, A.; Reuveni, S.; Roichman, Y. Experimental realization of diffusion with stochastic resetting. J. Phys. Chem. Lett. 2020, 11, 7350–7355. [Google Scholar] [CrossRef] [PubMed]
- Besga, B.; Bovon, A.; Petrosyan, A.; Majumdar, S.N.; Ciliberto, S. Optimal mean first-passage time for a Brownian searcher subjected to resetting: Experimental and theoretical results. Phys. Rev. Res. 2020, 2, 032029. [Google Scholar] [CrossRef]
- Pal, A. Diffusion in a potential landscape with stochastic resetting. Phys. Rev. E 2015, 91, 012113. [Google Scholar] [CrossRef] [Green Version]
- Masó-Puigdellosas, A.; Campos, D.; Méndez, V. Transport properties and first-arrival statistics of random motion with stochastic reset times. Phys. Rev. E 2019, 99, 012141. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.; Reuveni, S. Diffusion with resetting in a logarithmic potential. J. Chem. Phys. 2019, 152, 234110. [Google Scholar] [CrossRef]
- Ahmad, S.; Nayak, I.; Bansal, A.; Nandi, A.; Das, D. First passage of a particle in a potential under stochastic resetting: A vanishing transition of optimal resetting rate. Phys. Rev. E 2019, 99, 022130. [Google Scholar] [CrossRef] [Green Version]
- Mercado-Vásquez, G.; Boyer, D.; Majumdar, S.N.; Schehr, G. Intermittent resetting potentials. J. Stat. Mech. 2020, 2020, 113203. [Google Scholar] [CrossRef]
- Dahlenburg, M.; Chechkin, A.V.; Schumer, R.; Metzler, R. Stochastic resetting by a random amplitude. Phys. Rev. E 2021, 103, 052123. [Google Scholar] [CrossRef]
- Dos Santos, M.A.F. Non-Gaussian distributions to random walk in the context of memory kernels. Fractal Fract. 2018, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Stanislavsky, A.; Weron, A. Optimal non-Gaussian search with stochastic resetting. Phys. Rev. E 2020, 104, 014125. [Google Scholar] [CrossRef] [PubMed]
- Tateishi, A.A.; Ribeiro, H.V.; Lenzi, E.K. The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 2017, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Sandev, T. Generalized Langevin equation and the Prabhakar derivative. Mathematics 2017, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, M.A.F. Fractional Prabhakar derivative in diffusion equation with non-static stochastic resetting. Physics 2019, 1, 40. [Google Scholar] [CrossRef] [Green Version]
- Chakroun, R.; Jamoussi, B.; Al-Mur, B.; Timoumi, A.; Essalah, K. Impedance Spectroscopy and Dielectric Relaxation of Imidazole-Substituted Palladium (II) Phthalocyanine (ImPdPc) for Organic Solar Cells. ACS Omega 2021, 6, 10655. [Google Scholar] [CrossRef]
- Cui, H.-B.; Takahashi, K.; Okano, Y.; Kobayashi, H.; Wang, Z.; Kobayashi, A. Dielectric Properties of Porous Molecular Crystals That Contain Polar Molecules. Angew. Chem. 2005, 117, 6666–6670. [Google Scholar] [CrossRef]
- Thomas, K.; Stäglich, R.; Gainaru, C.; Böhmer, R.; Rössler, E.A. Systematic differences in the relaxation stretching of polar molecular liquids probed by dielectric vs magnetic resonance and photon correlation spectroscopy. J. Chem. Phys. 2020, 153, 124510. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petreska, I.; Pejov, L.; Sandev, T.; Kocarev, L.; Metzler, R. Tuning of the Dielectric Relaxation and Complex Susceptibility in a System of Polar Molecules: A Generalised Model Based on Rotational Diffusion with Resetting. Fractal Fract. 2022, 6, 88. https://doi.org/10.3390/fractalfract6020088
Petreska I, Pejov L, Sandev T, Kocarev L, Metzler R. Tuning of the Dielectric Relaxation and Complex Susceptibility in a System of Polar Molecules: A Generalised Model Based on Rotational Diffusion with Resetting. Fractal and Fractional. 2022; 6(2):88. https://doi.org/10.3390/fractalfract6020088
Chicago/Turabian StylePetreska, Irina, Ljupco Pejov, Trifce Sandev, Ljupco Kocarev, and Ralf Metzler. 2022. "Tuning of the Dielectric Relaxation and Complex Susceptibility in a System of Polar Molecules: A Generalised Model Based on Rotational Diffusion with Resetting" Fractal and Fractional 6, no. 2: 88. https://doi.org/10.3390/fractalfract6020088
APA StylePetreska, I., Pejov, L., Sandev, T., Kocarev, L., & Metzler, R. (2022). Tuning of the Dielectric Relaxation and Complex Susceptibility in a System of Polar Molecules: A Generalised Model Based on Rotational Diffusion with Resetting. Fractal and Fractional, 6(2), 88. https://doi.org/10.3390/fractalfract6020088