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Abstract: The application of the fractional calculus in the mathematical modelling of relaxation
processes in complex heterogeneous media has attracted a considerable amount of interest lately.
The reason for this is the successful implementation of fractional stochastic and kinetic equations
in the studies of non-Debye relaxation. In this work, we consider the rotational diffusion equation
with a generalised memory kernel in the context of dielectric relaxation processes in a medium
composed of polar molecules. We give an overview of existing models on non-exponential relaxation
and introduce an exponential resetting dynamic in the corresponding process. The autocorrelation
function and complex susceptibility are analysed in detail. We show that stochastic resetting leads
to a saturation of the autocorrelation function to a constant value, in contrast to the case without
resetting, for which it decays to zero. The behaviour of the autocorrelation function, as well as the
complex susceptibility in the presence of resetting, confirms that the dielectric relaxation dynamics
can be tuned by an appropriate choice of the resetting rate. The presented results are general and
flexible, and they will be of interest for the theoretical description of non-trivial relaxation dynamics
in heterogeneous systems composed of polar molecules.

Keywords: rotational diffusion; memory kernel; Fokker–Planck equation; non-exponential relaxation;
autocorrelation function; complex susceptibility

1. Introduction

The proper understanding of the response of physical systems to applied external
fields relies on the investigation and understanding of relaxation processes. In particular,
dielectric relaxation, which involves dipole as well as ionic relaxation of the constituents
of a given material subjected to an external alternating field, predetermines the effects
of the field on the physical and chemical properties of the material. Along with the
development of experimental techniques for studying the interactions between molecules
and external fields, theoretical frameworks for the treatment of the dielectric relaxation
processes have been continually advanced and upgraded. In this work, we focus on the
theoretical modelling of orientational dielectric relaxation in a system of polar molecules.
Originally, the theory of dielectric relaxation was developed by Debye, assuming spherical
molecules as rigid polar rotators, and it still remains the main point of reference in the
studies of dielectric relaxation processes [1]. After the development of the theory by Debye,

Fractal Fract. 2022, 6, 88. https://doi.org/10.3390/fractalfract6020088 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6020088
https://doi.org/10.3390/fractalfract6020088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-4084-8749
https://orcid.org/0000-0001-9120-3847
https://orcid.org/0000-0001-7243-7074
https://orcid.org/0000-0002-6013-7020
https://doi.org/10.3390/fractalfract6020088
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6020088?type=check_update&version=3


Fractal Fract. 2022, 6, 88 2 of 23

a series of implementations to molecular systems containing polar side groups and further
extensions of this theory have followed [2–9]. For a detailed review and exhaustive lists of
references regarding the modelling of dielectric relaxation of polar molecules, we refer to
the books [10,11].

Nowadays, the science of materials response to external fields is mostly focused on
complex media, which are strongly heterogeneous. Usually, in these media a non-Debye
dielectric relaxation is observed, and various empirical formulas are utilised to analyse
the behaviour of the quantities of interest, such as polarisation and the corresponding
response functions, i.e., dielectric susceptibility and permittivity. In this regard, many
modifications and corrections to the initial Debye model can be found in the literature. The
most widely used models to describe various aspects of non-Debye relaxation are the so
called Cole–Cole relaxation, Cole–Davidson, and Havriliak–Negami relaxation [5–7,12–19].

Recently, the problem of the mathematical modelling of relaxation processes in com-
plex media has been revisited from the perspective of the application of fractional gen-
eralisations of the stochastic and kinetic equations. Numerous influential papers have
been published that demonstrate how fractional order derivatives may be successfully
applied to model anomalous dynamics, which is common for systems undergoing non-
Debye relaxation [20–29]. For example, the fractional Fokker–Planck (FP) equation with
Riemann–Liouville derivative is one of the models that is frequently used for describ-
ing such processes. This approach in fact involves a power law memory kernel in the
FP equation.

The aim of this paper is to propose a generalisation of the rotational diffusion equa-
tion with a memory kernel and to show that it is possible to retrieve different relaxation
behaviours from a single model. The rotational diffusion equation is still one of the most ex-
ploited models for the analysis of orientational relaxation in systems with polar molecules;
see [30] and references therein. Conversely, the memory kernel approach has been proved
to enable a robust treatment of the relaxation dynamics of molecular solutes in viscous sol-
vents, and recently, much attention has been paid also to the experimental extraction of the
memory kernels for particular systems of interest; see [31] and references therein. We derive
a memory-kernel dependent solution of the generalised rotational diffusion equation, and
we express the complex susceptibility as a function of the kernel. Further, we analyse the
complex susceptibility behaviour in the framework of linear response theory for selected
forms of the memory kernel, using the after-effect autocorrelation function. It is pointed out
that by an adequate choice of the memory kernel, one can obtain the known Debye as well
as non-Debye behaviours of the dielectric relaxation, such as Cole–Cole, Cole–Davidson,
and Havriliak–Negami relaxation. Finally, the corresponding Fokker–Planck equation for
each case is stated. As a novel additional component, we also investigate the relaxation
dynamics with stochastic resetting and analyse how this would affect the complex dynamic
susceptibility. Experimentally, relaxation with resetting can be realised by application of
electric pulses or by switching the external field on and off during the relaxation process.
Our analysis of the complex susceptibility and the stated Fokker–Planck equations shows
that this strategy allows for the tuning of the dielectric relaxation between the initial and
the target state; i.e., resetting itself changes the relaxation path and leads to a new target
state, even though the initial state of the system was the same.

The paper is organised as follows. In Section 2, the theoretical background is briefly
recalled. In Section 3, the rotational diffusion equation with a memory kernel is introduced,
and the obtained solution is used to derive the complex susceptibilities for various forms
of the memory kernel. In Section 4, we consider the dielectric relaxation phenomena with
resetting. Finally, in Section 5, we give a summary and discussion.

2. Theoretical Background

First, we briefly introduce the key concepts behind the theoretical investigation of
dielectric relaxation processes in media composed of polar molecular species. When a bulk
molecular system of polar molecules is embedded in an external electric field, the dipole
moments are being oriented along the field direction, which causes the polarisation of the
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medium (Figure 1). The potential energy gained by each molecule due to interaction with
an external electric field depends on the dipole moment as an inherent property of the
molecule, the magnitude of the field, and the orientation of the molecular dipole moment
with respect to the electric field. For the case when molecules are positioned in a plane,
the orientation of the dipole moment can be described by the azimuthal coordinate φ, only.
Thus, when the molecules have a permanent dipole moment µ and are subjected to an
external uniform field with a magnitude E, the potential energy of one given molecule due
to the field will depend only on this angular coordinate, and it is given by (for example
see [11])

V(φ) = −µE cos φ. (1)

Assuming a Boltzmann distribution, the number of molecules that are oriented in the
interval (φ, φ + dφ), given the temperature T, will read

dN(φ)

N
= W(φ)dφ =

e−
V(φ)

kT dφ∫ 2π
0 e−

V(φ)
kT dφ

. (2)

The probability density function W(φ) is plotted in Figure 2. Substituting the potential
energy (1), for weak fields, the probability distribution in terms of the azimuthal coordinate
takes the form

N(φ)

N
=

1
2π

(
1 +

µE cos φ

kT

)
, (3)

where 1
2π is the normalisation constant.

Figure 1. A system of dipoles subjected to external uniform electric field with a magnitude E.
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Figure 2. Probability density function (PDF) given by Equation (2) at different ratios µE/kT. The
black line corresponds to µE/kT = 0.25, the dashed line corresponds to µE/kT = 0.5, the red line
corresponds to µE/kT = 1, the dotted line corresponds to µE/kT = 2, and the green line represents
the case µE/kT = 4.

The processes of polarisation in the presence of an external electric field and the
reversed processes of relaxation that occur when the field is switched off are realised
through rotational diffusion of the molecules. Hence, the mathematical models that are
applied to describe such processes are all based on the rotational diffusion equation.

For the purposes of the present paper, we will recall the model of one-dimensional
rotational diffusion based on the fractional Fokker–Planck equation (FFPE). Neglecting
inertial effects, it is justified to consider the whole molecule as a rigid rotator. For the case
of the uniaxial rotation of a dipolar molecule subjected to an external electric field, the FFPE
for the time evolution of the probability density function W(φ, t) can be stated in analogy
to the case of translational motion [10,11,22,25]:

∂

∂t
W(φ, t) = Dα RLD1−α

t
∂

∂φ

(
∂W(φ, t)

∂φ
+

W(φ, t)
kBT

∂V(φ, t)
∂φ

)
, (4)

where RLD1−α
t stands for the Riemann–Liouville fractional derivative [32](

RLDµ
t f
)
(t) =

1
Γ(1− µ)

d
dt

∫ t

0
(t− τ)−µ f (τ) dτ, 0 < µ < 1, (5)

Dα is the diffusion constant, and V(φ, t) is the external potential. The one-dimensional
FFPE was introduced in Ref. [33].

Here, we note that Equation (4) can be rewritten in the form

CDα
t W(φ, t) = Dα

∂

∂φ

(
∂W(φ, t)

∂φ
+

W(φ, t)
kBT

∂V(φ, t)
∂φ

)
, (6)

where CDα
t stands for the Caputo fractional derivative [32],

CDµ
a+ f (t) =

1
Γ(1− µ)

∫ t

a
(t− τ)−µ d

dτ
f (τ) dτ. (7)
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The potential energy V(φ, t) arises from the interaction between the molecule and
the applied external field, but it may also involve potential energy terms that are due to
internal interactions in the molecule. It is worth mentioning here that for polar molecules
that undergo conformational changes via intermolecular rotational degrees of freedom,
these terms are often represented by a tilted cosine potential to model the potential energy
of the side rotating group [34]. In this work, we will consider the case when the potential
energy is solely due to the interaction with the external uniform field and is given by (1).

In studies of relaxation processes of molecular assemblies consisting of polar molecules
subjected to an external field sufficiently long, such that the medium is polarised, it is
assumed that the field has been applied at the moment t = −∞, and it has been switched
off at t = 0. The molecules now undergo free rotation; i.e., the potential energy (1) is equal
to zero, which leads to dielectric relaxation. Therefore, for t > 0 (absence of external field),
the fractional diffusion equation becomes

∂

∂t
W(φ, t) = Dα RLD1−α

t
∂2

∂φ2 W(φ, t). (8)

Similarly, Equation (6) with Caputo derivative will take the form

CDα
t W(φ, t) = Dα

∂2W(φ, t)
∂φ2 . (9)

By setting the initial conditions, which are inferred from the probability density
behaviour in the presence of the electric field and applying separation of variables, one
can obtain the so-called after-effect solution. According to (3), at low field strengths, the
angular part of the solution of Fokker–Planck equation in the presence of a potential energy
of the form (1) must also be a periodic function. This means that the probability density
function W(φ, t) that is calculated for the free rotation case would in fact represent an after-
effect solution only if it satisfies a periodic initial condition W(φ, 0) of the form (3). The
after-effect solution enables us to find the dipole moment autocorrelation function in the
linear response approximation, which in turn leads to the complex dynamic susceptibility
and enables one to analyse the behaviour of a system of polar molecules in the presence of
an alternating electric field.

In the following section, we will consider a generalised form of the rotational diffu-
sion equation with a memory kernel, focusing on the time-dependent part of the after-
effect solution.

3. Rotational Diffusion Equation with a Memory Kernel

Let us now consider the following model for the generalised rotational diffusion:

∫ t

0
γ(t− t′)

∂

∂t′
W(φ, t′) dt′ = D ∂2

∂φ2 W(φ, t), (10)

where γ(t) is a memory kernel, such that limt→∞ γ(t) = lims→0 sγ̂(s) = 0 [35], where
γ̂(s) =

∫ ∞
0 e−stγ(t) dt is the Laplace transform of the memory kernel. Such a form of the

rotational diffusion equation covers both kinds of diffusion, normal and anomalous in one
PDE model. The case with γ(t) = δ(t) yields the ordinary rotational Brownian diffusion,
and the case with power law memory kernel γ(t) = t−α

Γ(1−α)
gives rise to anomalous rota-

tional diffusion [11,25]. Note that for the case of a power law memory kernel, Equation (9)
arises. In what follows, we will consider a more general form of Equation (10), i.e.,∫ t

0
γ(t− t′)

∂

∂t′
W(φ, t′) dt′ = LFPW(φ, t), (11)
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where LFP is the Fokker–Planck operator. Here, we note that this equation can be writ-
ten in an equivalent form by using a memory kernel from the right-hand side of the
equation [35], i.e.,

∂

∂t
W(φ, t) =

d
dt

∫ t

0
η(t− t′)LFPW(φ, t′) dt′, (12)

where the memory kernel in the Laplace space is given by

η̂(s) =
1

sγ̂(s)
. (13)

By using separation of variables, the solution of Equation (10) can be written in the
form W(φ, t) = Φ(φ)T(t), leading to the following equations∫ t

0
γ(t− t′)

d
dt′

T(t′) dt′ + λT(t) = 0, (14)

d2

dφ2 Φ(φ) +
λ

DΦ(φ) = 0, (15)

where λ is a separation constant. From Equation (15), which represents the Sturm–Liouville
problem, we will find the eigenvalues λn, λ1 < λ2 < · · · < λn < . . . . Here, we note that
for the more general Equation (11), the eigenvalue problem has the form

LFPΦn(φ) + λnΦn(φ) = 0, (16)

but here, we focus on the basic rotational diffusion Equation (10). By Laplace transform of
Equation (14), we obtain

γ̂(s)
[
sT̂n(s)− T(0)

]
+ λT̂n(s) = 0 → T̂n(s) =

γ̂(s)
sγ̂(s) + λn

Tn(0). (17)

Therefore,

Tn(t) = L−1
[

γ̂(s)
sγ̂(s) + λn

]
, (18)

where Tn(0) = 1. Then, the solution W(φ, t) becomes

W(φ, t) =
∞

∑
n=1

Φn(φ) Tn(t) =
∞

∑
n=1

Φn(φ)L−1
[

γ̂(s)
sγ̂(s) + λn

]
. (19)

This expression provides a general form of the probability density function of a particle
undergoing a free rotational diffusion in the memory kernel approach.

3.1. Complex Susceptibility

The obtained after-effect solution can be used to investigate the molecular system
response to an external AC field. Here, we will analyse the dielectric susceptibility. Accord-
ing to linear response theory, the complex dynamic susceptibility may be obtained from
the after-effect solution for the autocorrelation function, C(t) in our case, as follows [11]

χ(ω)

χ0
= 1− ı ω

∫ ∞

0
e−ıωtC(t) dt, (20)

where ω corresponds to the frequency of the external periodic field, χ(ω) = χ′(ω)− ıχ′′(ω)
is the longitudinal complex susceptibility, and χ0 is the static susceptibility. The longitudinal
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dipole autocorrelation function C(t), which models the system after switching off the
applied external electric field, adapted to our general model is given by

C(t) =
〈cos φ〉(t)− 〈cos φ〉0
〈cos φ〉(0)− 〈cos φ〉0

=
∞

∑
n=1

cnTn(t) =
∞

∑
n=1

cn L−1
[

γ̂(s)
sγ̂(s) + λn

]
, (21)

where

〈cos φ〉(t) =
∫ 2π

0
cos φ W(φ, t) dφ, (22)

and

cn =

∫ 2π
0 (cos φ− 〈cos φ〉0)Φ(φ) dφ

∑∞
n=1

∫ 2π
0 (cos φ− 〈cos φ〉0)Φ(φ) dφ

, (23)

such that ∑∞
n=1 cn = 1, while 〈. . . 〉0 is the statistical average over the equilibrium distribu-

tion Weq(φ) obtained from the condition

d
dt

Weq(φ, t) = 0.

Therefore, we have

χ(ω)

χ0
= 1− ı ω

∞

∑
n=1

cn
γ̂(ıω)

ıω γ̂(ıω) + λn
= 1−

∞

∑
n=1

cn +
∞

∑
n=1

cn
λn

ıω γ̂(ıω) + λn

=
∞

∑
n=1

cn
1

1 + ıω γ̂(ıω)
λn

. (24)

With this result, which includes the dependence on the memory kernel, we actu-
ally propose a generalisation of the Cole–Cole expression. If the memory kernel γ(t) is
known, the behaviour of the susceptibility can be further analysed, and it will be shown
that such a generalisation encompasses both cases, i.e., normal as well as anomalous
dielectric relaxation.

By asymptotic expansion, for ω → 0 we obtain

χ(ω)

χ0
'

∞

∑
n=1

cn

[
1− ıω γ̂(ıω)

λn

]
' 1−

∞

∑
n=1

cn
ıω γ̂(ıω)

λn
= 1− ıω γ̂(ıω)

∞

∑
n=1

cn

λn
, (25)

while for the case ω → ∞

χ(ω)

χ0
'

∞

∑
n=1

cnλn

ıω γ̂(ıω)
=

1
ıω γ̂(ıω)

∞

∑
n=1

cnλn. (26)

Introducing the following parameters

τint =
∞

∑
n=1

cn

λn
(27)

and

τe f f =
1

∑∞
n=1 cnλn

, (28)
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we finally find

χ(ω)

χ0
'
{

1− ıω γ̂(ıω) τint, ω → 0,
1

ıω γ̂(ıω) τe f f
, ω → ∞. (29)

3.2. Debye Relaxation: Standard Fokker–Planck Equation

Let us first consider the rotational Brownian motion, which is obtained when the
memory kernel has the form of a Dirac delta function, i.e., γ(t) = δ(t). Therefore, by
ignoring the contributions of all modes and using the slowest one, as one should expect,
the Debye relation is obtained [36]

χ(ω)

χ0
' 1

1 + ıω
λ1

=
1

1 + ıω
ωc

=
1

1 + ıωτc
, (30)

where ωc = λ1 is the characteristic frequency, and τc = 1/ωc is the characteristic time. The
function C(t) has an exponential (Debye) relaxation given by

C(t) ' L−1
[

1
s + λ1

]
= e−λ1t = e−ωct = e−t/τc . (31)

3.3. Cole–Cole Relaxation: Fractional Fokker–Planck Equation

By introducing a power law memory kernel γ(t) = 1
τ
(t/τ)−α

Γ(1−α)
, 0 < α < 1, the Cole–Cole

expression is recovered [5]

χ(ω)

χ0
' 1

1 + (ıωτ)α

λ1τ

=
1

1 + (ıωτ)α

λ1τ

=
1

1 + (ıω/ωc,α)α
=

1
1 + (ıωτc,α)α

, (32)

where ωc,α = (λ1τ)1/α

τ and τc,α = 1/ωc,α. This is in line with the previously obtained
solution via solving the Fractional Fokker–Planck Equation with a power law memory
kernel by Coffey et al. [25]. For C(t), one obtains a non-exponential relaxation given by

C(t) ' L−1
[

sα−1

sα + λ1τ1−α

]
= Eα

(
−λ1τ

[
t
τ

]α)
= Eα

(
−[ωc,αt]α

)
= Eα

(
−
[

t
τc,α

]α)
, (33)

where

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
(34)

is the one-parameter Mittag–Leffler function [32] with Laplace transform

L[Eα(−[ωt]α)] =
sα−1

sα + ωα
. (35)

For the case of low frequencies, i.e., t/τc,α � 1, instead of exponential, it shows slower
power-law decay as follows

C(t) ' (t/τc,α)−α

Γ(1− α)
, (36)

while for the case of ω → ∞, i.e., t/τc,α � 1, we have a stretched exponential behaviour, i.e.,

C(t) ' e−(t/τc,α)α
. (37)
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This case corresponds to the fractional Fokker–Planck Equations (4) and (6), since for

γ(t) = 1
τ
(t/τ)−α

Γ(1−α)
, 0 < α < 1 one has η(t) = τα−1L−1

[
1
sα

]
= (t/τ)α−1

Γ(α) .

3.4. Mixing Debye and Cole–Cole Relaxation: Distributed Order Fokker–Planck Equation

For the case when rotational Brownian diffusion and rotational non-Markovian dif-
fusion occur simultaneously, we propose a three-parameter memory kernel of the form
γ(t) = a1δ(t) + a2

1
τ
(t/τ)−α

Γ(1−α)
, 0 < α < 1, and a1 + a2 = 1. Consequently, we find

χ(ω)

χ0
' 1

1 + a1ıωτc,α + a2(ıωτc,α)α
. (38)

For C(t), we obtain

C(t) ' L−1
[

a1 + a2τα−1sα−1

a1s + a2τα−1sα + λ1

]
= L−1

[
1
s

(
1− λ1

a1s + a2τα−1sα + λ1

)]
= 1− 1

a1

∞

∑
n=0

(
− 1

a1

)n( t
τc

)n+1
En+1

1−α,n+2

(
− a2

a1

[
t

τc,α,1

]1−α
)

=
∞

∑
n=0

(
− 1

a1

)n( t
τc

)n
En

1−α,n+1

(
− a2

a1

[
t

τc,α,1

]1−α
)

, (39)

where τc,α,1 = τc
τα

c,α
, and

Eδ
α,β(z) =

∞

∑
k=0

(δ)k
Γ(αk + β)

zk

k!
(40)

is the three-parameter Mittag–Leffler function [37] whose Laplace transform given by

L
[
tβ−1Eδ

α,β(−[ωt]α)
]
=

sαδ−β

(sα + ωα)δ
. (41)

From the asymptotic expansion of the three parameter Mittag–Leffler function for
large arguments [38,39]

Eγ
α,β(−z) =

z−γ

Γ(γ)

∞

∑
n=0

Γ(γ + n)
Γ(β− α(γ + n))

(−z)−n

n!
, z > 1, (42)

it follows that Eδ
α,β(−[ωt]α) ' 1

ωα
t−αδ

Γ(β−αδ)
, for a2

a1

[
t

τc,α,1

]1−α
� 1, and we have

C(t) ' Eα

(
− 1

a2

[
t

τc,α

]α)
' a2

(t/τc,α)−α

Γ(1− α)
, (43)

while for the case a2
a1

[
t

τc,α,1

]1−α
� 1, it is obtained that

C(t) ' e−
1

a1
(t/τc). (44)

Therefore, at low frequencies, we have non-Debye relaxation, while at high frequencies,
the Debye relaxation dominates. This means that the initial rotational diffusion turns from
Brownian to anomalous in the long time limit. With the general memory kernel approach
studied in this work, modelling of the relaxation process over a wide time range is possible
in an elegant mathematical manner.
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The corresponding Fokker–Planck equation for this memory kernel reads

a1
∂

∂t
W(φ, t) + a2τα−1

CDα
t W(φ, t) = LFPW(φ, t), (45)

which is the distributed order Fokker–Planck equation [40]. It can be written in the Riemann–
Liouville form as

∂

∂t
W(φ, t) =

1
a1

∂

∂t

∫ t

0
E1−α

(
− a2

a1

[
t
τ

]1−α
)

LFPW(φ, t′) dt′, (46)

since, see Ref. [35],

η(t) = L−1[1/(sγ̂(s))] = L−1
[

s−1

a1 + a2(sτ)α−1

]
=

1
a1

E1−α

(
− a2

a1

[
t
τ

]1−α
)

. (47)

The dependence of the real and imaginary parts of the complex susceptibility on the
AC frequency for the case when there is a mixing of Debye and Cole–Cole relaxation is
shown in Figure 3. The choice of the parameters a1 = 0.8 and a2 = 0.2 is such that the
Debye process is dominant.
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Figure 3. Behaviour of the complex susceptibility as obtained from our solution for the mixed Debye
and Cole–Cole relaxation processes. Red lines correspond to pure Debye relaxation, while black lines
represent Cole–Cole relaxation for the value α = 0.5. The parameters are a1 = 0.8 and a2 = 0.2,
respectively. Dashed lines correspond to α = 0.9, blue lines correspond to α = 0.7, dotted lines
correspond to α = 0.5, green lines correspond to α = 0.3, and the dot-dashed ones correspond to
α = 0.1. Left panel: real part. Right panel: imaginary part (dielectric loss).

In Figure 4, a family of curves showing the dependence of the real and imaginary parts
of the complex susceptibility on AC frequency is presented for the case of mixed Debye
and Cole–Cole relaxation. The choice of parameters a1 = 0.2 and a2 = 0.8 in this case is
such that the Cole–Cole process is dominant.
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Figure 4. Behaviour of the complex susceptibility as obtained from our solution for the mixed Debye
and Cole–Cole relaxation processes. Red lines correspond to pure Debye relaxation, while the black
lines correspond to pure Cole–Cole relaxation for the value α = 0.5. The parameters a1 and a2 are
taken to be a1 = 0.2 and a2 = 0.8, respectively. Dashed lines correspond to α = 0.9, blue lines
correspond to α = 0.7, dotted lines correspond to α = 0.5, green lines correspond to α = 0.3, and
the dot-dashed lines correspond to α = 0.1. Left panel: real part. Right panel: imaginary part
(dielectric loss).

3.5. Havriliak–Negami Relaxation: Generalised Fokker–Planck Equation

In this part, we will demonstrate that the rotational diffusion equation with a properly
chosen memory kernel also incorporates the Havriliak–Negami relaxation process. Let
us try to find the memory kernel, which describes this Havriliak–Negami relaxation.
Accounting for the corresponding Havriliak–Negami empirical expression for complex
susceptibility spectra, given by [7]

χ(ω)

χ0
=

1
(1 + [ıωτc]α)

ν (48)

where 0 < α < 1 (note that for α = 1, one arrives to the Davidson–Cole relaxation law) and
0 < ν ≤ 1, we find (τc = λ−1

1 )

1
1 + ıωγ̂(ıω)τc

=
1

(1 + [ıωτ]α)ν → γ̂(ıω) =
1

ıωτc

[
(1 + [ıωτ]α)ν − 1

]
. (49)

Deducing the memory kernel from here, one can write

γ(t) =
1
τc

[(
t
τ

)−αν

E−ν
α,1−αν(−[t/τ]α)− 1

]
. (50)

Therefore, one finds [41–45]

C(t) ' L−1

[
λ1
s
[
(1 + [sτ]α)ν − 1

]
s λ1

s
[
(1 + [sτ]α)ν − 1

]
+ λ1

]
= L−1

[
1
s

(
1− 1

(1 + [sτ]α)ν

)]
= 1−

(
t
τ

)αν

Eν
α,αν+1(−[t/τ]α). (51)

By using the first leading term from (42), for the long time limit, one obtains a power-
law decay of the correlation function of the form C(t) ∼ ν

(t/τ)−α

Γ(1−α)
.
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For α = 1, one recovers the result for the Davidson–Cole relaxation for which the
correlation becomes

C(t) ' 1−
(

t
τ

)ν

Eν
1,ν+1(−t/τ) =

Γ(ν, t/τ)

Γ(ν)
, (52)

where Γ(a, z) =
∫ ∞

z xa−1e−x dx is the incomplete gamma function. In the long time limit,

the correlation behaves as C(t) ∼ (t/τ)ν−1

Γ(ν) e−t/τ , since Γ(a, z) ∼ za−1e−z for z→ ∞.
For the case ν = 1, one recovers the result for the Cole–Cole relaxation, since by

using relation (
t
τ

)λ1

E−1
λ2−λ1,λ1+1

(
−
[

t
τ

]λ2−λ1
)

=
(t/τ)λ1

Γ(λ1 + 1)
+

(t/τ)λ2

Γ(λ2 + 1)
, (53)

from (50), we obtain the memory kernel γ(t) = 1
τ
(t/τ)−α

Γ(1−α)
.

This memory kernel yields the following Fokker–Planck equation

1
τc

∫ t

0

[(
(t− t′)

τ

)−αν

E−ν
α,1−αν

(
−[(t− t′)/τ]α

)
− 1

]
∂

∂t′
W(φ, t′) dt′ = LFPW(φ, t), (54)

which can be rewritten as a Fokker–Planck equation with linear reaction term and sink, i.e.,

1
τcτ−αν CDν,αν

α,−τ−αW(φ, t) dt = LFPW(φ, t) +
1
τc
[W(φ, t)−W(φ, 0)], (55)

where

CD
δ,µ
ρ,−ω f (t) =

∫ t

0
(t− t′)−µE−δ

ρ,1−µ

(
−ω(t− t′)ρ

) ∂

∂t′
f (t′) dt′ (56)

is the regularised Prabhakar derivative [46]. For a general fractional diffusion equation
with sink term, we refer to [47].

4. Relaxation Processes with Resetting

In the previous part of this paper, we have considered the known dielectric relaxation
processes in a media composed of polar molecules from a modelling perspective in terms of
the rotational diffusion equation with a generalised memory kernel. When a planar system
of polar molecules is subjected to an external electric field, the polarisation of the media
is due to orientation of the molecular dipole moments. Switching off the external field
is followed by the process of relaxation of the oriented dipoles. For a series of processes
where the molecular materials during the process of relaxation are influenced again by
external stimuli, e.g., electric field pulses, it is of interest to consider how the dielectric
relaxation will be affected if after some random period of time, the system is brought back
to the initial orientation. Such dynamical processes are so-called processes with stochastic
resetting [48–50], which have attracted considerable interest lately. Stochastic resetting is a
natural step in the human search and foraging dynamics [51–53]. It can help the completion
of a given process, making the mean first-passage time finite [48,50,54,55], or it aids in
barrier escape, for example, in chemical reactions [56]. The resetting mechanism may also
occur in economic systems due to stock market crashes [57] and company bankruptcy, or
in population dynamics due to natural disasters and pandemics. There are also experimen-
tal realisations of the resetting process, for example, in a laboratory setup using optical
tweezers or laser traps to monitor a system of colloidal particles [58,59]. Different realis-
tic approaches to stochastic resetting of diffusing particle in confining potentials [60–63],
which can be stochastically switched on and off [64] are possible, including processes with
resetting by a random amplitude [65].
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In what follows, we implement the generalised memory kernel approach and extend
our analysis to the problem of dielectric relaxation with resetting. We consider exponential
resetting of the memory

γr(t) = e−rtγ(t) +
∫ t

0
re−rt′γ(t′) dt′, (57)

where r is the resetting parameter. This means that the resetting time is sampled from an
exponential (Poissonian) distribution p(t′) = r e−rt′ , with resetting rate r > 0. Its Laplace
transform reads

γ̂r(s) =
s + r

s
γ̂(s + r). (58)

From Equation (13), it follows that

η̂r(s) =
1

(s + r)γ̂(s + r)
, (59)

and thus, by inverse Laplace transform, we find

ηr(t) = e−rtL−1
[

1
sγ̂(s)

]
= e−rtη(t), (60)

where we apply the shift rule of the Laplace transform, L
[
e−at f (t)

]
= f̂ (s + a), where

f̂ (s) = L[ f (t)]. This means that the corresponding process with resetting can be repre-
sented in terms of an exponentially tempered generalised memory kernel. Here, we note
that in Ref. [66], a generalised diffusion equation with power-law memory kernel in the
presence of stochastic resetting was considered, while in Ref. [67], a subordinated Brownian
process was analysed, leading to subdiffusion, which can be related to the generalised
diffusion equation with resetting. In both works, the system reaches a nonequilibrium
stationary state.

4.1. Debye Relaxation with Resetting

Let us now consider the kernel for the Debye relaxation γ(t) = δ(t) in the presence of
resetting, i.e., see Ref. [49],

γr(t) = e−rtδ(t) +
∫ t

0
re−rt′δ(t′) dt′ = δ(t) + r. (61)

By Laplace transform, one finds γ̂r(s) = 1 + rs−1. Thus,

γ̂(ıω) =
ıω + r

ıω
γ̂(ıω + r) =

ıω + r
ıω

and we have

χ(ω)

χ0
' 1

1 +
ıω[1+r(ıω)−1]

λ1

=
1

1 + (ıω + r)τc
, (62)
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and

Cr(t) ' L−1

[
1 + rs−1

s(1 + rs−1) + τ−1
c

]
= L−1

[
1 + rs−1

s + r + τ−1
c

]
= e−(r+τ−1

c )t +
∫ t

0
re−(r+τ−1

c )t′dt′ = e−(r+τ−1
c )t +

r
r + τ−1

c

[
1− e−(r+τ−1

c )t
]

=
1

r + τ−1
c

[
r + τ−1

c e−(r+τ−1
c )t

]
. (63)

We note that the previous result may be written in a renewal form [49] as

Cr(t) = e−rtC(t) +
∫ t

0
re−rt′C(t′) dt′, (64)

where C(t) = e−λ1 t is given by the Debye relaxation (31). From here, in the long time limit,
the autocorrelation function saturates to Cr(t) ∼ r

r+τ−1
c

, while for short times, it behaves as

in the case of no resetting, i.e., Cr(t) ∼ e−t/τc . The dependence of the real and imaginary
parts of the complex susceptibility (62) on AC frequency for the case of Debye relaxation
with resetting is represented in Figure 5.
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Figure 5. Behaviour of the complex susceptibility (log–log plot) for Debye relaxation with resetting.
The black line corresponds to Debye relaxation without resetting, while the red and blue lines
correspond to r-parameter values of 0.5 and 5, respectively. Left panel: real part. Right panel:
imaginary part (dielectric loss).

This kernel (61) yields the Fokker-Planck equation

∂

∂t
W(φ, t) = LFPW(φ, t)− r[W(φ, t)−W(φ, 0)], (65)

which is a Fokker–Planck equation for diffusion with resetting [48]. The second term on
the right-hand side of the equation represents the loss of probability from the position φ
due to reset to the initial position φ0, and the third term is the gain of probability at φ0
due to resetting from all other positions. We note that this Fokker–Planck equation can
be written through the memory kernel ηr(t) = L−1

[
1

sγ̂r(s)

]
= L−1

[
1

s+r

]
= e−rt, as follows,

see Ref. [68],

∂

∂t
W(φ, t) =

∂

∂t

∫ t

0
e−r(t−t′)LFPW(φ, t′) dt′. (66)
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4.2. Cole–Cole Relaxation with Resetting

We consider the memory kernel for the Cole–Cole relaxation γ(t) = 1
τ
(t/τ)−α

Γ(1−α)
, 0 < α <

1, but in the presence of resetting,

γr(t) = e−rt 1
τ

(t/τ)−α

Γ(1− α)
+
∫ t

0
r e−rt′ 1

τ

(t/τ)−α

Γ(1− α)
dt′. (67)

Therefore, we have

γ̂r(ıω) =
ıω + r

ıω
γ̂(ıω + r) =

ıω + r
ıω

τα−1(ıω + r)α−1,

and

χ(ω)

χ0
' 1

1 + (ıω+r)ατα

λ1τ

. (68)

For the autocorrelation function C(t), we find

C(t) ' L−1
[

s−1(s + r)α

(s + r)α + λ1τ1−α

]
= L−1

[
s + r

s
(s + r)α−1

(s + r)α + λ1τ1−α

]
= e−rtEα

(
−
[

t
τc,α

]α)
+
∫ t

0
re−rt′Eα

(
−
[

t′

τc,α

]α)
dt′, (69)

i.e., Cr(t) = e−rtC(t) +
∫ t

0 re−rt′C(t′) dt′, where C(t) = Eα

(
−
[

t
τc,α

]α)
is the Cole–Cole

relaxation. The short time limit yields the Cole–Cole relaxation, while the long time limit
leads to saturation, i.e., Cr(t) ∼ rα

rα+λ1τ1−α (see Figure 6). The dependence of the real
and imaginary parts of the complex susceptibility (68) on AC frequency for the case of
Cole–Cole relaxation with resetting is represented in Figure 7.
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Figure 6. Behaviour of the correlation function (69) for Cole–Cole relaxation with resetting. The
parameters are taken as follows: λ1 = 1, τ = 1 and α = 1 (Debye relaxation with resetting, blue line),
α = 3/4 (red line), α = 1/2 (black line). Left panel: r = 5; Right panel: r = 0.5.
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Figure 7. Behaviour of the complex susceptibility (log–log plot) for Cole–Cole relaxation with
resetting. The black lines correspond to Debye relaxation without resetting, while the red and blue
lines correspond to r-parameter values of 0.5 and 5, respectively. The parameter α = 0.5. Left panel:
real part. Right panel: imaginary part (dielectric loss).

For the memory kernel (67), we obtain that

ηr(t) = L−1
[

1
sγ̂(s)

]
= τ1−αL−1[(s + r)−α

]
= e−rt (t/τ)α−1

Γ(α)
,

which is an exponentially tempered power-law memory kernel. Then, the Fokker–Planck
equation becomes

∂

∂t
W(φ, t) =

∂

∂t

∫ t

0
e−r(t−t′) (t− τ)α−1

Γ(α)
LFPW(φ, t′) dt′, (70)

which is a diffusion equation with tempered Riemann–Liouville fractional derivative [35].
This equation can also be rewritten in the form [66]

∫ t

0
e−r(t−t′) (t− t′)−α

Γ(1− α)

∂

∂t′
W(φ, t′) dt′ = LFPW(φ, t)

−
∫ t

0
re−r(t−t′) (t− t′)−α

Γ(1− α)

[
W(φ, t′)−W(φ, 0)

]
dt′,

(71)

which is a fractional Fokker–Planck equation with tempered fractional time derivative in
the presence of stochastic resetting.

4.3. Mixing of Debye and Cole–Cole Relaxation with Resetting

Next, we consider the combination of memory kernels for Debye and Cole–Cole
relaxation γ(t) = a1δ(t) + a2

1
τ
(t/τ)−α

Γ(1−α)
, 0 < α < 1, a1 + a2 = 1, in the presence of resetting,

γr(t) = e−rt
[

a1δ(t) + a2
1
τ

(t/τ)−α

Γ(1− α)

]
+
∫ t

0
re−rt′

[
a1δ(t′) + a2

1
τ

(t′/τ)−α

Γ(1− α)

]
dt′. (72)

Thus,

γ̂r(ıω) =
ıω + r

ıω
γ̂(ıω + r) =

ıω + r
ıω

[
a1 + a2τα−1(ıω + r)α−1

]
,
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from where it follows that

χ(ω)

χ0
' 1

1 + a1(ıω + r)τc + a2(ıω + r)ατα−1τc
. (73)

For Cr(t), we find

Cr(t) '
∞

∑
n=0

(
− 1

a1

)n
e−rt

(
t
τc

)n
En

1−α,n+1

(
− a2

a1

[
t

τc,α,1

]1−α
)

+
∞

∑
n=0

(
− 1

a1

)n ∫ t

0
re−rt′

(
t′

τc

)n

En
1−α,n+1

(
− a2

a1

[
t′

τc,α,1

]1−α
)

dt′

= e−rtC(t) +
∫ t

0
re−rt′C(t′) dt′, (74)

which also has the renewal form (C(t), which is given by Equation (39)). The short time
limit leads to the correlation function in the case without resetting, while the long time

limit yields the constant value C(t) ∼ a1r+a2τα−1rα

a1r+a2τα−1rα+λ1
(see Figure 8). The dependence of the

real and imaginary parts of the complex susceptibility (73) on AC frequency for the case of
mixed Debye and Cole–Cole relaxation with resetting is represented in Figure 9.
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Figure 8. Behaviour of the correlation function (74). The parameters are taken as follows: τc = 1,
τ = 1, a1 = a2 = 1/2, and α = 1 (Debye relaxation with resetting, blue line), α = 3/4 (red line),
α = 1/2 (black line). Left panel: r = 5; Right panel: r = 0.5.

The memory kernel (72) yields in the form

ηr(t) = L−1
[

(s + r)−1

a1 + a2τα−1(s + r)α−1

]
=

1
a1

e−rtE1−α

(
− a2

a1
[t/τ]1−α

)
,

therefore, the corresponding Fokker–Planck equation in the Riemann–Liouville form is
given in terms of a tempered Mittag–Leffler memory kernel,

∂

∂t
W(φ, t) =

1
a1

∂

∂t

∫ t

0
e−r(t−t′)E1−α

(
− a2

a1

[
t− t′

τ

]1−α
)

LFPW(φ, t′) dt′. (75)

The Fokker–Planck equation can also been written in the form

∫ t

0
e−r(t−t′)

[
a1δ(t− t′) + a2

(t− t′)−α

Γ(1− α)

]
∂

∂t′
W(φ, t′)dt′ = LFPW(φ, t)

−
∫ t

0
re−r(t−t′)

[
a1δ(t− t′) + a2

(t− t′)−α

Γ(1− α)

][
W(φ, t′)−W(φ, 0)

]
dt′, (76)
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which is a tempered distributed order Fokker–Planck equation with resetting.
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Figure 9. Behaviour of the complex susceptibility (log–log plot) for combined Debye and Cole–
Cole relaxation with resetting parameter r = 5. The dot-dashed lines stand for pure Debye with
resetting, the dashed lines represent pure Cole–Cole with resetting, while the black, red, and blue
lines correspond to a1 = 0.8, a2 = 0.2, a1 = 0.5, a2 = 0.5, and a1 = 0.2, a2 = 0.8, respectively. Left
panel: real part. Right panel: imaginary part (dielectric loss).

4.4. Havriliak–Negami Relaxation with Resetting

At the end, we consider the memory kernel for Havriliak–Negami relaxation in the
presence of stochastic resetting,

γr(t) =
e−rt

τc

[(
t
τ

)−αν

E−ν
α,1−αν(−[t/τ]α)− 1

]

+
∫ t

0
r

e−rt′

τc

[(
t′

τ

)−αν

E−ν
α,1−αν

(
−[t′/τ]α

)
− 1

]
dt′, (77)

which yields

γ̂r(ıω) =
ıω + r

ıω
1

(ıω + r)τc

[
(1 + [(ıω + r)τ]α)ν − 1

]
=

1
ıωτc

[
(1 + [(ıω + r)τ]α)ν − 1

]
. (78)

Therefore, we have

χ(ω)

χ0
' 1

1 +
[
(1 + [(ıω + r)τ]α)ν − 1

] = 1
(1 + [(ıω + r)τ]α)ν . (79)

Then, the autocorrelation function becomes

Cr(t) = L−1

[
s+r

s γ̂(s + r)
s s+r

s γ̂(s + r) + λ1

]
= L−1

[
s + r

s
γ̂(s + r)

(s + r)γ̂(s + r) + λ1

]
= e−rtC(t) +

∫ t

0
re−rt′C(t′) dt′. (80)

We note that the renewal form of the autocorrelation function is valid for general
memory kernel. Therefore,

Cr(t) = e−rtC(t) +
∫ t

0
re−rt′C(t′) dt′ → Ĉr(s) =

s + r
s

Ĉ(s + r), (81)
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from where for the long time limit, one finds

lim
t→∞

Cr(t) = lim
s→0

sĈr(s) = lim
s→0

(s + r)Ĉ(s + r) = rĈ(r). (82)

Thus, in the long time limit, the autocorrelation function saturates to C(t) ∼
λ1[(1+[rτ]α)ν−1]

λ1[(1+[rτ]α)ν−1]+λ1
. The short time limit corresponds to the case without resetting. A

graphical representation of the correlation function is shown in Figure 10. The dependence
of the real and imaginary parts of the complex susceptibility (79) on AC frequency for the
case of Havriliak–Negami relaxation with resetting is represented in Figure 11.
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Figure 10. Behaviour of the correlation function (80) for the Havriliak–Negami relaxation in the
presence of resetting. The parameters are taken as follows: λ1 = 1, τ = 1, and α = ν = 1 (Debye
relaxation with resetting, blue line), α = 3/4, ν = 1 (red line), α = 1, ν = 3/4 (black line), α = ν = 3/4
(pink line). Left panel: r = 1; Right panel: r = 0.5.

The corresponding Fokker–Planck equation reads

∫ t

0

e−r(t−t′)

τc

[(
t− t′

τ

)−αν

E−ν
α,1−αν

(
−[(t− t′)/τ]α

)
− 1

]
∂

∂t′
W(φ, t′) dt′ = LFPW(φ, t)

−
∫ t

0
r

e−r(t−t′)

τc

[(
t− t′

τ

)−αν

E−ν
α,1−αν

(
−[(t− t′)/τ]α

)
− 1

][
W(φ, t′)−W(φ, 0)

]
dt′, (83)

which can be written in terms of tempered regularised Prabhakar time derivative

TCD
δ,µ
ρ,−ω,t f (t) =

∫ t

0
e−r(t−t′)(t− t′

)µ−1E−δ
ρ,µ
(
−ω(t− t′)ρ

) ∂

∂t′
f (t′) dt′, (84)

as introduced in [69] (see Equations (16) and (17)). Thus, it is a fractional Fokker–Planck
equation with a tempered regularised Prabhakar time derivative in the presence of stochas-
tic resetting [70]. For the fractional Prabhakar diffusion equation with non-static stochastic
resetting, we also refer to [70].
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Figure 11. Behaviour of the complex susceptibility (log–log plot) for Havriliak–Negami relaxation
with resetting. The black and dot–dashed lines correspond to Havriliak–Negami relaxation without
resetting for ν = 0.5 and ν = 0.75, respectively. The solid red line and blue dashed line correspond to
the r-parameter value of 0.5 for ν = 0.5 and ν = 0.75, respectively. The solid blue line and orange
dashed lines correspond to the r-parameter value of 5 for ν = 0.5 and ν = 0.75, respectively. The
parameter α is taken to be 0.5 for both cases. Left panel: real part. Right panel: imaginary part
(dielectric loss).

5. Summary

In this work, some well-known processes of dielectric relaxation of systems composed
of polar molecules were revisited from the perspective of a generalised memory kernel
approach. We showed that such a generalisation encompasses Debye and non-Debye
relaxation processes in one model. Additionally, it was confirmed that starting from the
rotational diffusion equation with a memory kernel, one can derive the corresponding
Fokker–Planck equation for different dielectric relaxation processes by an adequate choice
of the memory kernel. Furthermore, using the after effect solution, we analysed the
behaviour of the complex susceptibility as a response to an external AC field.

We paid special attention to a three-parameter memory kernel, introduced in this work,
which simultaneously incorporates the interplay between Debye and Cole–Cole relaxation
processes. We found that the maximum of the imaginary part of the complex susceptibility
shifts when memory effects are included. The developed framework here is quite flexible
and applicable to relaxation processes in strongly heterogeneous media. In real-life exam-
ples, especially where rotational degrees of freedom of organic molecules are of interest, it
is most likely that the complexity in the sense of relaxation processes and response of the
system to an external stimuli is manifested through the presence of clusters with different
inherent properties. Therefore, the combined three-parameter memory kernel enables to
account for both distinct types of dielectric relaxation, Debye and Cole–Cole, at the same
time. The obtained results here could enable better fits and rationalisation of experimentally
obtained data for the electric field response of heterogenous systems of polar molecules.
A comparison to the experimentally obtained dielectric losses at different temperatures
suggests that the derived three-parameter expression for the complex susceptibility can be
successfully implemented to explain experimental data. Some examples of experimental
measurements of the impedance and loss spectrum can be found in [71–73]. Conversely,
the proposed combination of the Debye and Cole–Cole memory kernel might be used as an
analytical expression for fitting various forms of memory kernels in the literature, which
were obtained from molecular simulations via single particle trajectory analysis.

There are many factors that may substantially affect the process of dipole relaxation of
organic molecules in their real-life applications. Intramolecular degrees of freedom and
interactions between the side groups, often being the main carriers of the molecular dipole
moment, and the backbone of the molecule can lead to hindered rotational processes. In
experiments, molecular assemblies and clusters of polar molecules are often examined in
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solution, so that the solvent also influences the nature of the relaxation processes. Finally,
external factors, such as pressure and temperature can significantly change the relaxation
time and affect the overall conductance properties of the particular molecular system.
Explicit inclusion of the temperature effects in theoretical models is a very difficult task, so
adjusting the three parameters in the proposed combination of the Debye and Cole–Cole
memory kernel will enable finding an adequate model for various temperature ranges and
thus indirectly account for the temperature effects.

In this work, we have extended the conventional dielectric relaxation analysis by
including stochastic resetting, which is significant when the process of relaxation should
be treated together with the process of polarisation. One example is when the relaxation
process is interrupted after some random time interval by an external field, so that the
dipoles are being reoriented back to the initial position. This is the case when the orientation
of the dipoles in the studied samples is achieved by electric pulses. To the best of our
knowledge, this is the first theoretical study about dielectric relaxation with resetting.
Analysing the correlation function and complex susceptibility plots, we showed that
resetting changes the relaxation pathway of a dielectric system, which enables the tuning
of the relaxation process in order to achieve a desired target state. Resetting of a system
that undergoes relaxation clearly leads to a saturation of the correlation function in the
long time limit. Specifically, when the memory kernel parameters are kept constant, the
saturation level can be adjusted by changing the resetting rate. Moreover, the values of the
real part of the complex susceptibility, i.e., the dielectric constant, as well as the dielectric
loss, can be fine-tuned by resetting.
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