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Abstract: Nuclear magnetic resonance flow equations, also known as the Bloch system, are said to
be at the heart of both magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR)
spectroscopy. The main aim of this research was to solve fractional nuclear magnetic resonance
flow equations (FNMRFEs) through a numerical approach that is very easy to handle. We present a
New Iterative Predictor-Corrector Algorithm (NIPCA) based on the New Iterative Algorithm and
Predictor-Corrector Algorithm to solve nonlinear nuclear magnetic resonance flow equations of
fractional order involving Caputo derivatives. Graphical representation of the solutions with detailed
error analysis shows the higher accuracy of the new technique. This New Iterative Predictor-Corrector
Algorithm requires less computational time than previously published numerical methods. The
results achieved in this article indicate that the algorithm is fit to use for other chaotic systems of
fractional differential equations.

Keywords: fractional calculus; fractional nuclear magnetic resonance flow equations; magnetic reso-
nance imaging; New Iterative Algorithm; nuclear magnetic resonance; Predictor-Corrector Algorithm

1. Introduction

Nuclear magnetic resonance provides the physical basis for a vast selection of methods
that are usually used to investigate the dynamics of the structure of cells, tissues, etc., up to
the extent of the entire body [1]. For example, chemists have recently studied biomolecules
and their structural analysis using magnetic resonance spectroscopy (MRS), and MRl is a
vital instrument in the radiology departments of hospitals. MRI helps construct a model
of the soft tissue structures of the human spine and brain [2] with a resolution of sub-
millimeter. By comparison, MRS helps in identifying individual bimolecular structural
configurations with a resolution up to sub-nanometer. This provides a tremendously
broad range of scales, providing the physician with a safe means to identify diseases and
their stages, such as cancer, and provides chemists with a highly efficient instrument for
understanding molecular synthesis. For more details, see [3-7].

Similarly, for discovering the molecular basis that underlies abnormal cell growth, spec-
troscopic and imaging information provides the necessary technological tools, in addition
to helping in monitoring a unique tumor’s response to drugs or radiological treatments.
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The typical means of defining NMR (i.e., “the phenomena that make up the inner workings
of MRI”) in vector form is presented with the help of the Bloch equation. This equation
corresponding to a uniform sample may be expressed as [8,9]:

— 2 2
M _ F(F/I x %> - Mg, - S S M

at T - T]

—
where M (My, My, M;) is the time-varying system magnetization; My represents the equi-
-

librium magnetization; B ( By, By, Bz) is the applied radio frequency By, gradient By, and
static magnetic fields B; I'is the gyro-magnetic ratio; and T| shows the spin-lattice relax-
ation time, giving the characterization of the rate at which the longitudinal M, component
of the magnetization vector recovers. It has the property that it changes exponentially
towards its thermodynamic equilibrium. T} is the spin-spin relaxation time, which gives the
characterization of the signal decay in MRI and NMR, i.e., T, is the rate that corresponds to
the exponential decay of the zero towards the transverse component of the magnetization
vector, My, = Myix + Myfy.

In this paper, we present, for the first time, a new technique for the numerical solution
of fractional nuclear magnetic resonance flow equations, in the form of the technique of the
New Iterative Predictor-Corrector Algorithm. In Section 2, we discuss nuclear magnetic
resonance flow equations of fractional order, including information about the Caputo
derivative. Section 3 describes a New Iterative Predictor-Corrector Algorithm specially
formulated on nonlinear fractional nuclear magnetic resonance flow. In Section 4, the
numerical simulation is presented. In the last section, a conclusive summary of the research
is presented.

2. Application on Fractional Nuclear Magnetic Resonance Flow Equations

Nuclear magnetic resonance flow equations can be considered as a system of macro-
scopic equations. These equations estimate nuclear magnetization as a function of time

]\_/} (Mx, My, Mz) with the relaxation times of spin-lattice Tl’ and spin-spin Té. Felix Bloch is
the pioneer who first introduced these equations in 1946. Later developments in the research
of fractional calculus have shown that a system of fractional order differential equations in-
volving Caputo derivatives enables a mathematical description in the following form [10]:

DM (1) = @ My (1) — 25"
M
D My (1) = —hMx(t) — 2 @

D;?Mz(t) = MO_]{}AZ(t)

where M is the equilibrium magnetization. The Larmor relationship provides the resonant
frequency @ as: @) = I'By. Here, By is the constant static magnetic field. In the case of

fo _

the gyro-magnetic ratio % = 5, = 42.57 MHz /T corresponding to water protons, we have
606 = 271,’f0.

Moreover, in order to maintain consistency in setting the units measuring the magneti-
zation, s* is chosen to express the measurements of T{, Té, and cO6 . Symbols &, 8, and 5
denote Caputo derivative orders, with @ = (&, 8, #7) denoting the order of the total system.

The Caputo fractional derivative is a better substitute than the Riemann-Liouville
type for computing the fractional derivative because it does not require fractional order
initial conditions. With « denoting the fractional order, we can express the fractional order
derivative of a function f in the Caputo sense as:

()
FDIf(t) = F(pl_ . /bf - f;)%ndﬂ, (p—1<a<p)
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The Caputo fractional derivative of the ath order can be simplified as D* if b = 0.

For « = 1, the Caputo sense derivative becomes D*f(f) = %(tt). Some important
properties of Caputo fractional derivative are given below:

= T(+T—a)

(b). Df(of (t)+tg(t)) = 0Dff(t) + tDfg(t), where § and T are constant.
(). DEDIf() = Di (1) # DIDif(1), « €R, g € N.

(d). Dfc=0.

where (b) is known as the linearity property and (c) is known as the non-commutative
property of the Caputo fractional derivative. For more detail, see [11].

@. Dol = LD yrw po g

3. New Iterative Predictor-Corrector Algorithm (NIPCA)

A variety of problems in biology, physics, engineering, and chemistry give rise to
relations that are expressed in the form of nonlinear functional equations. Therefore,
consider the equation:

u=g+Nu) 3)

where X is a nonlinear operator and ¢ is a known function. There are various tech-
niques to solve this nonlinear functional equation, such as the Adomian Decomposition
Method [12,13], the Homotopy Perturbation Method [14], the New Iterative Method [15-19],
the New Perturbation Iteration Transform Method [20], and the Perturbation Iteration Al-
gorithm [21]. In this method, the nonlinear operator X can be decomposed as:

N(u) = N(up) + [R(ug +up) — R(uo)] + ...

Suppose H, = R(u,) and H; = N(Zin:o um> - N(an;lo um) fori=1,2,3,....
Note that X(u) = Y°  H;. Putu, = g and uy, = Hy—q form =1,2,3,....

Observe that:
(o0}
w=Y_ Un
m=0
o0

u=yg+ Z Hy 1

m=1
=g+ N(t) + [N(ug +u1) — R(up)| + - - -
u=g+N(u).

Hence, u satisfies the functional Equation (3). We can derive a numerical algorithm of
the fractional Bloch system. A mathematical formulation of this system can be expressed as:

DM (t) = @) My (t) — M;é(*), x>0
M,
DEM, (1) = ~@pMi(t) - “4, B >0
DI M,(t) = M(J—Tif}’h(f) n>0
This system can be rewritten as:

Di Mx(t) = g1 (t, Mx(t))
DMy (t) = g2(t, My (1))
D{ M. (t) = g3(t, Mz(t))
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with initial conditions My(0) = 0, M, (0) = 100, M;(0) = 0. By applying the trapezoidal
quadrature formula to the fractional Bloch system, we obtain:

My (tmy1) = My (0) + %alo,mﬂgl(tm,mx(tm»
m

+#12) Zalj,mﬂﬁl (tj, Mx(t;))
=1

My(tmy1) = My(0) + %azomﬂ g2 (tm, My(tm))

o )
+ Tpr2) Z“zf,mHQZ(tj/My(fj))

]_
M; (tmy1) = Mz(0) + mﬂao,m-s-léZB(tm,Mz(tm))

m

—i—% Zﬂsj,mﬂga (tj, M, (tj))
j=1

where:
m*H — (m — ) (m +1)" if ji=0
i1 = (m—j+2)" T (m =) —2m—j+ 1) if 1<j<m ()
1 if j=m+1

From the algorithm of New Iterative Method [22], we have:

Mx,O(tm+1) = Mx(o) + 1"(,1_1_2) “10,m+1£1(tm/ Mx(tm>)
Myo(tm+1) = My(0) + 7(ﬁ+2) a20,m+1 22 (tm, My (tm)) (6)

Mz,O(tm—l—l) =M, (O) + Tin+2)

(’7_"_2) ﬂ30,m+1£3(tm/ M, (trrZ))

Moreover, we must note that:

My (tg1) = R1 (Mo, My0, Mz )
My,1 (tng1) = Ro(Myo, My, Mz o) ()
M1 (tms1) = Na(Myo, My0, M)

where: ”
N [Mx (tmi1)] = mgl(ferlex(th)) ®)
At the kth iteration, k = 2,3, ...

k—1 k—1 k—2 k=2 —
k—N1<Zqu ZMleZMZl (Zqu ZMyu ZMZZ)

k—1 k—1 — k—2 k-2 —
ykNZ(Zqu ZMyl/ ZMZZ (ZMXZ/ ZMyl/ ZMZZ) (9)

k—1 k—1 k—2 k—2
zk—N3<ZMWZMw,ZMm (ZMXZ,ZMW,ZMZZ)
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Note that M; = Z]?"’:O M;j, i=xy,zand M; = (My, My, M;) comprises a solution
of the given system of Bloch equations of fractional order. Using the New Iteration Al-
gorithm together with the Predictor-Corrector Algorithm, the following approximations
were calculated:

m
P = Me(0) + 55 Y _arjmargn (b, Ma (1))

j=0
m
p _ 1B
Yami1 = My(0) + mza%mﬂﬂ(tﬁ My (t;)) (10)
j=0
m
W
Y5 e = Mz(0) + mz%ﬁmﬂﬁa(tﬁ M:(t))
j=0
and:
o= (t P )
1m+1 = Tlag2) 21\ 'm+1 Y1,m+1
p _ _hP p
Lo = T 22 (b Vo) (11)
p _ p
Z3m+1 = T(y+2) 43 (tm+lfy3,m+1>
Similarly:

xC — p + h* t P +Zp
Lm+1 = Yimi1 T Tlagy 21\ I+ Y me1 T 21mi1

—F hP p p
o mr1 = Yomr1 T T(pra) 22 (tm+1r3/2,m+1 + Zz,m+1) (12)

c _.p Wi p p
X3l = Yame1 T T2 %3 (tm+1r3/3/m+1 + Z3,m+1)

Here, yf,mﬂ , ]/g,m+1 , l/g,m+1 , Zf,m—&-l , zgrmJrl and Z§,m+1 are the predictor terms and
xim Yy xglm “ and xg’m 41 are the corrector terms. Here, M, My and M; denote the ap-
proximate values of the solutions of the FNMRFEs at t = t;. With the help of the above-
mentioned three steps of the New Iterative Predictor-Corrector Algorithm (NIPCA), we
solve and discuss nonlinear fractional nuclear magnetic resonance flow equations in the
following section.

4. Results and Discussion

It is recognized that systems of fractional differential equations powerfully depend
upon the initial conditions; therefore, fractional derivatives should be chosen as the most
suitable way to handle the initial conditions of physical problems. The system’s initial
state in NMR is rendered precise by the magnetization components; hence, these must
be identified.

A numerical solution for the nonlinear FNMRF system can be derived with the help of
NIPCA. A numerical method has the approximate accuracy of a high order, and is a good
match with the analytical solution [23]. The starting point or initial condition coefficient is
(Mx(0), My(0), Mz(0)).

The coefficients 4, 1 are designed to provide the relation in Equation (5). In this portion,
all simulations are performed for different height steps 1 without the short memory principle.
We also calculate the simulation time Ty;,, with [ = % and t,, =mh,m=20,1,2,...,1€ ZT
for every numerical simulation.

The approximate solution of the FNMREF system of equations is illustrated in Figure 1
for Tgip, = 0.1 s. In Figure 1a,b we examine a limit cycle and plot a spiral, respectively. For
« = B =1 = 1.03165, we obtain the border of critical stability.
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Figure 1. Approximate solution (a) 2D Plot and (b) 3D Plot of the FNMRF system for « = = 1 = 1.03165,
T, = 20(ms)", f = 160 Hz, T] = 1(s)" and initial condition (M, (0), M, (0), M;(0)) = (0,100,0) for
Tsim =01s.

The approximate solution of the FNMREF system of equations is illustrated in Figure 2 for
Tyim = 0.2 s with parameters « = B = 17 = 1.03165, T = 20 (ms)“, fo = 160 Hz, T =1 (s)"
with initial condition (M (0), My(0), M;(0)) = (0,100,0) for Ty, = 0.2s.

-150

-100

-50 o 50 100 150

(a) (b)

Figure 2. Approximate solution (a) 2D Plot and (b) 3D Plot of the FNMREF system fora = p =1 =
1.03165 and initial condition (M (0), My (0), Mz (0)) = (0,100,0) for Ty, = 0.2s.

Figure 2a,b shows a limit cycle and a spiral plot for Tg;,, = 0.2 s. In this case, where we
consider &« = = 1 = 1.03163 in Equation (4), we have the FNMRF system of equations,
and the approximate solution is presented in Figure 3 for Ty;,, = 1s. The solution of the
FNMRF system with parameters « = 8 = 5 = 1.0, T} = 20 (ms)%, fy = 160 Hz, T| = 1(s)%,
and initial condition (M, (0), M, (0), Mz(0)) = (0,100,0) for Ty;,, = 0.1 s is depicted in
Figure 4 for My = 1 and in Figure 5 for My = —1. When we consider « = f = = 0.9
in Equation (4), we have the FNMRF model, and the approximate solution is shown in
Figure 6 with parameters a = g = 77 = 0.9, Ty = 20 (ms)%, fy = 160 Hz, T} = 1(s)* with
initial condition (M (0), My(0), Mz(0)) = (0,100,0) for Ty, = 0.2 s When we consider
=08 B=117=09 T, =20(ms)% fo = 160Hz, T| = 1(s)* and initial condition
(M (0), My(0), M;(0)) = (0,100,0) in Equation (4), we have the FNMRF system of Equa-
tion (5) and the approximate solution obtained by MATHEMATICA for the T;,, = 0.1s1is
represented in Figure 7.
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Figure 3. Approximate solution (a) 2D Plot and (b) 3D Plot of the FNMRF system for « = = 1 = 1.03165,
T, = 20 (ms)", fy = 160Hz, T; = 1(s)" and initial condition (M,(0), My(0), M-(0)) = (0,100,0) for
Tsim =1s.
100
80
& 0.1
40 0.08
20 o 006+
:" o = g04
20 0.02
-40
60
-80
100 o
80 60 40 .20 o 20 40 60 80 100 M_(t) <100 .00 M_(t)
M () t X
(@) (b)
Figure 4. Approximate solution (a) 2D Plot and (b) 3D Plot of the FNMREF system fora = = = 1.0,
My = 1 and initial condition (M,(0), My(0), M;(0)) = (0,100,0) for Tg;,, = 0.1s.
100
B0
60
40
20
Eh 0
=20
40
-60
-80
-1M-aﬂ 60 40 20 0 20 40 60 80 100 M, 00 00 M_(t)
M (t)
@) (b)

Figure 5. Approximate solution (a) 2D Plot and (b) 3D Plot of the FNMREF system fora = g = # = 1.0,
My = —1 and initial condition (M (0), My(0), M;(0)) = (0,100,0) for Ty, = 0.1s.
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M0 :
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Figure 6. Approximate solution (a) 2D Plot and (b) 3D Plot of the FNMREF system fora = § =7 = 0.9
and initial condition (M, (0), My(0), Mz(0)) = (0,100,0) for Ty, = 0.2s.
o0
80
0.12
o 0.1
40 0.08
= £ 006
= 20
= 0.04
g 0.02
=0 a0
i }‘\\ - " 100
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Figure 7. Approximate solution (a) 2D Plot and (b) 3D Plot of the FNMRF system for « = 0.8, =1,
17 = 0.9 and initial condition (M,(0), M, (0), M;(0)) = (0,100,0) for Ty;,, = 0.1s.

Figure 8 represents the comparison between the approximate solution and the an-
alytical solution of the fractional FNMRF system for My(t), My(t) and M(t), respec-
tively [23,24], for height steps h = 0.01 and & = 0.001.

We can see an excellent consistency of the solution and a similar result may also be
detected for M, (t); see Table 1. From these observations, we conclude that the approximate
solution well matches the analytical solution. The condition of stability for equation orders
x = 0.8, p=1,17 = 0.9 of the solution is described in Figure 7.

Figures 1-7, in 2D and 3D, illustrate the dynamics between My (t), My (t), and M,(t).
For both cases, magnetization of the entire trajectory is presented in 3D with the starting
point (My(0), My (0), M;(0)) = (0,100,0) and the return to its equilibrium value of M.

Figure 8 shows the exact solution and the numerical solution obtained by applying
the presented NIPCA method for (a) # = 0.01 and (b) # = 0.001, and initial condition
(M (0), My (0), M (0)) = (0,100,0) for Tyj, = 1's. The maximum error in (M, My, M)
and simulation time Tg;,, = 0.1 s, 0.5 s and 1.0 s with time steps # = 0.1, 0.01, 0.001, 0.05,
and 0.005 are listed in Table 1. It is easily shown from Table 1 that the time step is directly
proportional to the error.
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Figure 8. Comparison between the Exact solution and Analytical solution of the FNMRF system
for (a) h = 0.01 (b) h = 0.001 (c) h = 0.01 (d) h =0.001 (e) h = 0.01 (f) h = 0.001 and initial condition
(M4 (0), My (0), Mz(0)) = (0,100,0) for Ty, = 1.
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Table 1. Average absolute error in the New Iterative Predictor-Corrector Algorithm (NIPCA).

Simulation Time T;,,

Components of M

h=01

h =0.01

h = 0.001

h =0.05

h = 0.005

Tyim = 0.1

My
My
M,

2.074 x 102
2.485 x 1071
1.880 x 107°

2.776 x 1073
1.658 x 1072
1.910 x 10~*

3.995 x 104
2.369 x 1073
2292 x 1075

6.210 x 1073
4200 x 102
3.963 x 1074

1.713 x 1073
1.009 x 102
1.057 x 104

Tyim = 0.5

My
My
M,

1.705 x 10!
5.674 x 10~}
5963 x 1073

4.708 x 102
1.027 x 1072
8.645 x 107>

5.090 x 1073
1.102 x 1072
8.983 x 107>

1.573 x 10~¢
3.818 x 101
3.657 x 1073

2.460 x 1072
5.339 x 102
4415 x 1074

Tsim = 1.0

M,
M}/
M,

1.003 x 10!
1.257 x 1071
1.065 x 1072

1.562 x 107!
1.638 x 1071
1.292 x 1073

1.625 x 1072
1.694 x 1072
4318 x 1074

6.476 x 1071
7.152 x 1071
5922 x 1073

7.985 x 1072
8.342 x 1072
6.533 x 1074
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5. Conclusions

In this article, we obtained nonlinear fractional nuclear magnetic resonance flow
equations (FNMRFEs) and the New Iterative Predictor-Corrector Algorithm (NIPCA)
for their approximate solution. For NMR, the developed mathematical model allows
the description and investigation of magnetization for spin dynamics (relaxation times
T and T}) at the resonance frequency @), in a static magnetic field By. A New Iterative
Predictor-Corrector Algorithm (NIPCA) was proposed to solve nonlinear fractional nuclear
magnetic resonance flow equations. The time efficiency and high accuracy of the proposed
technique are evident from the detailed error analysis of the FNMRFEs.
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