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Abstract: This paper proposes a numerical method to obtain an approximation solution for the time-
fractional Schrödinger Equation (TFSE) based on a combination of the cubic trigonometric B-spline
collocation method and the Crank-Nicolson scheme. The fractional derivative operator is described in
the Caputo sense. The L1−approximation method is used for time-fractional derivative discretization.
Using Von Neumann stability analysis, the proposed technique is shown to be conditionally stable.
Numerical examples are solved to verify the accuracy and effectiveness of this method. The error
norms L2 and L∞ are also calculated at different values of N and t to evaluate the performance of the
suggested method.
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1. Introduction

The nonlinear Schrödinger equation is one of the most fundamental equations of
quantum physics, and can be used to describe many nonlinear phenomena such as fluid
dynamics, waves in water, plasma, and self-focusing in laser pulses. Different approxi-
mation schemes have been used to investigate different kinds of nonlinear Schrödinger
equations [1–3].

Fractional calculus is one of the most widely popular calculus types, with a vast
range of applications in many different scientific and engineering disciplines. The order
of derivatives in fractional calculus can be any real number, which distinguishes it from
ordinary calculus, where the order of derivatives can only be natural numbers. Fractional
calculus is a powerful and versatile tool for modeling a wide range of scientific phenomena,
including image processing, earthquake engineering, biomedical engineering, compu-
tational fluid mechanics, and physics. In recent decades, the conventional Schrödinger
equation has been generalized to a fractional order partial differential equation that takes
into consideration the Riemann–Liouville, Caputo, and Riesz derivatives instead of the
classical Laplacian [4–7]. The Caputo fractional derivative is considered here because it
allows traditional initial and boundary conditions to be included in the formulation of the
problem [8]. It is not easy to obtain the exact solutions of TFSE, although it can be found in
some special cases [9–12]. In general cases, we need some convenient numerical techniques
for solving the TFSE.

The approximate solutions of TFSE have been studied by many authors. Zhang
et al. [13] proposed a fully discrete scheme using the L1 scheme based on graded mesh
for the discretiaztion of temporal Caputo derivative and the spectral method for spatial
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discretization for TFSE with initial singularity. Li et al. [14] solved the TFSE using a non-
polynomial spline. Liu and Jiang in [15] proposed a new scheme based on the reproducing
kernel theory and collocation method for solving the TFSE. Esen and Orkun [16,17] pro-
posed a cubic B-spline collocation method and a quadratic B-spline Galerkin method to
obtain the numerical solutions of TFSEs, respectively. The authors in [18] suggested the
Crank–Nicolson difference algorithm for solving the time-space FSEs. Space fractional
variable-order Schrödinger equation solved numerically via the Crank-Nicolson scheme by
Atangana and Cloot [19]. Wei et al. [20] developed an implicit fully discrete local discontin-
uous Galerkin technique for solving the TFSE, and an extended method for coupled TFSEs
[21]. Yaseen et al. [22] discussed the solution of the sub-diffusion equation of fractional or-
der using a cubic trigonometric B-spline method. Bhrawya and Abdelkawy [23] developed
the collocation method to solve one-and two-dimensional fractional Schrödinger equations
subject to initial-boundary and non-local conditions.

The authors in [24] used a hybrid numerical method based on a cubic trigonometric
B-spline to solve Fisher’s reaction-diffusion problem. Heydari and Atangana [25] used the
operational matrix method based on the shifted Legendre cardinal functions for solving
the nonlinear variable-order of TFSE. Erfanian, et al. in [26] applied cubic B-splines based
on the finite-difference formula for solving the TFSEs. the MFVIM is used for finding
approximate and exact solutions of the TFSEs by Hong [10]. Zhang et al. [27] propose
a Crank-Nicolson Galerkin-Legendre spectral scheme for the one-dimensional nonlinear
SFSEs. Wang and Huang [28] carried out a rigorous numerical analysis on the conservative
Crank-Nicolson finite difference scheme for discretizing the SFSE with the Riesz space
fractional derivative.

For the analytical solution of the nonlinear fractional Schrödinger equation, one can
refer to the residual power series method [29], double Laplace transform [30], homotopy
analysis transform method [31], generalized Kudryshov method [32], adomian decom-
position method [33], generalized Riccati equation mapping method and the modified
Kudryashov method [34], and the fractional Riccati expansion method [35].

In this paper, we applied the cubic Trigonometric B-Spline Algorithm [22,24,36] to
obtain the numerical solutions of the following TFSE:

i
∂αu(x, t)

∂tα
+

∂2u(x, t)
∂x2 + |u(x, t)|2u(x, t) = f (x, t), (1)

subject to the initial-boundary conditions

u(x, 0) = g(x), a ≤ x ≤ b,

u(a, t) = Ω(t), u(b, t) = Λ(t), t ≥ 0,

where i =
√
−1 and the fractional partial derivative of order α, in Equation (1) is Caputo

derivative, defined by Murio [37] and Podlubny [6],

∂αu(xi, t)
∂tα

=
1

Γ(n− α)

t∫

t∗

∂nu(xi, s)
∂tn (t− s)n−α−1ds. t∗ ≤ t ≤ T, n− 1 < α ≤ n, n = 1, 2, . . . . (2)

To obtain a finite element scheme for solving TFSE, the first-order approximation of time
fractional Caputo derivative will be discretized utilizing the so-called L1−approximation [3,38]:

∂αUn+1
j

∂tα
=

∂αU(xj, t)
∂tα

∣∣∣∣
t=tn+1

=
τ−α

Γ(2− α)

n

∑
k=0

ϕα
k

(
Un−k+1

j −Un−k
j

)
+O

(
τ2−α

)
, (3)

where τ = tn+1 − tn is the time step size and ϕα
k = (k + 1)1−α − k1−α.
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Lemma 1. ([7,14]) Let 0 < α < 1 and ϕk = (k + 1)1−α − k1−α, k = 0, 1, . . . , then 1 = ϕα
0 >

ϕα
1 > · · · > ϕα

k → 0, as k→ ∞.

We decompose the complex functions u(x, t) into its real and imaginary parts R(x, t)
and S(x, t),, respectively.

u(x, t) = R(x, t) + iS(x, t). (4)

Substituting Equation (4) into Equation (1) results in coupled system of nonlinear
partial differential equations

∂αS
∂tα
− ∂2R

∂x2 −
(

R2 + S2
)

R = − fRe(x, t), (5)

∂αR
∂tα

+
∂2S
∂x2 +

(
R2 + S2

)
S = f Im(x, t), (6)

where fRe(x, t) and f Im(x, t) are the real and imaginary parts of the f (x, t), respectively.
Furthermore, we have initial conditions of Equation (1) as follows:

R(x, 0) = gRe(x), S(x, 0) = gIm(x), a ≤ x ≤ b,

where gRe(x) and gIm(x) are the real and imaginary parts of g(x), respectively, and the
boundary conditions as

R(a, t) = ΩRe(t), R(b, t) = ΛRe(t), S(a, t) = ΩIm(t), S(b, t) = ΛIm(t), t ≥ 0,

where ΩRe(t) and ΩIm(t) are the real and imaginary parts of the Ω(t), respectively, and
ΛRe(t) and ΛIm(t) are the real and imaginary parts of the Λ(t), respectively.

2. Derivation of the Numerical Method

Consider Equation (1) and assume that a = x0 < x1 < x2 < · · · < xN = b, be N uniform
divides of the interval [a, b] with space step size h = b−a

N and tj+1 − tj = τ, tn = nτ, where
n = 0, 1, . . . . The cubic trigonometric B-spline basis functions CTBj(x) at the knots xj are
given by:

CTBj(x) =
1
θ





ω3
j−2(x), xj−2 ≤ x ≤ xj−1,

ωj−2(x)(ωj−2(x)φj(x) + ωj−1(x)φj+1(x)) + ω2
j−1(x)φj+1(x), xj−1 ≤ x ≤ xj,

ωj−2(x)φ2
j+1(x) + φj+2(x)(ωj−1(x)φj+1(x) + ωj(x)φj+2(x)), xj ≤ x ≤ xj+1,

φ3
j+2(x), xj+1 ≤ x ≤ xj+2,

0, Othrewise,

where ωj = sin(
x−xj

2 ), φj = sin(
xj−x

2 ), and θ = sin( h
2 ) sin(h) sin( 3h

2 ).

The values of CTB and their first and second derivatives at notes points are given by
Table 1.

Table 1. CTB and their first and second derivatives.

x xj−2 xj−1 xj xj+1 xj+2

CTBj 0 α1 α2 α1 0

CTB′j 0 β1 0 β2 0

CTB′′j 0 γ1 γ2 γ1 0

where α1 = sin2( h
2 ) csc(h) csc( 3h

2 ), α2 = 2
1+2 cos(h) , β1 = − 3

4 csc( 3h
2 ), β2 = 3

4 csc( 3h
2 ), γ1 =

3(1+3 cos(h)) csc2( h
2 )

16(2 cos( h
2 )+cos( 3h

2 ))
,

and γ2 =
−3 cot2( h

2 )

2+4 cos(h) .
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Let R(x, t) = Rn
j and S(x, t) = Sn

j be an approximations solutions of R and S, respec-
tively, then from Equation (3)

∂αSn+1
j

∂tα
=

1
τα Γ(2− α)

n

∑
k=0

ϕα
k

(
Sn−k+1

j − Sn−k
j

)
, (7)

∂αRn+1
j

∂tα
=

1
τα Γ(2− α)

n

∑
k=0

ϕα
k

(
Rn−k+1

j − Rn−k
j

)
, (8)

Substituting Equations (7) and (8) and by implementing Crank-Nicolson scheme to
Equations (5) and (6) we obtain

Sn+1
j − Sn

j +
n

∑
k=1

ϕα
k

(
Sn−k+1

j − Sn−k
j

)
− η

(
(Rxx)

n+1
j + (Rxx)

n
j

)

− η

((
R3
)n+1

j
+
(

R3
)n

j
+
(

S2R
)n+1

j
+
(

S2R
)n

j

)
= −2η( fRe)

n
j , (9)

Rn+1
j − Rn

j +
n

∑
k=1

ϕα
k

(
Rn−k+1

j − Rn−k
j

)
+ η

(
(Sxx)

n+1
j + (Sxx)

n
j

)

+ η

((
R2S

)n+1

j
+
(

R2S
)n

j
+
(

S3
)n+1

j
+
(

S3
)n

j

)
= 2η( f Im)

n
j , (10)

where η = τα Γ(2−α)
2 , the nonlinear terms in Equations (9) and (10) are linearized using the

form given by Rubin and Graves [39] as: (SR)n+1
j = Sn+1

j Rn
j + Sn

j Rn+1
j − Sn

j Rn
j , thus we

obtain the following equations

Sn+1
j − η(Rxx)

n+1
j − 3η

(
Rn

j

)2
Rn+1

j − 2ηSn
j Rn

j Sn+1
j − η

(
Sn

j

)2
Rn+1

j =

− η
(

Rn
j

)3
− η

(
Sn

j

)2
Rn

j + η(Rxx)
n
j + Sn

j −
n

∑
k=1

ϕα
k

(
Sn−k+1

j − Sn−k
j

)
− 2η( fRe)

n
j , (11)

Rn+1
j + η(Sxx)

n+1
j + 3η

(
Sn

j

)2
Sn+1

j + 2ηSn
j Rn

j Rn+1
j + η

(
Rn

j

)2
Sn+1

j =

η
(

Sn
j

)3
+ η

(
Rn

j

)2
Sn

j − η(Sxx)
n
j + Rn

j −
n

∑
k=1

ϕα
k

(
Rn−k+1

j − Rn−k
j

)
+ 2η( f Im)

n
j . (12)

After some simple arrangements for Equations (11) and (12), we obtain

Z1Sn+1
j − η(Rxx)

n+1
j + Z2Rn+1

j = −η

((
Rn

j

)2
+
(

Sn
j

)2
)

Rn
j

+ η(Rxx)
n
j + Sn

j −
n

∑
k=1

ϕα
k

(
Sn−k+1

j − Sn−k
j

)
− 2η( fRe)

n
j , (13)

Z3Rn+1
j + η(Sxx)

n+1
j + Z4Sn+1

j = η

((
Sn

j

)2
+
(

Rn
j

)2
)

Sn
j

− η(Sxx)
n
j + Rn

j −
n

∑
k=1

ϕα
k

(
Rn−k+1

j − Rn−k
j

)
+ 2η( f Im)

n
j , (14)

where Z1 = 1 − 2ηSn
j Rn

j , Z2 = −η

((
Sn

j

)2
+ 3
(

Rn
j

)2
)

, Z3 = 1 + 2ηSn
j Rn

j , and Z4 =

η

(
3
(

Sn
j

)2
+
(

Rn
j

)2
)

.
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The approximate solution of S(x, t) and R(x, t) can be written in terms of CTBj(x) and
the unknown weighting coefficients σj(t) and δj(t), respectively, as follows:

R N(x, t) =
N+1

∑
j=−1

δj(t)CTBj(x), S N(x, t) =
N+1

∑
j=−1

σj(t)CTBj(x). (15)

Using Equation (15) and values of CTBj shown in Table 1, the approximate solutions
of R, S and their derivatives are determined according to the time parameters as follows:

Sj = S(xj) = α1σj−1 + α2σj + α1σj+1,
S ′j = S ′(xj) = β1σj−1 + β2σj+1,
S ′′j = S ′′(xj) = γ1σj−1 + γ2σj + γ1σj+1,





, (16)

Rj = R(xj) = α1δj−1 + α2δj + α1δj+1,
R ′j = R ′(xj) = β1δj−1 + β2δj+1,
R ′′j = R ′′(xj) = γ1δj−1 + γ2δj + γ1δj+1,





. (17)

Substituting Equations (16) and (17) into Equations (13) and (14), we obtain a recur-
rence scheme with unknown parameters δn

j and σn
j as follows:

α1Z1σ1
j−1 + α2Z1σ1

j + α1Z1σ1
j+1 + A1δ1

j−1 + A2δ1
j + A1δ1

j+1 = B1δ0
j−1 + B2δ0

j

+ B1δ0
j+1 + α1σ0

j−1 + α2σ0
j + α1σ0

j+1 − 2η( fRe)
0
j , (18)

α1Z3δ1
j−1 + α2Z3δ1

j + α1Z3δ1
j+1 + A3σ1

j−1 + A4σ1
j + A3σ1

j+1 = −B1σ0
j−1 − B2σ0

j

− B1σ0
j+1 + α1δ0

j−1 + α2δ0
j + α1δ0

j+1 + 2η( f Im)
0
j , (19)

α1Z1σn+1
j−1 + α2Z1σn+1

j + α1Z1σn+1
j+1 + A1δn+1

j−1 + A2δn+1
j + A1δn+1

j+1

= B1δn
j−1 + B2δn

j + B1δn
j+1 + α1σn

j−1 + α2σn
j + α1σn

j+1 − 2η( fRe)
n
j

−
n

∑
k=1

ϕα
k

(
α1

(
σn−k+1

j−1 − σn−k
j−1

)
+ α2

(
σn−k+1

j − σn−k
j

)
+ α1

(
σn−k+1

j+1 − σn−k
j+1

))
, (20)

α1Z3δn+1
j−1 + α2Z3δn+1

j + α1Z3δn+1
j+1 + A3σn+1

j−1 + A4σn+1
j + A3σn+1

j+1

= −B1σn
j−1 − B2σn

j − B1σn
j+1 + α1δn

j−1 + α2δn
j + α1δn

j+1 + 2η( f Im)
n
j

−
n

∑
k=1

ϕα
k

(
α1

(
δn−k+1

j−1 − δn−k
j−1

)
+ α2

(
δn−k+1

j − δn−k
j

)
+ α1

(
δn−k+1

j+1 − δn−k
j+1

))
, (21)

where A1 = α1Z2 − ηγ1, A2 = α2Z2 − ηγ2, A3 = α1Z4 + ηγ1, A4 = α2Z4 + ηγ2, B1 =

η

(
γ1 − α1

((
Sn

j

)2
+
(

Rn
j

)2
))

and B2 = η

(
γ2 − α2

((
Sn

j

)2
+
(

Rn
j

)2
))

, j = 0, 1, . . . , N,

n ≥ 1.
Equations (18)–(21) yields a system consisting of 2N + 2 equations with 2N + 6 un-

knowns (σ−1, σ0, . . . , σN+1, δ−1, δ0, . . . , δN+1)
T , four additional constraints are required

to obtain a unique solution to the resulting system. These are obtained by imposing
boundary conditions.

S0 = S(x0, t) = ΩIm(t) = α1σ−1(t) + α2σ0(t) + α1σ1(t),

R0 = R(x0, t) = ΩRe(t) = α1δ−1(t) + α2δ0(t) + α1δ1(t),

SN = S(xN , t) = ΛIm(t) = α1σN−1(t) + α2σN(t) + α1σN+1(t),

RN = R(xN , t) = ΛRe(t) = α1δN−1(t) + α2δN(t) + α1δN+1(t).
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These conditions are used to eliminate σ−1, σN+1, δ−1, δN+1 from Equations (18)–(21) .
The initial conditions and their first derivatives are used to obtain initial vectors σ0

j and δ0
j ,

as follows
S0

j = S(xj, 0) = gIm
(
xj
)
= α1σ0

j−1 + α2σ0
j + α1σ0

j+1,
(

S0
0

)′
= S ′(x0, 0) = g′Im(x0) = β1σ0

−1 + β2σ0
1 ,

(
S0

N

)′
= S ′(xN , 0) = g′Im(xN) = β1σ0

N−1 + β2σ0
N+1,

R0
j = R(xj, 0) = gRe

(
xj
)
= α1δ0

j−1 + α2δ0
j + α1δ0

j+1,
(

R0
0

)′
= R ′(x0, 0) = g′Re(x0) = β1δ0

−1 + β2δ0
1 ,

(
R0

N

)′
= R ′(xN , 0) = g′Re(xN) = β1δ0

N−1 + β2δ0
N+1,

which can be resolved using a proper algorithm.

3. Stability Analysis

In this section, we use the Von Neumann method to analyze the stability of the scheme
(18)–(21). First, we linearize the nonlinear terms R and S as local constants λ1 and λ2,
respectively, as is done in the Von Neumann method. According to Duhamel’s principle,
the stability analysis for an inhomogeneous problem is assumed to be an immediate
outcome of the stability analysis for the corresponding homogeneous case. Therefore, the
stability analysis for the scheme (18)–(21) for the force-free situation ( fRe = f Im = 0) is
sufficient.

Let Eσ
n+1
j = σn+1

j − σ̃n+1
j and Eδ

n+1
j = δn+1

j − δ̃n+1
j where σ̃n+1

j and δ̃n+1
j are the

approximate solutions of system (18)–(21), we can easily obtain the following round-off
error equations

α1Z1Eσ
1
j−1 + α2Z1Eσ

1
j + α1Z1Eσ

1
j+1 + A1Eδ

1
j−1 + A2Eδ

1
j + A1Eδ

1
j+1 = B1Eδ

0
j−1

+ B2Eδ
0
j + B1Eδ

0
j+1 + α1Eσ

0
j−1 + α2Eσ

0
j + α1Eσ

0
j+1, (22)

α1Z3Eδ
1
j−1 + α2Z3Eδ

1
j + α1Z3Eδ

1
j+1 + A3Eσ

1
j−1 + A4Eσ

1
j + A3Eσ

1
j+1 = −B1Eσ

0
j−1

− B2Eσ
0
j − B1Eσ

0
j+1 + α1Eδ

0
j−1 + α2Eδ

0
j + α1Eδ

0
j+1, (23)

α1Z1Eσ
n+1
j−1 + α2Z1Eσ

n+1
j + α1Z1Eσ

n+1
j+1 + A1Eδ

n+1
j−1 + A2Eδ

n+1
j

+ A1Eδ
n+1
j+1 = B1Eδ

n
j−1 + B2Eδ

n
j + B1Eδ

n
j+1 + α1Eσ

n
j−1 + α2Eσ

n
j + α1Eσ

n
j+1

−
n

∑
k=1

ϕα
k

(
α1

(
Eσ

n−k+1
j−1 − Eσ

n−k
j−1

)
+ α2

(
Eσ

n−k+1
j − Eσ

n−k
j

)
+ α1

(
Eσ

n−k+1
j+1 − Eσ

n−k
j+1

))
, (24)

α1Z3Eδ
n+1
j−1 + α2Z3Eδ

n+1
j + α1Z3Eδ

n+1
j+1 + A3Eσ

n+1
j−1 + A4Eσ

n+1
j

+ A3Eσ
n+1
j+1 = −B1Eσ

n
j−1 − B2Eσ

n
j − B1Eσ

n
j+1 + α1Eδ

n
j−1 + α2Eδ

n
j + α1Eδ

n
j+1

−
n

∑
k=1

ϕα
k

(
α1

(
Eδ

n−k+1
j−1 − Eδ

n−k
j−1

)
+ α2

(
Eδ

n−k+1
j − Eδ

n−k
j

)
+ α1

(
Eδ

n−k+1
j+1 − Eδ

n−k
j+1

))
, (25)

where Z1 = 1− 2ηλ1λ2, Z2 = −η
(
λ2

2 + 3λ2
1
)
, Z3 = 1 + 2ηλ1λ2 and Z4 = η

(
3λ2

2 + λ2
1
)
.

Suppose that Equations (22)–(25) have solutions of the form

Eσ
n
j = ξneijφh, Eδ

n
j = ζneijφh, n ≥ 0, (26)

where i =
√
−1 and φ is real. Substituting Equation (26) into Equations (22)–(25), dividing

by eijφh , using the relation and collecting the like terms, we obtain
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ξ1Z1(2α1 cos(φh) + α2) + ζ1(2A1 cos(φh) + A2) = ζ0(2B1 cos(φh) + B2) + ξ0(2α1 cos(φh) + α2), (27)

ζ1Z3(2α1 cos(φh) + α2) + ξ1(2A3 cos(φh) + A4) = −ξ0(2B1 cos(φh) + B2) + ζ0(2α1 cos(φh) + α2), (28)

ξn+1Z1(2α1 cos(φh) + α2) + ζn+1(2A1 cos(φh) + A2) = ζn(2B1 cos(φh) + B2)

+ (2α1 cos(φh) + α2)

(
ξn −

n

∑
k=1

ϕα
k (ξn−k+1 − ξn−k)

)
, (29)

ζn+1Z3(2α1 cos(φh) + α2) + ξn+1(2A3 cos(φh) + A4) = −ξn(2B1 cos(φh) + B2)

+ (2α1 cos(φh) + α2)

(
ζn −

n

∑
k=1

ϕα
k (ζn−k+1 − ζn−k)

)
. (30)

Substituting values of A1, A2, A3, A4, B1 and B2 in Equations (27)–(30), and after some
rearrangement and dividing by (2α1 cos(φh) + α2), we obtain

Z1ξ1 + (Z2 − ηΥ)ζ1 = ξ0 − (Z5 − ηΥ)ζ0, (31)

(ηΥ + Z4)ξ1 + Z3ζ1 = ζ0 + (Z5 − ηΥ)ξ0, (32)

Z1ξn+1 + (Z2 − ηΥ)ζn+1 = −(Z5 − ηΥ)ζn +

(
ξn −

n

∑
k=1

ϕα
k (ξn−k+1 − ξn−k)

)
, (33)

(ηΥ + Z4)ξn+1 + Z3ζn+1 = (Z5 − ηΥ)ξn +

(
ζn −

n

∑
k=1

ϕα
k (ζn−k+1 − ζn−k)

)
, (34)

where n = 1, 2, 3, . . . , Υ = 2γ1 cos(φh)+γ2
2α1 cos(φh)+α2

and Z5 = η
(
λ2

1 + λ2
2
)
.

Using Wolfram Mathematica to solve the last system, we obtain

ξ1 =
2ζ0η

(
λ2
(
λ2 − ηλ1

(
−Υ + λ2

1 + λ2
2
))

+ Υ
)

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

+
ξ0
(
η
(
η
(
λ4

1 −Υ2)− 2ηλ2
2
(
Υ− 2λ2

1
)
+ 3ηλ4

2 + 2λ1λ2
)
+ 1
)

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

,

ζ1 =
ζ0
(
−Υ2η2 + η

(
−2ηλ2

1
(
Υ− 2λ2

2
)
+ 3ηλ4

1 + ηλ4
2 − 2λ2λ1

)
+ 1
)

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

+
2ηξ0

(
−λ1

(
ηλ2

(
λ2

1 −Υ
)
+ ηλ3

2 + λ1
)
−Υ

)

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

,

ξn+1 = − ζn
(
η
(
−Υ + λ2

1 + λ2
2
)
(2ηλ1λ2 + 1)− η

(
Υ + λ2

1 + 3λ2
2
))

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

− ξn
(
η2(Υ− λ2

1 − λ2
2
)(

Υ + λ2
1 + 3λ2

2
)
− 2ηλ1λ2 − 1

)

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

− η
(
Υ + λ2

1 + 3λ2
2
)

∑n
k=1 ψα

k (ζ−k+n+1 − ζn−k) + (2ηλ1λ2 + 1)∑n
k=1 ψα

k (ξ−k+n+1 − ξn−k)

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

,

ζn+1 =
ζn
(
−Υ2η2 + η

(
−2ηλ2

1
(
Υ− 2λ2

2
)
+ 3ηλ4

1 + ηλ4
2 − 2λ2λ1

)
+ 1
)

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

+
2ηξn

(
−λ1

(
ηλ2

(
λ2

1 −Υ
)
+ ηλ3

2 + λ1
)
−Υ

)

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

+
η
(
Υ + 3λ2

1 + λ2
2
)

∑n
k=1 ψα

k (ξ−k+n+1 − ξn−k) + (2ηλ1λ2 − 1)∑n
k=1 ψα

k (ζ−k+n+1 − ζn−k)

Υ2η2 + η2
(
λ2

1 + λ2
2
)(

4Υ + 3λ2
1 + 3λ2

2
)
+ 1

.

Assuming that τ is sufficiently small so that η −→ 0, we obtain

ξ1 −→ ξ0, ζ1 −→ ζ0, ξn+1 −→ ξn −
n

∑
k=1

ϕα
k (ξn−k+1 − ξn−k), ζn+1 −→ ζn −

n

∑
k=1

ϕα
k (ζn−k+1 − ζn−k), (35)

Using Equation (1) and the iterative formulas in Equation (35), we obtain |ξn+1| ≤
|ξ0|, |ζn+1| ≤ |ζ0|, n = 0, 1, 2, . . . .
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4. Numerical Results

In this section, we present the numerical results of the proposed method on two test
problems. The accuracy of the present method is measured by the L2 and L∞ error norms
as follows:

L2 =
∥∥∥uE − uN

∥∥∥
2
'
√√√√h

N

∑
j=0

∣∣∣uE
j − uN

j

∣∣∣
2
, L∞ =

∥∥∥uE − uN
∥∥∥

∞
' max

j

∣∣∣uE
j − uN

j

∣∣∣,

where uE and uN are the exact and numerical solutions, respectively.

Example 1. In this example, we will consider the TFSE Equation (1) with initial-boundary condi-
tions u(x, 0) = 0, a ≤ x ≤ b,

u(a, t) = it2, u(b, t) = it2, t ≥ 0,
where,

f (x, t) = − 2t2−α

Γ(3− α)
cos(2πx) +

(
−4π2t2 + t6

)
sin(2πx) + i

(
2t2−α

Γ(3− α)
sin(2πx) +

(
−4π2t2 + t6

)
cos(2πx)

)

The exact solution of this problem is given by [16,17]
u(x, t) = t2(sin(2πx) + i cos(2πx)).

In Equation (1), we tested the efficiency and stability of the mentioned method by performing
it for three different sets of parameters. For the first set, we chose α = 0.1, 0.3, 0.5, 0.7, 0.9,
τ = 0.002, N = 40, t = 1 and x ∈ [0, 1] to compare with the previous papers [16,17,40]. Real
R(x, t) and imaginary S(x, t) parts of a solution of u(x, t), as well as L2 and L∞−error norms
(for the first set) from our method have been computed and listed in Tables 2 and 3, respectively.
As it shows, the error norms L2 and L∞ got by our method are marginally less than the others.
Approximate solutions of R(x, t) and S(x, t) are more accurate whenever the value of α decreases.
Real R(x, t) and imaginary S(x, t) parts of solution of u(x, t) (for the first set and α = 0.1, 0.5, 0.9)
are demonstrate in Figure 1. Additionally, errors of R(x, t) and S(x, t) are shown in Figure 2.

For the second set, we chose α = 0.1, 0.01, 0.005, 0.001, τ = 0.005, N = 78, t = 1 and
x ∈ [−1, 2]. The L2 and L∞ − error norms of real R(x, t) and imaginary S(x, t) parts of a solution
of u(x, t) have been computed and listed in Tables 4 and 5, respectively. In this set, we increase k and
expand the region of the solution and by appropriate division, we got more accurate results, which
are demonstrated in Figure 3. Additionally, error distributions of R and S are shown in Figure 4.

Finally, we tested the efficiency and stability of the chosen method by performing it for different
values of α, τ, N, and region of solution. Thus, in the finally set, we took α = 0.6, 0.4, 0.2, 0.1,
τ = 0.0025, N = 25, t = 0.5 and x ∈ [0, 1]. Numerical results of R(x, t) and S(x, t) of our
proposed method, in addition to the the L2 and L∞−error norms in solutions, are shown in Tables 6
and 7, respectively. It is seen that while the value of α decreases, the numerical results become
more accurate, we can clearly see this situation from the decreasing values of the L2 and L∞−error
norms. The accuracy of the numerical method is measured by computing the difference between the
exact and numerical solutions at each point of division. As it is clear from the tables, the proposed
algorithm gives better accuracy compared with the other. Graphs of numerical solutions and error
distributions of R and S are presented in Figures 5 and 6, respectively. Table 8 shows a comparison
of the maximum absolute error for our results with the results in [40].
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Table 2. Error norms, numerical solutions and comparison of the exact solution of real part of
Equation (1) for τ = 0.002, N = 40, a = 0, b = 1, T = 500, t = 1.

xi α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 Exact

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.587719 0.587696 0.587634 0.587668 0.587586 0.587785
0.2 0.950943 0.9509 0.950776 0.950844 0.950677 0.951057
0.3 0.95093 0.950869 0.950694 0.95079 0.950548 0.951057
0.4 0.587683 0.58761 0.587399 0.587515 0.58722 0.587785
0.5 −0.000053 −0.000130 −0.000356 −0.000231 −0.000548 0.0
0.6 −0.587784 −0.587858 −0.588074 −0.587955 −0.588257 −0.587785
0.7 −0.951016 −0.951079 −0.951261 −0.95116 −0.951412 −0.951057
0.8 −0.951005 −0.951049 −0.951178 −0.951108 −0.951282 −0.951057
0.9 −0.58775 −0.587773 −0.587839 −0.587803 −0.587889 −0.587785
1.0 0.0 0.0 0.0 0.0 0.0 0.0

L∞ 1.2636× 10−4 1.88153× 10−4 2.74093× 10−4 3.8663× 10−4 5.67658× 10−4

L2 7.21151× 10−5 1.10189× 10−4 1.72782× 10−4 2.55459× 10−4 3.83777× 10−4

Table 3. Error norms, numerical solutions and comparison of the exact solution of imaginary part of
Equation (1) for τ = 0.002, N = 40, a = 0, b = 1, T = 500, t = 1.

xi α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 Exact

0.0 1.0 1.0 1.0 1.0 1.0 1.0
0.1 0.809036 0.809022 0.808964 0.808999 0.808907 0.809017
0.2 0.309081 0.309056 0.308953 0.309015 0.308851 0.309017
0.3 −0.308895 −0.308926 −0.309056 −0.308978 −0.309182 −0.309017
0.4 −0.808847 −0.808879 −0.809015 −0.808933 −0.809143 −0.809017
0.5 −0.999809 −0.999838 −0.999962 −0.999887 −1.00007 −1.0
0.6 −0.808841 −0.808863 −0.808963 −0.808903 −0.809048 −0.809017
0.7 −0.308885 −0.308899 −0.308968 −0.308927 −0.309023 −0.309017
0.8 0.309092 0.309085 0.309044 0.309068 0.309016 0.309017
0.9 0.809043 0.80904 0.809022 0.809033 0.80901 0.809017
1.0 1.0 1.0 1.0 1.0 1.0 1.0

L∞ 1.91036× 10−4 1.63543× 10−4 1.17016× 10−4 6.51301× 10−5 1.71641× 10−4

L2 1.1824× 10−4 9.9054× 10−5 6.75574× 10−5 3.99792× 10−5 9.45488× 10−5

Table 4. Error norms of real part of Equation (1) for τ = 0.005, N = 78, a = − 1, b = 2, T = 200, t = 1.

α = 0.1 α = 0.01 α = 0.005 α = 0.001

L∞ 3.278811× 10−4 1.07697× 10−4 9.66734× 10−5 8.79565× 10−5

L2 3.397343× 10−4 9.57172× 10−5 8.61773× 10−5 7.93795× 10−5

Table 5. Error norms of imaginary part of Equation (1) for τ = 0.005, N = 78, a = −1, b = 2, T = 200,
t = 1.

α = 0.1 α = 0.01 α = 0.005 α = 0.001

L∞ 1.63614× 10−4 1.08568× 10−4 1.04574× 10−4 1.01291× 10−4

L2 1.613481× 10−4 1.01424× 10−4 9.76096× 10−5 9.4623× 10−5
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Table 6. Error norms, numerical solutions and comparison of the exact solution of real part of
Equation (1) for τ = 0.0025, N = 25, a = 0, b = 1, T = 200, t = 0.5.

xi α = 0.6 α = 0.4 α = 0.2 α = 0.1 Exact

0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.237691 0.237731 0.237757 0.237772 0.237764
0.4 0.146809 0.14688 0.146925 0.146951 0.146946
0.6 −0.147096 −0.147023 −0.146978 −0.146951 −0.146946
0.8 −0.237857 −0.237815 −0.237788 −0.237772 −0.237764
1.0 0.0 0.0 0.0 0.0 0.0

L∞ 1.53142× 10−4 7.76316× 10−5 3.15942× 10−5 8.291928× 10−6

L2 1.04956× 10−4 5.27316× 10−5 2.0323× 10−5 5.796502× 10−6

Table 7. Error norms, numerical solutions and comparison of the exact solution of imaginary part of
Equation (1) for τ = 0.0025, N = 25, a = 0, b = 1, T = 200, t = 0.5.

xi α = 0.6 α = 0.4 α = 0.2 α = 0.1 Exact

0.0 0.25 0.25 0.25 0.25 0.25
0.2 0.0771853 0.077221 0.0772397 0.0772483 0.0772542
0.4 −0.202347 −0.202302 −0.202279 −0.202269 −0.202254
0.6 −0.202317 −0.202288 −0.202274 −0.202269 −0.202254
0.8 0.0772348 0.077244 0.0772479 0.0772484 0.0772542
1.0 0.25 0.25 0.25 0.25 0.25

L∞ 9.30703× 10−5 4.82179× 10−5 2.54937× 10−5 1.67457× 10−5

L2 5.93658× 10−5 3.06447× 10−5 1.60645× 10−5 1.03236× 10−5

Table 8. Comparison of the error norms of real and imaginary parts in Equation (1) with Ref [40] for
τ = 1/512, α = 0.1, a = 0, b = 1.

h
Trigonometric Ref [40]

Real Part Imaginary Part Real Part Imaginary Part

1/4 6.83376×10−2 1.20244×10−1 4.2824×10−1 6.1227×10−1

1/9 1.37637×10−2 2.42034×10−2 7.0404×10−2 3.5194 ×10−2

1/14 5.11408×10−3 9.04292×10−3 2.1873×10−2 1.4718×10−2

1/19 2.21103×10−3 3.84437×10−3 1.0022×10−2 7.1776×10−3

1/24 8.90286×10−4 1.54864×10−3 5.1958×10−3 3.8460×10−3

1/29 1.93239×10−4 3.21092×10−4 2.8536×10−3 2.1753×10−3

1/31 1.38283×10−5 1.247×10−5 − −

Figure 1. The computed approximation solutions of R and S in Equation (1) for
α = 0.9, α = 0.5, α = 0.1, respectively, τ = 0.002, a = 0, b = 1, N = 40 and t = 1.
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Figure 2. Error graph of R and S in Equation (1) for α = 0.9, α = 0.5, α = 0.1, respectively,
τ = 0.002, a = 0, b = 1, N = 40 and t = 1.

Figure 3. Computed approximation solutions of R and S in Equation (1) for α = 0.1, α = 0.01,
α = 0.001, respectively, τ = 0.005, a = −1, b = 2, N = 78 and t = 1.
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Figure 4. Error graph of R and S in Equation (1) for α = 0.1, α = 0.01, α = 0.001, respectively,
τ = 0.005, a = −1, b = 2, N = 78 and t = 1.

Figure 5. Computed approximation solutions of R and S in Equation (1) for α = 0.6, α = 0.2, α = 0.01,
respectively, τ = 0.0025, a = 0, b = 1, N = 40 and t = 0.5.
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Figure 6. Error graph of R and S in Equation (1) for α = 0.6, α = 0.2, α = 0.01, respectively,
τ = 0.0025, a = 0, b = 1, N = 25 and t = 0.5.

Example 2. In this example, we will consider the TFSE Equation (1) with initial-boundary condi-
tions u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = it2, t ≥ 0, where

f (x, t) = − 2t2−α

Γ(3− α)
x2 − 2t2 + t6x3(1− x)((1− x)2 + x2) + i

( (
2t2−α

)

Γ(3− α)
(1− x)x + t6x4

(
x2 + (1− x)2

)
+ 2t2

)
.

The exact solution of this problem is given by u(x, t) = t2((1− x)x + ix2).
This example has been solved using the presented method with various values of τ, α = 0.1,

N = 40, and t = 1. Table 9 shows the numerical results based on maximum absolute errors acquired
using the suggested approach for real and imaginary parts of the solution at t = 1. Figure 7
illustrates the surface graph and curve of the absolute error of real and imaginary parts of the
solution at τ = 1/256, N = 40, and α = 0.1.

Table 9. Error norms of real and imaginary parts of Equation (2) for different choices of τ at N = 40,
α = 0.1, t = 1.

τ
Real Part Imaginary Part

L∞ L2 L∞ L2

1/16 1.69582×10−2 1.23434×10−2 1.64917×10−2 6.1227×10−2

1/32 8.50622×10−3 6.19172×10−3 8.22627×10−3 6.09586×10−3

1/64 4.26873×10−3 3.10742×10−3 4.11967×10−3 3.0518×10−3

1/128 2.1514×10−3 1.56613×10−3 2.07201×10−3 1.5346×10−3

1/256 1.0934×10−3 7.95972×10−4 1.05034×10−3 7.77774×10−4

1/512 5.64571×10−4 4.11009×10−4 5.40111×10−4 3.99849×10−4
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Example 2. In this example, we will consider the TFSE Equation (1) with initial-boundary condi-
tions u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = it2, t ≥ 0, where

f (x, t) = − 2t2−α

Γ(3− α)
x2 − 2t2 + t6x3(1− x)((1− x)2 + x2) + i

( (
2t2−α

)

Γ(3− α)
(1− x)x + t6x4

(
x2 + (1− x)2

)
+ 2t2

)
.

The exact solution of this problem is given by u(x, t) = t2((1− x)x + ix2).
This example has been solved using the presented method with various values of τ, α = 0.1,

N = 40, and t = 1. Equation (9) shows the numerical results based on maximum absolute errors
acquired using the suggested approach for real and imaginary parts of the solution at t = 1. Figure 7
illustrates the surface graph and curve of the absolute error of real and imaginary parts of the
solution at τ = 1/256, N = 40, and α = 0.1.

Table 9. Error norms of real and imaginary parts of Equation (2) for different choices of τ at N = 40,
α = .1, t = 1.

τ
Real Part Imaginary Part

L∞ L2 L∞ L2

1/16 1.69582×10−2 1.23434×10−2 1.64917×10−2 6.1227×10−2

1/32 8.50622×10−3 6.19172×10−3 8.22627×10−3 6.09586×10−3

1/64 4.26873×10−3 3.10742×10−3 4.11967×10−3 3.0518×10−3

1/128 2.1514×10−3 1.56613×10−3 2.07201×10−3 1.5346×10−3

1/256 1.0934×10−3 7.95972×10−4 1.05034×10−3 7.77774×10−4

1/512 5.64571×10−4 4.11009×10−4 5.40111×10−4 3.99849×10−4
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α = 0.1 τ = 1/256, a = 0, b = 1, and N = 40.
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Example 3. Consider fractional model of TFSE Equation (1) with initial-boundary conditions
u(x, 0) = ie4iπx, 0 ≤ x ≤ 1,

u(0, t) = ie−4t, u(1, t) = ie4(πi−t), t ≥ 0, where

f (x, t) = e4iπx

(
(−1)dαe4αeiπ(dαe−α)−4tΓ(dαe − α,−4t)

Γ(dαe − α)
+ ie−4t

(
e−8t − 16π2

))
,

where dαe is a Ceiling function. The exact solution of this problem is given by u(x, t) = ie4(iπx−t).
Table 10 presented the L∞ and L2 error norms for real and imaginary parts of the solution

u(x, t) for different choices of τ, t = 3, N = 40, α = 0.5 and x ∈ [0, 1]. Figure 8 depicts the
approximate solutions and error curves of absolute error obtained by the current approach for the
real and imaginary sections of u(x, t) for α = 0.5 at N = 40 and τ = 1/512.

Table 10. Error norms of real and imaginary parts of Equation (3) for different choices of τ at
N = 40, α = 0.5, t = 3.

τ
Real Part Imaginary Part

L∞ L2 L∞ L2

1/16 1.43691×10−1 8.27474 ×10−2 1.91429 ×10−1 8.57523×10−2

1/32 5.55247 ×10−2 3.11882×10−2 5.15378×10−2 2.64966 ×10−2

1/64 9.35312 ×10−3 4.66738×10−3 1.3519×10−2 7.51854×10−3

1/128 8.98237×10−4 4.9702×10−4 1.1515×10−3 6.62636 ×10−4

1/256 7.5242×10−5 4.14215×10−5 1.28458×10−4 5.4835 ×10−5

1/512 7.45923 ×10−6 3.36356×10−6 8.6613×10−6 4.35745×10−6
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Example 4. To demonstrate that proposed technique may be applied to TFSE with non-local
conditions, we consider the TFSE Equation (1) with the initial-boundary and non-local conditions

u(x, 0) = 0, 0 ≤ x ≤ 1,
u(0, t) = 0,

∫ 1
0 u(x, t) = (−4+2π(1+i))t

π2 , t ≥ 0, where,

f (x, t) =
(

x cos
(π x

2

)
+ i sin

(π x
2

))(
t3
(

x2 cos2
(πx

2

)
+ sin2

(πx
2

))
+

it1−α

Γ(2− α)

)

+ t
(
−1

4
i π2 sin

(πx
2

)
− π sin

(πx
2

)
− 1

4
π2 x cos

(πx
2

))

The exact solution of this problem is given by u(x, t) = t
(
x cos

(
πx
2
)
+ i sin(πx

2 )
)
.

we solved this example using the presented method with various choices of α at N = 15,
τ = 1/512, and t = 1. Table 11 lists the L∞ and L2 error norms for real and imaginary parts of
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u(x, t). In case α = 0.9, we display the surface of real and imaginary parts of the approximate
solution and the carves of of the absolute error in Figure 9.

Table 11. Error norms of real and imaginary parts of Equation (4) for different α at N = 15, τ = 1/512,
and t = 1.

α
Real Part Imaginary Part

L∞ L2 L∞ L2

0.1 1.44004×10−5 8.26983×10−6 2.37462×10−5 1.34125×10−5

0.2 1.57166×10−5 7.33073×10−6 1.94386×10−5 1.29988×10−5

0.4 2.2306×10−5 1.34673×10−5 1.87377×10−5 1.18931×10−5

0.6 3.22106×10−5 2.15981×10−5 2.47268×10−5 1.39841×10−5

0.8 4.389 ×10−5 3.00857 ×10−5 3.12738 ×10−5 1.7842×10−5

0.9 2.04375 ×10−5 1.28792 ×10−5 7.99336 ×10−5 5.39379×10−5
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5. Conclusions

In this paper, we have discussed an approximation technique for the numerical so-
lution of the TFSE subject to initial-boundary conditions utilizing cubic trigonometric
B-splines. The fractional derivative was formulated with Caputo sense. The time derivative
is discretized using the L1-approximate scheme, and a cubic trigonometric B-spline is used
as an interpolating function in space with helping the Crank-Nicolson scheme. The stability
analysis is proved by the Von Neumann approach. Comparing numerical results with
exact solutions shows the applicability and efficiency of the proposed method. When the
findings of the current approach are compared to those of [40] in Equation (8), it is clear
that the cubic trigonometric B-spline provides greater precision.
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5. Conclusions

In this paper, we discussed an approximation technique for the numerical solution
of the TFSE subject to initial-boundary conditions using cubic trigonometric B-splines.
The fractional derivative was formulated with Caputo sense. The time derivative is dis-
cretized using the L1-approximate scheme, and a cubic trigonometric B-spline is used as
an interpolating function in space with helping the Crank-Nicolson scheme. The stability
analysis is proved by the Von Neumann approach. Comparing numerical results with
exact solutions shows the applicability and efficiency of the proposed method. When the
findings of the current approach are compared to those of [40] in Table 8, it is clear that the
cubic trigonometric B-spline provides greater precision.
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