Extremal Solutions of Generalized Caputo-Type Fractional-Order Boundary Value Problems Using Monotone Iterative Method
Abstract
:1. Introduction
2. Basic Results
- 1.
- ,
- 2.
- ,
- 3.
- 4.
- 5.
- 1.
- and are non-negative.
- 2.
- for any .
3. Main Results
4. Illustrative Problems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics; Nonlinear Physical Science; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Abbas, S.; Benchohra, M.; Graef, J.R.; Henderson, J. Implicit Fractional Differential and Integral Equations: Existence and Stability; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Sudies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Tenreiro Machado, J.A.; Silva, M.F.; Barbosa, R.S.; Jesus, I.S.; Reis, C.M.; Marcos, M.G.; Galhano, A.F. Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 34, 639801. [Google Scholar] [CrossRef] [Green Version]
- da Graça Marcos, M.; Duarte, F.B.M.; Machado, J.A.T. Complex dynamics in the trajectory control of redundant manipulators. Nonlinear Sci. Complex. 2007, 2007, 134143. [Google Scholar]
- Atangana, A.; Kilicman, A. On the generalized mass transport equation to the concept of variable fractional derivative. Math. Probl. Eng. 2014, 2014, 542809. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Vanterler da C. Sousa, J.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. On the Stability of a Hyperbolic Fractional Partial Differential Equation. Differ. Equ. Dyn. Syst. 2019, 2019, 730465. [Google Scholar] [CrossRef] [Green Version]
- Du, S.W.; Lakshmikantham, V. Monotone iterative technique for differential equations in a Banach space. J. Math. Anal. Appl. 1982, 87, 454–459. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Spaces; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Derbazi, C.; Baitiche, Z. Coupled systems of ψ-Caputo differential equations with initial conditions in Banach spaces. Mediterr. J. Math. 2020, 17, 169. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Fečkan, M. Some new uniqueness and Ulam stability results for a class of multiterms fractional differential equations in the framework of generalized Caputo fractional derivative using the Φ-fractional Bielecki-type norm. Turkish J. Math. 2021, 45, 2307–2322. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Benchohra, M.; N’Guérékata, G. Existence, uniqueness, and Mittag-Leffler-Ulam stability results for Cauchy problem involving ψ-Caputo derivative in Banach and Fréchet spaces. Int. J. Differ. Equ. 2020, 2020, 6383916. [Google Scholar] [CrossRef]
- Baitiche, Z.; Guerbati, K.; Benchohra, M.; Zhou, Y. Solvability of Fractional Multi-Point BVP with Nonlinear Growth at Resonance. J. Contemp. Math. Anal. 2020, 55, 126–142. [Google Scholar] [CrossRef]
- Benchohra, M.; Bouriah, S.; Nieto, J.J. Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2018, 112, 25–35. [Google Scholar] [CrossRef]
- Ladde, G.S.; Lakshmikantham, V.; Vatsala, A.S. Monotone Iterative Techniques for Nonlinear Differential Equations; Pitman Publishing: Bay City, MI, USA, 1985; Volume 27. [Google Scholar]
- Heikkilä, S.; Lakshmikantham, V. Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations; Taylor & Francis: New York, NY, USA, 2017. [Google Scholar]
- Hristova, S.S.; Bainov, D.D. Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations. J. Nath. Anal. Appl. 1996, 197, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bhaskar, T.G.; Farzana, A.M. Monotone iterative techniques for nonlinear problems involving the difference of two monotone functions. Appl. Math. Comput. 2002, 133, 187–192. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Vatsala, A.S. General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 2008, 21, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Franco, D.; Nieto, J.J.; O’Regan, D. Existence of solutions for first order ordinary differential equations with nonlinear boundary conditions. Appl. Math. Comput. 2004, 153, 793–802. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, Z. Iterative technique for a third-order differential equation with three-point nonlinear boundary value conditions. Electron. J. Qual. Theory Differ. Equ. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- West, I.H.; Vatsala, A.S. Generalized monotone iterative method for initial value problems. Appl. Math. Lett. 2004, 17, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.K.; Nieto, J.J. Extremal solutions of a class of nonlinear integro-differential equations in Banach spaces. Proc. Amer. Math. Soc. 1997, 125, 2605–2614. [Google Scholar] [CrossRef]
- Al-Refai, M.; Ali Hajji, M. Monotone iterative sequences for nonlinear boundary value problems of fractional order. Nonlinear Anal. 2011, 74, 3531–3539. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Benchohra, M.; Cabada, A. Initial value problem for nonlinear fractional differential equations with ψ-Caputo derivative via monotone iterative technique. Axioms 2020, 9, 57. [Google Scholar] [CrossRef]
- Derbazi, C.; Baitiche, Z.; Benchohra, M.; N’Guérékata, G. Existence, uniqueness, approximation of solutions and Eα-Ulam stability results for a class of nonlinear fractional differential equations involving ψ-Caputo derivative with initial conditions. Math. Morav. 2021, 25, 1–30. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Alzabut, J.; Samei, M.E.; Kaabar, M.K.A.; Siri, Z. Monotone Iterative Method for ϑ-Caputo Fractional Differential Equation with Nonlinear Boundary Conditions. Fractal Fract. 2021, 5, 81. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Wang, G. Monotone iterative method for nonlinear fractional p-Laplacian differential equation in terms of ψ-Caputo fractional derivative equipped with a new class of nonlinear boundary conditions. Math. Meth. Appl. Sci. 2021, 45, 967–976. [Google Scholar] [CrossRef]
- Wang, G. Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments. J. Comput. Appl. Math. 2012, 236, 2425–2430. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Sudsutad, W.; Zhang, L.; Tariboon, J. Monotone iterative technique for a nonlinear fractional q-difference equation of Caputo type. Adv. Difference Equ. 2016, 211, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Anal. 2009, 71, 2087–2093. [Google Scholar] [CrossRef]
- Abdo, M.S.; Ibrahim, A.G.; Panchal, S.K. Nonlinear implicit fractional differential equation involving-Caputo fractional derivative. Proc. Jangjeon Math. Soc. 2019, 22, 387–400. [Google Scholar]
- Patil, J.; Chaudhari, A.; Abdo, M.S.; Hardan, B. Upper and lower solution method for positive solution of generalized Caputo fractional differential equations. Adv. Theo. Nonl. Anal. Appl. 2020, 4, 279–291. [Google Scholar] [CrossRef]
- Wahash, H.A.; Panchal, S.K.; Abdo, M.S. Positive solutions for generalized Caputo fractional differential equations with integral boundary conditions. J. Math. Model. 2020, 8, 393–414. [Google Scholar]
- Wei, Z.; Li, Q.; Che, J. Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative. J. Math. Anal. Appl. 2010, 367, 260–272. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derbazi, C.; Baitiche, Z.; Abdo, M.S.; Shah, K.; Abdalla, B.; Abdeljawad, T. Extremal Solutions of Generalized Caputo-Type Fractional-Order Boundary Value Problems Using Monotone Iterative Method. Fractal Fract. 2022, 6, 146. https://doi.org/10.3390/fractalfract6030146
Derbazi C, Baitiche Z, Abdo MS, Shah K, Abdalla B, Abdeljawad T. Extremal Solutions of Generalized Caputo-Type Fractional-Order Boundary Value Problems Using Monotone Iterative Method. Fractal and Fractional. 2022; 6(3):146. https://doi.org/10.3390/fractalfract6030146
Chicago/Turabian StyleDerbazi, Choukri, Zidane Baitiche, Mohammed S. Abdo, Kamal Shah, Bahaaeldin Abdalla, and Thabet Abdeljawad. 2022. "Extremal Solutions of Generalized Caputo-Type Fractional-Order Boundary Value Problems Using Monotone Iterative Method" Fractal and Fractional 6, no. 3: 146. https://doi.org/10.3390/fractalfract6030146
APA StyleDerbazi, C., Baitiche, Z., Abdo, M. S., Shah, K., Abdalla, B., & Abdeljawad, T. (2022). Extremal Solutions of Generalized Caputo-Type Fractional-Order Boundary Value Problems Using Monotone Iterative Method. Fractal and Fractional, 6(3), 146. https://doi.org/10.3390/fractalfract6030146