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Abstract: At present, the consensus problem of fractional complex systems has received more
attention. However, there is little literature on the consensus problem of fractional-order complex
systems under noise disturbance. In this paper, we present a fractional-order double-integral multi-
agent system affected by a common bounded fluctuating potential, where the protocol term consists
of both the relative position and velocity information of neighboring agents. The consensus conditions
of the presented system in the absence of noise are analytically given and verified by a numerical
simulation algorithm. Then, the influences of the system order and other system parameters on the
consensus of the presented system in the presence of bounded noise are also analyzed. It is found
that when compared with the classical integer-order system, the presented fractional-order system
has a larger range of consensus parameters and has more rich dynamic characteristics under the
action of random noise. Especially, the bounded noise has a promoting effect on the consensus of
the presented fractional-order system, while there is no similar phenomenon in the corresponding
integer-order system.

Keywords: fractional-order system; multi-agent system; consensus; fluctuating potential; bounded
noise

1. Introduction

Complexity science [1–3] studies complex systems and complexity and reveals and
explains the operating laws of complex systems, involving nature, engineering, biology,
economics, management, politics, and society. It is known as ‘science in the 21st century’.
As an important piece of research content of complexity science, due to its important
theoretical and practical significance, multi-agent system (MAS) [4,5] has become a new
research topic in many fields such as system, control, and artificial intelligence, and has
been widely concerned by scholars in many fields.

In the past decades, scholars have carried out in-depth research on the consensus and
multi-consensus [6,7] of the first-order and second-order (linear and nonlinear, homoge-
neous and heterogeneous [8,9]) MASs under different topologies, time delays, sampled-
data, asynchronous and aperiodic communications, time-driven jumps, and have achieved
fruitful results [10–15]. Subsequently, some scholars extended the classical first-order and
second-order MASs to high-order MASs [16–19]. Since the beginning of the 21st century,
the study of fractional calculus has made notable progress. Due to the more accurate de-
scription of the historical dependence on systems, various modeling methods and theories
of fractional-order dynamic systems based on the definition of fractional calculus have
gradually been successfully applied in many fields, such as high-energy physics, anomalous
diffusion, complex viscoelastic material mechanics, system control, rheology, biomedical
engineering, and economics [20–22]. Hereafter, several consensus problems are studied
for fractional-order multi-agent systems (FOMASs) [23–28]. For example, in [23], the con-
sensus of FOMASs with general linear models over a directed communication graph is
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investigated via an observer-type protocol. In [24], the leader-following tracking consensus
has been studied in MASs in which the leader is described by an integer-order differential
system while the followers are governed by a fractional-order differential system. In [25],
sampled-data-based consensus problems for single-integrator FOMASs are studied. In [26],
the authors investigate several consensus problems of continuous-time double-integrator
FOMASs with directed communication topologies. In [27], the authors investigate the track-
ing consensus problem for second-order leader systems by designing a fractional-order
observer, where a periodic sample-based data event-triggered control is employed. Very
recently, [28] addresses the event-triggered consensus problem for Takagi–Sugeno fuzzy
FOMASs with switching topologies.

In addition, it is well known that the real system is always in disturbance from internal
fluctuation and the external environment. Therefore, it is undoubtedly of practical signifi-
cance to study the stochastic dynamics of complex systems under noise disturbance. The
consensus/synchronization under the action of noise is a typical dynamic characteristic of
stochastic complex systems. Its occurrence mechanism and the influence of various factors
on it need to be further studied. Several studies examined the consensus of MASs under
noise disturbance [29–32]. In [29], a distributed sampled-data based protocol is proposed
for the average consensus of second-order integral MASs under switching topologies and
communication noises, and some sufficient conditions have been obtained to ensure the
mean square/almost sure average consensus. The study in [30] studies the second-order
consensus of MASs with noise in a leaderless architecture. Sufficient consensus conditions
are established, which characterize how much the noise intensity or the delay MASs can
stand so that second-order consensus can be reached. Ref. [31] investigates the consensus
stabilization problem of stochastic MASs with noise, Markovian switching topology, and
communication delays, and obtains necessary and sufficient conditions for the consen-
sus stabilization. Subsequently, the authors in [32] investigate the consensus problem
of multiple discrete-time integrator agents with communication constraints and additive
process noise and propose a protocol to achieve the approximate consensus of agents over
inter-agent communication networks with finite bit rates. However, there is little literature
on the consensus of FOMASs under noise disturbance.

Moreover, the traditional view is that noise will inhibit the consensus/synchronization
behavior of the system, but previous studies have shown that in many nonlinear systems,
noise will affect the synchronization of the system in different forms, resulting in positive
effects such as ‘noise-induced synchronization’ or ‘noise-enhanced synchronization’ [33].
Especially when the individuals of complex networks are in the same common environ-
ment, the environmental noise may have the same effect on them. For example, in the
nervous system, the highly correlated and random synaptic inputs received by each neuron
are usually modeled as the common noise of neurons [34]. Random fluctuations of the
extracellular environment also have the same effect on each cell in the population because
this noise exerts the same effect on each cell through the signal molecule AI [35,36]. Studies
have shown that common extracellular noise can indeed make each cell in the population
switch between two equilibrium states in cooperative behavior, so as to finally realize the
body synchronous switching of the cell population [35]. In fact, as early as 1994, Maritan
and Banavar found that two identical and independent chaotic maps affected by uniformly
distributed common noise can be synchronized [37]. Subsequently, various positive effects
of common noise in complex systems, such as promoting the synchronization of chaotic
systems [38], inducing spatiotemporal coherent resonance [36], and stochastic resonance of
integer-order or fractional-order complex networks [39,40], etc., have attracted more and
more attention. However, there is also little reported on the positive effect of noise on the
consensus of MASs.

Motivated by the above discussion, in this paper, we present a double-integral FOMAS
in a common bounded fluctuating potential where the protocol term consists of both
the relative position and velocity information of neighboring agents. At first, based on
the stability theory of fractional differential equations, the consensus conditions of the
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presented system in the absence of noise are analytically given and verified by a numerical
simulation algorithm. From an analysis of the influences of fractional order and other
system parameters (the eigenvalues of the Laplacian matrix, the double coupling strength,
and the potential parameter) on the consensus of the presented double-integral FOMAS, it
is found that the fractional-order system is easier to achieve position/velocity consensus
than the classical integer-order system; that is, the fractional-order system has a larger
range of consensus parameters. Then, the influences of the system order and other system
parameters on the consensus of the presented system in the presence of bounded noise
are also analyzed. It is found that common and bounded noise have a promoting effect on
the consensus of double-integral FOMAS, while it does not promote the consensus of the
corresponding integer-order MAS. That is to say, the bounded noise of appropriate intensity
plays an optimization role for the presented FOMAS. To sum up, the research results of this
paper, on the one hand, show that the fractional-order complex network under the action
of noise has richer dynamic characteristics than the integer-order complex network. On the
other hand, the presented FOMAS can be synchronized by changing the noise intensity.
This method provided a brand-new way to realize consensus of fractional-order systems
with uncontrollable system parameters by controlling the output noise intensity.

The rest of the paper is organized as follows. Section 2 firstly presents the new
double-integral FOMAS in a bounded fluctuating potential, then deduces and verifies the
consensus conditions, and analyzes the influences of the system order and other parameters
on the consensus of the presented system in the absence of noise. In Section 3, the influences
of the parameters on the consensus of the presented system in the presence of bounded
noise are analyzed. Section 4 gives the conclusion of this paper.

2. Model and Consensus Analysis of Double-Integral FOMAS
2.1. Double-Integral FOMAS Model and Its Consensus Conditions
2.1.1. Graph Theory

Let G(A) = (V , E , A) denote an unweighted and undirected graph of order N,
where V = {v1, v2, . . . , vN} is the vertex set of the graph, E ⊂ V × V is the edge set, and
A =

(
aij
)
∈ RN×N is an adjacency matrix with rows and columns indexed by the vertices.

The edge of G is denoted by a pair
(
vi, vj

)
, and

(
vi, vj

)
∈ E if and only if aij = 1. In this

paper, we assume (vi, vi) /∈ E and each element of E is unique and denote the collection
of neighbors of vi as Ni =

{
vj :

(
vj, vi

)
∈ E

}
. We assume that AT = A, that is, graph

G(A) = (V , E , A) is undirected. Then the Laplacian matrix L =
(
lij
)

corresponding to
the coupling network can be derived as follows:

lij =

{
∑vj∈Ni

aij, i = j
−aij, i 6= j

(1)

Furthermore, for an undirected graph, the matrix L is diagonalizable and has N real
eigenvalues such that 0 = λ1 ≤ λ2 · · · ≤ λN .

2.1.2. Double-Integral FOMAS

We consider a FOMAS consisting of N double linearly coupling agents, xi(t) represents
the position of the i-th agent along the x axis at time t, and vi(t) represents the velocity
of the i-th agent along the x-axis at time t. c and d are the position coupling strength and
velocity coupling strength, respectively. In addition, each agent is simultaneously affected
by a random fluctuating potential field with a potential field parameter a > 0, and the
common noise of the system is ξ(t). Thus, the model of the presented double-integral
FOMAS can be expressed by the following fractional-order stochastic differential equations:{

Dpxi(t) = vi(t)
Dpvi(t) = −(a + ξ(t))xi(t)− c ∑N

j=1 lijxj(t)− d ∑N
j=1 lijvj(t)

, i = 1, 2, . . . , N (2)
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where, Dpxi(t) and Dpvi(t) denote the p-th-order Caputo derivatives [20] of the position
and velocity of the i-th agent, respectively. Here, we consider the case p ∈ (0, 1], when
p = 1, FOMAS (2) becomes the classical double-integral MAS.

Without the influence of noise, FOMAS (2) can be simplified to the following deter-
ministic form:{

Dpxi(t) = vi(t)
Dpvi(t) = −axi(t)− c ∑N

j=1 lijxj(t)− d ∑N
j=1 lijvj(t)

, i = 1, 2, . . . , N (3)

With increase in time, all agents may converge asymptotically on the same consensus
value. The definitions of every agent in above systems converging on the same consensus
value are given as follows:

Definition 1. The noise-free FOMAS (3) is said to achieve consensus if for any initial states,
lim
t→∞

[
xi(t)− xj(t)

]
= 0 and lim

t→∞

[
vi(t)− vj(t)

]
= 0, ∀i, j = 1, 2, . . . , N. Furthermore, if there

exist x∗, such that lim
t→∞

xi(t) = x∗ and lim
t→∞

vi(t) = 0, ∀i = 1, 2, . . . , N, then system (3) is said to

achieve static consensus, where [x∗, 0]T is called as the consensus state of the system.

Definition 2. The stochastic FOMAS (2) is said to achieve consensus in the sense of mean, if for
any initial states, lim

t→∞

[〈
xi(t)− xj(t)

〉]
= 0 and lim

t→∞

[〈
vi(t)− vj(t)

〉]
= 0, ∀i, j = 1, 2, . . . , N,

where 〈.〉 is in the sense of mathematical expectation. Furthermore, if there exist x∗, such that
lim
t→∞
〈xi(t)〉 = x∗ and lim

t→∞
〈vi(t)〉 = 0, ∀i = 1, 2, . . . , N, then system (2) is said to achieve static

consensus, where [x∗, 0]T is called as the consensus state of the system.

2.1.3. Consensus Conditions for Double-Integral FOMAS

Firstly, we study the collective dynamic behavior of the presented double-integral
FOMAS (2)—consensus of position/velocity in the absence of noise through theoretical
analysis and derive the corresponding consensus conditions.

Equation (3) are differential equation systems of two sets of variables, which can be
transformed into the following matrix form:

Dpyi = A0yi −∑N
j=1 lijHyj (4)

where, yi =

[
xi
vi

]
, A0 =

[
0 1
−a 0

]
, H =

[
0 0
c d

]
.

Obviously, Equation (4) has a unique zero-solution synchronization state y(t) = 0.
Let δi = yi − y, δ = [δ1, δ2, · · · δN ], the variational equation near the synchronization state
corresponding to Equation (3) can be obtained as follows:

Dpδ = A0δ− HδL> (5)

Because the Laplacian matrix L of Equation (4) can be diagonalized, L can be decom-
posed as L = PΛP−1, where the diagonal matrix Λ = diag(λ1, λ2, · · · , λN), λk are the
eigenvalues of the Laplacian matrix L and satisfies 0 = λ1 ≤ λ2 · · · ≤ λN . Multiply both
sides of Equation (4) by P, and let η = δP = [η1, . . . , ηN ], then we can obtain the following
equation of η:

Dpη = A0η− HηΛ (6)

The above Equation (6) can be expressed as follows:

Dpηk = (A0 − λk H)ηk = Bkηk, k = 2, . . . , N (7)

where Bk = A0 − λk H =

[
0 1

−a− cλk −dλk

]
.
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According to [41], for k = 1 we have the variational equation for the synchronization
manifold y(t) = 0 (λ1 = 0). All other equations with k ≥ 2 in Equation (7) correspond to
transverse eigenvectors and represent dynamics perpendicular to the direction (transverse)
of the modified manifold, also called the transverse system. So, we have succeeded
in separating the synchronization manifold from the other transverse directions. The
convergence of the latter indicates that the system is tending to synchronization state. Thus,
if all the equations with k ≥ 2 in (7) correspond to the transverse system being stable, then
the complete consensus/synchronization of the system can occur and is stable.

Thus, the transverse system of Equation (7) can be written as the fractional-order main
stability equation Dpy = Bky, k ≥ 2. According to the stability theory of the zero solution
of fractional differential equations [20], the global asymptotic stability of its zero solution is
equivalent to the argument of all eigenvalues of Bk satisfies |arg(λ)| > pπ/2. That is to say,
when the arguments of all eigenvalues λ of Bk (k = 2, 3, . . . , N) satisfy |arg(λ)| > pπ/2,
the noise-free double-integral FOMAS (3) achieves consensus given in Definition 1.

After theoretical derivation, the following theorem gives the consensus conditions of
the presented double-integral FOMAS (3) when the three parameters—the potential field
parameter a > 0, the position coupling strength c and the velocity coupling strength d take
different types of values.

Theorem 1. Consider the noise-free double-integral FOMAS (3) under an unweighted and undi-
rected graph with fractal order p ∈ (0, 1], the potential field parameter a > 0, the position coupling
strength c ∈ R, the velocity coupling strength d ∈ R. The consensus in Definition 1 can be achieved
if and only if a, c, d, and the largest eigenvalue λmax of the Laplacian matrix L satisfy one of the
following three categories:

(1) Category 1: d ≥ 0, c ≥ 0.
(2) Category 2: d ≥ 0, c < 0, and the largest eigenvalue of the Laplacian matrix L satisfies

0 < λmax < −a/c.
(3) Category 3: d < 0, and the largest eigenvalue of the Laplacian matrix L satisfies

0 < λmax < d−2 cos2(pπ/2)
[

2c + 2
√

c2 + ad2sec2(pπ/2)
]

In particular, this category, when p = 1, the corresponding integer-order MAS cannot achieve
consensus.

Proof. The consensus conditions of the noise-free FOMAS (3) depends on the eigenvalues
of the matrix Bk in the fractional main stability equation Dpy = Bky, k ≥ 2. Since the
characteristic equation of matrix Bk can be written as det(B− λE) = λ2 + (dλk)λ + (a +
cλk) = 0, whose arguments of all the eigenvalues can be calculated. Here, since λk is an
eigenvalue of the Laplacian matrix L, λk needs to satisfy λk ≥ 0. When λk = 0, Equation (7)
can be written as Dαηk = Aηk, so the characteristic polynomial of matrix B1 in the fractional-
order main stability equation is det(B1 − λE) = λ2 + a, let λ2 + a = 0, and the eigenvalue
of B1 can be calculated as λ = ±i

√
a, which leads to the stability of the corresponding main

stability equation. When λk 6= 0, the roots of the matrix characteristic equation depend on
the value of its discriminant ∆ = (dλk)

2 − 4(a + cλk), as follows:

(1) When ∆ > 0, that is λk > d−2
(

2c + 2
√

c2 + ad2
)

or λk < d−2
(

2c− 2
√

c2 + ad2
)

, then

Bk has two different eigenvalues λ1,2
B =

[
−dλk ±

√
(dλk)

2 − 4(a + cλk)

]
/2;

(2) When ∆ = 0, that is λk = d−2
(

2c + 2
√

c2 + ad2
)

or λk = d−2
(

2c− 2
√

c2 + ad2
)

, then

Bk has two identical eigenvalues λ1,2
B = −dλk/2.

(3) When ∆ < 0, that is d−2
(

2c− 2
√

c2 + ad2
)
< λk < d−2

(
2c + 2

√
c2 + ad2

)
, then Bk

has two different eigenvalues λ1,2
B =

[
−dλk ± i

√
4(a + cλk)− (dλk)

2
]

/2.
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Now that we discuss the eigenvalue argument value of Bk in the following five cases:
Case 1: (d > 0, c ≥ 0): No matter ∆ = (dλk)

2− 4(a + cλk) is any real number, we have
that the real part of all eigenvalues of Bk is less than 0 (especially, when ∆ > 0, since−dλk <

−
√
(dλk)

2 − 4(a + cλk) then we have λ1,2
B =

[
−dλk ±

√
(dλk)

2 − 4(a + cλk)

]
/2 < 0).

Thus, all the eigenvalue arguments of Bk satisfy |arg(λ)|> pπ/2. So, in this case, with λk
being any positive real numbers, the noise-free FOMAS (3) can achieve consensus.

Case 2: (d > 0, c < 0): When ∆ = (dλk)
2 − 4(a + cλk) > 0, that is to say λk <

d−2
(

2c− 2
√

c2 + ad2
)

or d−2
(

2c + 2
√

c2 + ad2
)
< λk, Bk has two different real eigenval-

ues λ1,2
B =

[
−dλk ±

√
(dλk)

2 − 4(a + cλk)

]
/2, then both eigenvalues λ1,2

B are less than 0

if and only if λk < −a/c. Note that in this case d−2
(

2c + 2
√

c2 + ad2
)
< −a/c, we obtain

the condition of λk is λk < −a/c; when ∆ = 0 or ∆ < 0, it is easy to find that the real
part of all eigenvalues of Bk is less than 0, thus all the eigenvalue arguments of Bk satisfy
|arg(λ)|> pπ/2. Therefore, in this case, when each λk satisfies λk < −a/c, the noise-free
FOMAS (3) can achieve consensus.

Case 3: (d = 0, c ≥ 0): It is easy to find that the discriminant always satisfies ∆ =

−4(a + cλk) < 0, then the eigenvalues of Bk are pure imaginary numbers λ1,2
B = ±i

√
a + cλk,

which satisfy |arg(λ)|> pπ/2, in this case the noise-free FOMAS (3) can always achieve
consensus.

Case 4: (d = 0, c < 0): When ∆ = −4(a + cλk) ≥ 0, that is λk ≥ −a/c, the eigenvalues
of Bk are λ1,2

B = ±
√
−(a + cλk), in this case, the arguments of the eigenvalues of Bk do

not all satisfy |arg(λ)|> pπ/2 , so the noise-free fractional-order system (2) cannot achieve
consensus. However, when ∆ < 0, that is λk < −a/c, the eigenvalue of Bk are pure
imaginary numbers λ1,2

B = ±i
√

a + cλk,which satisfy |arg(λ)|> pπ/2. Thus, in this case,
the noise-free FOMAS (3) can achieve consensus if each λk < −a/c.

Case 5: (d < 0): when ∆ ≥ 0, the eigenvalue λ1,2
B =

[
−dλk ±

√
(dλk)

2− 4(a + cλk)

]
/2

of Bk are always positive real numbers, the arguments of the eigenvalues of Bk do not all
satisfy |arg(λ)|> pπ/2, so the noise-free FOMAS (3) cannot achieve consensus. However,

when ∆ < 0, the eigenvalues of Bk are λ1,2
B =

[
−dλk ± i

√
4(a + cλk)− (dλk)

2
]

/2, and their

real parts are always positive. At this time, the arguments of the eigenvalues of Bk satisfy
|arg(λ)|> pπ/2 if and only if the argument of the eigenvalue satisfies the following:

tan(|arg(λ)|) = −
√

4(a + cλk)− (dλk)
2/(dλk) > tan(pπ/2) (8)

Note that d−2cos2( pπ
2
)[

2c− 2
√

c2 + ad2sec2
( pπ

2
)]

< 0. Therefore, Equation (8) can

be solved as follows:

0 < λmax < d−2cos2
( pπ

2

)[
2c + 2

√
c2 + ad2sec2

( pπ

2

)]
(9)

So, in this case, when λk satisfies Equation (9), the system can achieve consensus. �

2.2. Simulation Verification of Consensus Conditions

In Section 2.1.3, we theoretically derive the consensus conditions for the noise-free
FOMAS (3) under different parameter situations. In this subsection, we verify the above
theoretical consensus conditions through numerical simulations.

Let xi(tk) and vi(tk) represent the position and velocity of the i-th agent at time t = kh,
respectively, and h is the iterative step size. Based on the finite difference method defined
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by Grunwald-Letnikow [20], the numerical iterative formula of the double-integral FOMAS
(2) is given as follows:


xi(tk) = vi(tk)hp −∑k−1

r=1 (−1)r
(

p
r

)
xi(tk−r)

vi(tk) =
[
−(a + ξ(tk))xi(tk)− c ∑N

j=1 lijxj(tk)− d ∑N
j=1 lijvj(tk)

]
hp −∑k−1

r=1 (−1)r
(

p
r

)
vi(tk−r)

. (10)

Now we verify the consensus conditions (Theorem 1 given in Section 2.1.2) of the
double-integral FOMAS (2) in three categories ((1) d ≥ 0; c ≥ 0; (2) d ≥ 0, c < 0; (3) d < 0). In
order to quantitatively describe the tendency of the system consensus changing with time,
we introduce the following system average position difference function:

xdi f f (t) =
1

N − 1 ∑N−1
n=1 |〈xn(t)− xn+1(t)〉| (11)

Additionally, the system average velocity difference function as follows:

vdi f f (t) =
1

N − 1 ∑N−1
n=1 |〈vn(t)− vn+1(t)〉 |. (12)

to measure the consensus of the position and velocity of all the agents, respectively.
The number of the agents in the simulations of this paper is set to N = 10, the coupling

network is generated using a Watts–Strogatz (WS) small-world network rule, with average
degree Kc = 4 and reconnection probability pc = 0.5. The maximum eigenvalue of the
corresponding Laplacian matrix L is λmax = 7.3738. Meanwhile, the simulation step size is
set to h = 0.005, and the simulation duration is T = 30π.

(1) When the position coupling strength c = 1, the velocity coupling strength d = 0.1,
and the potential field parameter a = 1, Figure 1 shows the time-varying curves of the
average position difference function xdiff(t) and average velocity difference function
vdiff(t) in Equations (11) and (12) of the FOMAS (3) under different orders. It can be
seen that for all fractional orders, the values of the average position difference function
xdi f f (t) and the average velocity difference function vdi f f (t) gradually decrease as
time increases, and converge to a minimum value, indicating that all agents tend to
be consistent in terms of position and velocity. In addition, it can be seen that the
larger the order, the lower the value of the average position difference function and
the average velocity difference function at the same time, indicating that the system
achieves synchronization faster.
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𝑝
𝑟

) 𝑣𝑖(𝑡𝑘−𝑟)
.  (10) 

Now we verify the consensus conditions (Theorem 1 given in Section 2.1.2) of the 

double-integral FOMAS (2) in three categories ((1)𝑑 ≥ 0, 𝑐 ≥ 0; (2)𝑑 ≥ 0, 𝑐 < 0; (3)𝑑 < 0). 

In order to quantitatively describe the tendency of the system consensus changing with 

time, we introduce the following system average position difference function: 

𝑥𝑑𝑖𝑓𝑓(𝑡) =
1

𝑁−1
∑ |⟨𝑥𝑛(𝑡) − 𝑥𝑛+1(𝑡)⟩|𝑁−1

𝑛=1   (11) 

Additionally, the system average velocity difference function as follows: 

𝑣𝑑𝑖𝑓𝑓(𝑡) =
1

𝑁−1
∑ |⟨𝑣𝑛(𝑡) − 𝑣𝑛+1(𝑡)⟩|𝑁−1

𝑛=1 .  (12) 
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Under the same simulation parameters in Figure 1, Figure 2 plots the time-varying
curves of the position and velocity of each agent when the fractional order p = 0.8. It can
be found that the starting values of velocity and position of each agent are different, but
they gradually tend to the average value of zero before 10 s, and then fluctuate around the
average and finally converge to the same value of zero.
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Figure 2. The curves of the position (a)/velocity (b) of each agent as a function of time of FOMAS (3)
with different orders p (the case d ≥ 0, c ≥ 0).

(2) When the position coupling strength c = −1 and the velocity coupling strength
d = 0.1, Figure 3a–d respectively show the curves of the average position/velocity
difference functions of the FOMAS (3) changing with time under different orders.
In Figure 3a,b, a = 1, and thus 1 = −a/c < λmax = 7.3738, which does not satisfy
the consensus conditions in Theorem 1, it can be found that all the curves show a
trend of rapid growth to infinity as time increases. In Figure 3c,d, a = 20, and thus
20 = −a/c > λmax = 7.3738, which satisfies the consensus conditions in Theorem 1,
compared with Figure 3a,b, all curves in Figure 3c,d tend to zero as time increases.
At the same time, it can be seen that the larger the order, the lower the average
position/velocity difference functions at the same time, and the faster the system
achieves consensus.
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Figure 3. Average position difference function xdi f f (t) (a,c) and average velocity difference function
vdi f f (t) (b,d) curves of time of the fractional-order multi-agent system (3) with different orders p
when a = 1 (a,b) and a = 20 (c,d) (the case d ≥ 0, c < 0).
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Under the same simulation conditions as Figure 3, Figure 4 plots the time-varying
curves of the position and velocity of each agent as a function of time when the order is
p = 0.8, where the potential field parameter in Figure 4a,b is a = 1, and in Figure 4c,d is
a = 20. It can be found that when the parameters do not meet the consensus conditions of
Category (2) in Theorem 1, the position and velocity of each agent diverge to farther values
in a relatively short period of time, and there is a tendency to continue to diverge. When
the parameters meet the consensus conditions of Category (2), the position and velocity of
each agent fluctuates from different initial values tend to the average value of zero with the
fluctuation amplitude gradually decaying, and finally achieve consensus.
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Figure 4. The curves of the position (a,c)/velocity (b,d) of each agent as a function of time of FOMAS
(3) with different orders p when a = 1 (a,b) and a = 20 (c,d) (the case d ≥ 0, c < 0).

When the position coupling strength c = 0.1, the velocity coupling strength d = −0.1,
and the potential field parameter a = 0.4, Figure 5 shows the curve of the average posi-
tion/velocity difference function of each agent changing with time under different orders.
According to the Category (3) in Theorem 1, FOMAS (3) may not always achieve consensus
with different fractional orders p. When the order p0 satisfies

λ− 2cos2(p0π/2)
[

2c + 2
√

c2 + ad2sec2(p0π/2)
]

max
(13)

are called as the critical consensus order. That is, when the order p < p0, the FOMAS
(3) achieves consensus. The critical consensus order under the current simulation is
p0 = 0.7753. It can be seen that when the order p is greater than the critical consen-
sus order p0 (for example, p0 = 0.8, 0.9, 1), the average position/velocity difference
functions diverge to infinity, and the larger the order, the faster the divergence speed. When
the order is smaller than the system critical consensus order, both the average position
difference function and the average velocity difference function converge to zero, and the
smaller the order, the faster the convergence speed.
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Figure 5. Average position difference function xdi f f (t) (a) and average velocity difference function
vdi f f (t) (b) curves of time of the double-integral FOMAS (3) with different orders p (the case d < 0).

Under the same simulation conditions as Figure 5, Figure 6 plots the time-varying
curves of position and velocity for each agent when the fractional order p = 0.8 Figure 6a,b
and p = 0.3 Figure 6c,d, respectively. It can be found that when the value of the fractional
order does not meet the consensus condition of Category (3) (p = 0.8), the position and
velocity of each agent show quasi-sinusoidal fluctuations with larger and larger amplitudes
around 0 as time increases. However, when the order value satisfies the consensus condition
of Category (3) (p = 0.3), the position and velocity of each agent gradually converge from
different initial values to near the average value of zero.

All the above simulation results verify the consensus conditions for the noise-free
FOMAS (3) given in Theorem 1.

2.3. Influence of Parameters on the Consensus of the Double-Integral FOMAS

In this section, we discuss the influence of position coupling strength c, velocity
coupling strength d, and the potential field parameter a on the consensus of the noise-free
FOMAS (3) under different orders. In order to quantitatively characterize the trend of
consensus with various parameters, we introduce the following average synchronization
error between the positions and velocities of the multi-agent:

Synx =

〈
lim

T→+∞

∫ T
0

1
N ∑N

i=1|xi(t)− x(t)|dt
〉

, Synv =

〈
lim

T→+∞

∫ T
0

1
N ∑N

i=1|vi(t)− v(t)|dt
〉

(14)

to describe the degree of consensus of the position and velocity of multiple agents, respec-

tively. Here, x(t) =
N
∑

i=1
xi(t) and v(t) =

N
∑

i=1
vi(t) are the mean filed function of position and

velocity, respectively. The smaller the value of Synx and Synv, the stronger the consensus
degree of the agents. Among them, 〈·〉 represent the expectation operation, which is the
result of one simulation in the absence of noise, and the average result of multiple simula-
tions in the presence of noise. In the following simulations, the coupling network still uses
the W–S small word network with 10 agents given in Section 2.2.
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Figure 6. The curves of the position/velocity of each agent as a function of time of FOMAS (3) with
orders p = 0.8 (a,b) and p = 0.3 (c,d) (the case d < 0).

(1) Influence of potential parameter a

When the position coupling strength c = 1, the velocity coupling strength d = −0.1,
Figure 7 shows the curves of the average synchronization error Synx and Synv as functions
of the potential parameter a under different orders p = 0.5, 0.7, 0.9, 1, respectively. It
can be seen that the average synchronization errors Synx and Synv corresponding to the
three curves of fractional order p = 0.5, 0.7, 0.9 both decrease as the potential parameter
a increases, but the curves with integer order p = 1 increases with the increase in the
potential parameter a and tends to infinity, which indicates that the influence of the potential
parameter a on the system consensus has completely different performances in the integer-
order system and fractional-order multi-agent systems.
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(2) Influence of position coupling strength c

When the potential parameter a = 1, the velocity coupling strength d = −0.1, Figure 8
shows the curves of the average synchronization error Synx and Synv as functions of
the position coupling strength c under different orders p = 0.5, 0.7, 0.9, 1, respectively.
It can be seen that, as the position coupling strength c changes from −0.5 to 2, average
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synchronization error Synx and Synv generally show a downward trend, but there is an
obvious turning point at c = 0, indicating that the influence of the position coupling
strength c greater than 0 and less than 0 on the consensus is completely different. In
addition, compared with the fractional smooth descent, when the order p = 1, the average
synchronization error tends to zero more slowly and has less fluctuation.
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(3) Influence of velocity coupling strength d

When the potential parameter a = 1, the position coupling strength c = 1, Figure 9
shows the curves of the average synchronization error Synx and Synv as functions of
the velocity coupling strength d under different orders p = 0.5, 0.7, 0.9, 1, respectively. It
can be seen that as the velocity coupling strength gradually increases from −1 to 1, the
average synchronization error Synx and Synv begin to diverge to infinity, and as d increases,
different orders start to converge to 0 at different critical points of d. In addition, after
crossing the critical point, the average synchronization error function first decreased and
then increased, which is a nonlinear function of d. That is to say, as d continued to increase,
the synchronization error function began to decrease, and there was an optimal value of d
near the critical point to minimize the average synchronization error functions.
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3. Consensus Analysis of Double-Integral FOMAS in a Bounded Fluctuating Potential

In this section, we analyze the synchronization dynamics of the presented FOMAS
(2) under the disturbance of different types of random noise and the influence of noise
on system consensus through the numerical simulation algorithm given by Equation (10).
Among them, Section 3.1 sets the common noise ξ(t) in Equation (2) as the following two
types of fully bounded noise: a uniform noise (as shown in Figure 10a) and a Gaussian
noise controlled by a cosine function (as shown in Figure 10b), respectively, Section 3.2 set
ξ(t) as a Gaussian noise that is not completely bounded (as shown in Figure 10c).
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3.1. The Influence of Bounded Noise on System Consensus

Considering the synchronization dynamics of FOMAS (2) when the common noise
ξ(t) is a fully bounded noise, we first analyze the influence of fractional-order on system
consistency. When ξ(t) is a bounded uniform noise, Figure 11 shows the average position
synchronization error Synx and the average velocity synchronization error Synv curves of
the noise intensity D of the FOMAS (2) with different fractional-orders p. The coupling
network is still the network with 10 agents given in Section 2.1, and other parameters are
set as a = 1, c = 0.1, d = 0.1. We can see that, for the classical integer-order system with
p = 1, both the average synchronization errors of both position and velocity will increase
and tend to infinity with the increase in noise intensity D. However, for the fractional
system with order p < one, the average position synchronization error Synx first decreases,
then increases, and finally tends to infinity with the increase in noise intensity D. In other
words, the noise with appropriate intensity enhances the consensus of FOMAS (2). That is,
the effect of ‘noise-induced synchronization’ appears. At the same time, the black circle in
Figure 11c represents the optimal noise intensity to minimize the synchronization position
error under each order. It can be seen that the optimal noise intensity does not have a
monotonic linear relationship with respect to the order. In addition, it can be seen from
Figure 11d that, with appropriate fractional-order, the average velocity synchronization
error Synv also has a similar ‘noise-induced synchronization’ effect.
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noise intensity D with different fractional-orders p (bounded uniform noise).

When ξ(t) is another bounded noise, a Gaussian noise controlled by a cosine function
Dcos(n(t)), (n(t) is a Gaussian noise with a zero mean and an intensity of 1), Figure 12
shows the average position synchronization error Synx and average velocity synchroniza-
tion error Synv curves of noise intensity D, of FOMAS (2) with different fractional orders p.
It can be seen that the results obtained in Figure 12 are basically consistent with those in
Figure 11. The two types of bounded noises, uniform noise and Gaussian noise bounded by
cosine function, may both promote the consensus of the presented double-integral MAS in
the fractional-order case, but does not promote the consensus of the integer-order system.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 11. The average position/velocity synchronization error 𝑆𝑦𝑛𝑥 (a,c) and 𝑆𝑦𝑛𝑣 (b,d) curves 

of noise intensity D with different fractional-orders p (bounded uniform noise). 

When 𝜉(𝑡) is another bounded noise, a Gaussian noise controlled by a cosine func-

tion 𝐷𝑐𝑜𝑠(𝑛(𝑡)), (𝑛(𝑡) is a Gaussian noise with a zero mean and an intensity of 1), Figure 

12 shows the average position synchronization error 𝑆𝑦𝑛𝑥 and average velocity synchro-

nization error 𝑆𝑦𝑛𝑣 curves of noise intensity D, of FOMAS (2) with different fractional 

orders p. It can be seen that the results obtained in Figure 12 are basically consistent with 

those in Figure 11. The two types of bounded noises, uniform noise and Gaussian noise 

bounded by cosine function, may both promote the consensus of the presented double-

integral MAS in the fractional-order case, but does not promote the consensus of the inte-

ger-order system. 

 

Figure 12. The average position synchronization error 𝑆𝑦𝑛𝑥  (a,c) and average velocity synchroniza-

tion error 𝑆𝑦𝑛𝑣  (b,d) curves of noise intensity D with different fractional-orders 𝑝 (Gaussian noise 

controlled by cosine function). 
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tion error Synv (b,d) curves of noise intensity D with different fractional-orders p (Gaussian noise
controlled by cosine function).

Secondly, we analyze the influence of other parameters on the consensus of the
presented FOMAS (2), in which the common noise ξ(t) is still the bounded uniform noise
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in Figure 10a. Figure 13a shows the average position synchronization error Synx curves of
the noise intensity D of the fractional-order multi-agent system (1) of p = 0.5 with different
position coupling strengths c, and the other parameters are a = 1, d = 0.1. It can be seen
that, for small noise intensity D, the larger the position coupling strength c, the smaller
the position synchronization error, which is the same as the case without noise; however,
the opposite phenomenon occurs as the noise intensity increases that is, the greater the
position coupling strength c, the greater the position synchronization error and the weaker
the position consistency of the system.
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Similarly, Figure 13b shows the average position synchronization error Synx curves of
noise intensity D of the FOMAS (2) of p = 0.5 with different velocity coupling strengths
d, and the other parameters are a = 1, c = 0.1. It can be seen that the influence of velocity
coupling strength d on position synchronization error is just the opposite to that of position
coupling strength c: when the noise intensity is small, the smaller the velocity coupling
strength d is, the smaller the position synchronization error is, and the higher the position
consistency of the system is; with the increase in noise intensity, it gradually becomes that
the larger the velocity coupling strength d, the smaller the synchronization error and the
higher the position consistency of the system.

Figure 13c shows the average position synchronization error Synx curves of noise
intensity D of the FOMAS (2) of p = 0.5 with different potential field parameters a, and
the other parameters are c = 0.1, d = 0.1. It can be seen that when the noise intensity is
low, the larger the potential field parameter a (the faster the output decays with time), the
smaller the synchronization error and the higher the position consistency of the system;
however, with the increase in noise intensity, the influence of the potential field parameter a
on position synchronization error also shows a reversal phenomenon such as the coupling
strengths c and d. That is to say, the system parameters a, c, d have different effects on the
system consensus under the action of noise with different intensities.

At last, we set the parameters as a = 1, c = −0.1, and d = −0.1, the average position
synchronization error Synx curves of noise intensity D of FOMAS (2) with different order p
are given in Figure 14, in which the common noise ξ(t) is still the bounded uniform noise
in Figure 10a. For this FOMAS, from Theorem 1 in Section 2.1, we know that in the absence
of noise, the system with order p < 0.5 can achieve synchronization, while the system with
order p ≥ 0.5 cannot. However, in the presence of noise, it can be seen from Figure 14 that
FOMAS (2) with fractional order has the effect of ‘noise-induced synchronization’. For the
FOMAS (2) with p = 0.6 and 0.7, when the noise intensity increases to a certain value, the
position synchronization error decreases significantly and is far less than 0.1. That is to
say, due to the synergistic and nonlinear effect of the bounded noise and fractional-order
systems, the system achieves synchronization instead. For example, Figure 15a,b show the
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curves of the position and velocity of each agent as a function of time of a fractional-order
multi-agent system (p = 0.6) in the absence of noise, Figure 15c,d show the curves of the
position and velocity of each agent as a function of time of the fractional-order multi-agent
system (p = 0.6) in the presence of noise when the noise intensity D = 20. It can be seen that
under the action of noise, each agent realizes the synchronization of position and velocity
with the increase in time t. This also verifies ‘noise-induced synchronization’ effect of the
fractional-order system.
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Figure 15. The curves of the position and velocity of each agent as a function of time of FOMAS (2)
in the absence of noise (a,b) and in the presence of noise (c,d) (p = 0.6).

3.2. The Influence of Unbounded Noise on System Consensus

When common noise ξ(t) is an unbounded Gaussian noise (Figure 10c), Figure 16
shows the average position synchronization error Synx and average velocity synchroniza-
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tion error Synv curves of the noise intensity D of the presented FOMAS (2) with different
fractional-orders p. The coupling network is still the network with 10 agents given in
Section 2.1, and other parameters are set as a = 1, c = 0.1, d = 0.1. It can be seen that, for
both the integer-order system and the fractional-order system, the average synchronization
errors of position and velocity increase and tend to infinity with the increase in noise
intensity D, and the ‘noise-induced synchronization’ effect disappears.
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4. Conclusions

In recent years, modeling methods and theories of fractional-order dynamic systems
based on the definition of fractional calculus have gradually become a new research topic in
many fields such as mathematics, physics, materials, systems, biology, and economics, and
have attracted the extensive attention of scholars in many fields. As a common dynamic
system, the classical integer-order MASs and their consensus/synchronization behaviors
have been widely studied. Very recently, scholars have gradually begun to study the
FOMASs and their dynamic properties. However, there is little literature on the consensus
of FOMASs under noise disturbance, which is the motivation of the study presented in this
paper. In this paper, we consider the consensus problem of a double-integral FOMASs in a
common bounded fluctuating potential. Our contribution comes from but goes beyond the
following points:

(1) Several recent papers have discussed the consensus problem of the FOMASs in the
absence of noise [23–28]. On the one hand, most protocol terms use the relative
position information of neighboring agents [24,26], since the relative position state can
be obtained more easily through localization methods [27]. In this paper, we consider
the protocol term consisting of both the relative position and velocity information
of neighboring agents, with the hope of drawing general conclusions from a more
general perspective. On the other hand, most of the above literature only gives
and verifies the consensus conditions [23–28]. In this paper, we not only give the
analytical consensus conditions of the presented system in the absence of noise, but
also analyze the influences of the system order and other system parameters on the
consensus behavior in detail. It is found that the fractional order, coupling strength
of the position and velocity, and potential parameters have different effects on the
system’s consensus behavior. Moreover, it is easier to achieve position and velocity
consensus in the presented FOMAS than in the classical integer-order MAS. That is,
the fractional-order system has a larger range of synchronization parameters.

(2) Most specifically, the influences of the system order and other system parameters on
the consensus of the presented double-integral FOMASs in the presence of bounded
noise are also analyzed in detail. It is found that, due to the synergistic and nonlinear
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effects of noise and fractional-order systems, common and bounded noise have a
promoting effect on the consensus of the presented FOMAS, while it does not promote
the consensus of the corresponding integer-order MAS. That is to say, the bounded
noise with the appropriate intensity plays an optimization role for the presented
FOMAS. It also shows that the fractional-order complex system under the action of
noise has richer dynamic characteristics than the integer-order complex system. To
our best knowledge, this paper is the first to report the positive effect of noise on the
consensus of MASs.

(3) The fractional order and the system parameters (coupling strength and potential
parameters) of the presented FOMAS have different effects on the system consensus
behavior under the action of noise with different intensities. All of them can change
the optimal noise intensity of the system to achieve complete consensus, which also
shows that the fractional order, the system parameters, and noise play complementary
roles in the complete consensus of the system. When the order and system parameters
are controllable, the consensus of the system can be realized by adjusting these
parameters; when the order and system parameters are uncontrollable, the double-
integral FOMAS can also be synchronized by changing the noise intensity.

The results of this paper not only provide new theoretical results for fractional-order
dynamical systems and complex systems, but also provide important theoretical guidance
for the control of fractional-order stochastic dynamical systems.
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