A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator
Abstract
:1. Introduction
2. Prerequisites
- (I).
- (II).
- (III).
- (IV).
- (i).
- is Lipschitz continuous with constants θ.
- (ii).
- is completely continuous.
- (iii).
- .
- (iv).
- where
3. Discrete Fractional Hybrid Pantograph Equation
4. Fixed Point Operators of HDFGHPE (6)
- (J1):
- There exists such that
- (J2):
- There exist with bound such that
- (J3):
- There exist with bound such that
4.1. Uniqueness of Solution of HDFGHPE (6)
4.2. Existence Results for HDFGHPE (6)
- Step 1:
- We shall show that the operator is Lipschitz continuous onFrom the condition , we have,Thus, is lipschitz continuous with constants .
- Step 2:
- We proceed to prove that the operator is completely continuous on .The continuity of w implies the continuity of operator on .First, we shall prove the uniform boundedness of the operator in .Therefore, is uniformly bounded on .We prove the equicontinuity of the the operator . For any let there exist such that
- Step 3:
- We prove .Let be arbitrary such thatTherefore
- Step 4:
- We show that Here,With and (12), the condition is satisfied.
5. Stability of HDFGHPE (6)
- (H1):
- (H2):
6. Numerical Examples
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ockendon, J.; Tayler, A.B. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Math. Phys. Eng. Sci. 1971, 322, 447–468. [Google Scholar]
- Darwish, M.A.; Sadarangani, K. Existence of solutions for hybrid fractional pantograph equations. Appl. Anal. Discret. Math. 2015, 9, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Wongcharoen, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for Hilfer type pantograph fractional differential equations and inclusions. Adv. Differ. Equ. 2020, 2020, 279. [Google Scholar] [CrossRef]
- Derfel, G.; Iserles, A. The pantograph equation in the complex plane. J. Math. Anal. Appl. 1997, 213, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Liu, M.Z. RungeKutta methods for the multi-pantograph delay equation. Appl. Math. Comput. 2005, 163, 383–395. [Google Scholar]
- Alzabut, J.; Selvam, A.G.M.; El-Nabulsi, R.A.; Vignesh, D.; Samei, M.E. Asymptotic Stability of Nonlinear Discrete Fractional Pantograph Equations with Non-Local Initial Conditions. Symmetry 2021, 13, 473. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Elsayed, E.M.; Kanagarajan, K. Existence theory and Stability analysis of nonlinear neutral pantograph equations via Hilfer-Katugampola fractional derivative. J. Adv. Appl. Comput. Math. 2020, 7, 1–7. [Google Scholar] [CrossRef]
- Othman, M.I.A.; Said, S.; Marin, M. A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase lag model. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 4788–4806. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Baleanu, D.; Hafez, R.M. A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 2014, 77, 43–54. [Google Scholar] [CrossRef]
- Iserles, A. On the generalized pantograph functional differential equation. J. Appl. Math. 1993, 4, 1–38. [Google Scholar] [CrossRef]
- Podlubny, I. Geometric and physical interpretation of fractional integration and differentiation. Fract. Calc. Appl. Anal. 2002, 5, 367–386. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Gu, H.; Trujillo, J.J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 2015, 257, 344–354. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhang, Y. Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 2015, 266, 850–859. [Google Scholar] [CrossRef]
- Furati, K.M.; Kassim, N.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 64, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Zada, A.; Alzabut, J. Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer—Hadamard type. Demonstr. Math. 2019, 52, 283–295. [Google Scholar] [CrossRef]
- Thaiprayoon, C.; Sudsutad, W.; Alzabut, J.; Etamed, S.; Rezapour, S. On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator. Adv. Differ. Equ. 2021, 2021, 201. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Aminikhah, H.; Refahi Sheikhani, A. Stability Analysis of Hilfer fractional systems. Math. Commun. 2015, 21, 45–64. [Google Scholar]
- Dhage, B.C. Quadratic perturbation of periodic boundary value problems of second order ordinary differential equations. Differ. Equ. Appl. 2010, 2, 465–486. [Google Scholar] [CrossRef] [Green Version]
- Dhage, B.C. A fixed point theorem in Banach algebras with applications to fractional integral equations. Kyungpook Math. J. 2004, 44, 145–155. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions. Abstr. Appl. Anal. 2014, 2014, 705809. [Google Scholar] [CrossRef]
- Dhage, B.C.; Ntouyas, S.K. Existence results for boundary value problems for fractional hybrid differential inclusions. Topol. Methods Nonlinear Anal. 2014, 44, 229–238. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.K.; Tariboon, J. Existence results for hybrid fractional integro-differential equations. Bound. Value Probl. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bashiri, T.; Vaezpour, S.M.; Park, C. Existence results for fractional hybrid differential systems in Banach algebras. Adv. Differ. Equ. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Herzallah, M.A.; Baleanu, D. On Fractional Order Hybrid Differential Equations. Abstr. Appl. Anal. 2014, 2014, 389386. [Google Scholar] [CrossRef]
- Karimov, E.T.; Lopez, B.; Sadarangani, K. About the existence of solutions for a hybrid nonlinear generalized fractional pantograph equation. Fract. Differ. Calc. 2016, 6, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Atici, F.M.; Eloe, P.W. A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2007, 2, 165–176. [Google Scholar]
- Atici, F.M.; Eloe, P.W. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. Two-point boundary value problems for finite fractional difference equations. J. Differ. Equ. Appl. 2011, 17, 445–456. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 2010, 51, 562–571. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, C.S.; Peterson, A.C. Discrete Fractional Calculus, 1st ed.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Goodrich, C.S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl. 2011, 61, 191–202. [Google Scholar] [CrossRef]
- Holm, M. Sum and difference compositions in discrete fractional calculus. Cubo 2011, 13, 153–184. [Google Scholar] [CrossRef] [Green Version]
- Haider, S.S.; Rehman, M.U.; Abdeljawad, T. On Hilfer fractional difference operator. Adv. Differ. Equ. 2020, 2020, 122. [Google Scholar] [CrossRef]
- Chasreechai, S.; Sitthiwirattham, T. Existence Results of Initial Value Problems for Hybrid Fractional Sum-Difference Equations. Discret. Dyn. Nat. Soc. 2018, 2018, 5268528. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Liu, Z. Asymptotic stability results for nonlinear fractional difference equations. J. Appl. Math. 2012, 2012, 879657. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, A.N.; Fomin, S.V. Elements of Function Theory and Functional Analysis; Nauka: Moscow, Russia, 1981. [Google Scholar]
- Griffel, D.H. Applied Functional Analysis; Ellis Horwood Publishers: Chichester, UK, 1981. [Google Scholar]
- Lachouri, A.; Ardjouni, A.; Djoudi, A. Existence and Ulam stability results for nonlinear hybrid implicit Caputo fractional differential equations. Math. Moravica 2020, 24, 109–122. [Google Scholar] [CrossRef]
- Chen, F. Fixed points and asymptotic stability of nonlinear fractional difference equations. Electron. J. Qual. Theory Differ. Equ. 2011, 39, 1–18. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Ulam-Hyers stability of Caputo fractional difference equations. Math. Methods Appl. Sci. 2019, 42, 7461–7470. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, Y. Existence of Ulam Stability of Solutions for Discrete Fractional Boundary Value problem. Discret. Dyn. Nat. Soc. 2013, 2013, 459161. [Google Scholar] [CrossRef]
- Selvam, G.M.; Alzabut, J.; Dhakshinamoorthy, V.; Jonnalagadda, J.M.; Abodayeh, K. Existence and stability of nonlinear discrete fractional initial value problems with application to vibrating eardrum. Math. Biosci. Eng. 2021, 18, 3907–3921. [Google Scholar] [CrossRef] [PubMed]
- Alzabut, J.; Selvam, A.G.M.; Vignesh, D.; Gholami, Y. Solvability and stability of nonlinear hybrid Δ-difference equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 2021. [Google Scholar] [CrossRef]
- Tabouche, N.; Berhail, A.; Matar, M.M.; Alzabut, J.; Selvam, A.G.M.; Vignesh, D. Existence and stability analysis of solution for Mathieu fractional differential equations with applications on some physical phenomena. Iran. J. Sci. Technol. Transcation Sci. 2021, 45, 973–982. [Google Scholar] [CrossRef]
- Selvam, A.G.M.; Baleanu, D.; Alzabut, J.; Vignesh, D.; Abbas, S. On Hyers-Ulam Mittag-Leffler stability of discrete fractional duffing equation with applications on inverted pendulum. Adv. Differ. Equ. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 2010, 26, 103–107. [Google Scholar]
Time | ||||||
---|---|---|---|---|---|---|
0.3 | 0.09000 | 0.09000 | 0.08999 | 0.09000 | 0.09000 | 0.09000 |
1.3 | 0.06383 | 0.07058 | 0.07733 | 0.08408 | 0.09083 | 0.09758 |
2.3 | 0.05464 | 0.06397 | 0.07379 | 0.08413 | 0.09497 | 0.10632 |
3.3 | 0.04991 | 0.06069 | 0.07258 | 0.08561 | 0.09982 | 0.11526 |
4.3 | 0.04694 | 0.05877 | 0.07228 | 0.08761 | 0.10488 | 0.12422 |
5.3 | 0.04487 | 0.05753 | 0.07244 | 0.08984 | 0.10998 | 0.13315 |
6.3 | 0.04334 | 0.05671 | 0.07285 | 0.09216 | 0.11506 | 0.14202 |
7.3 | 0.04214 | 0.05613 | 0.07341 | 0.09452 | 0.12010 | 0.15084 |
8.3 | 0.04118 | 0.05574 | 0.07406 | 0.09689 | 0.12508 | 0.15959 |
9.3 | 0.04040 | 0.05546 | 0.07477 | 0.09925 | 0.12999 | 0.16829 |
10.3 | 0.03974 | 0.05528 | 0.07552 | 0.10158 | 0.13485 | 0.17693 |
11.3 | 0.03918 | 0.05516 | 0.07629 | 0.10390 | 0.13964 | 0.18552 |
12.3 | 0.03869 | 0.05510 | 0.07707 | 0.10618 | 0.14438 | 0.19406 |
13.3 | 0.03827 | 0.05508 | 0.07786 | 0.10843 | 0.14905 | 0.20255 |
14.3 | 0.03790 | 0.05509 | 0.07866 | 0.11066 | 0.15368 | 0.21100 |
15.3 | 0.03758 | 0.05512 | 0.07946 | 0.11285 | 0.15825 | 0.21940 |
16.3 | 0.03729 | 0.05518 | 0.08025 | 0.11502 | 0.16277 | 0.22776 |
17.3 | 0.03703 | 0.05525 | 0.08104 | 0.11716 | 0.16724 | 0.23609 |
18.3 | 0.03679 | 0.05534 | 0.08183 | 0.11927 | 0.17167 | 0.24437 |
19.3 | 0.03658 | 0.05543 | 0.08260 | 0.12135 | 0.17606 | 0.25262 |
0 | 0.02133 | 0.03646 | 0.06066 | 0.09860 | 0.15705 | 0.24566 |
0.2 | 0.02440 | 0.04111 | 0.06701 | 0.10628 | 0.16477 | 0.25050 |
0.4 | 0.03100 | 0.06397 | 0.07666 | 0.11651 | 0.17392 | 0.25567 |
0.6 | 0.04396 | 0.06341 | 0.09101 | 0.12998 | 0.18472 | 0.26117 |
0.8 | 0.06790 | 0.08633 | 0.11191 | 0.14758 | 0.19744 | 0.26704 |
1.0 | 0.11018 | 0.12274 | 0.14184 | 0.17037 | 0.21235 | 0.27329 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shammakh, W.; Selvam, A.G.M.; Dhakshinamoorthy, V.; Alzabut, J. A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator. Fractal Fract. 2022, 6, 152. https://doi.org/10.3390/fractalfract6030152
Shammakh W, Selvam AGM, Dhakshinamoorthy V, Alzabut J. A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator. Fractal and Fractional. 2022; 6(3):152. https://doi.org/10.3390/fractalfract6030152
Chicago/Turabian StyleShammakh, Wafa, A. George Maria Selvam, Vignesh Dhakshinamoorthy, and Jehad Alzabut. 2022. "A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator" Fractal and Fractional 6, no. 3: 152. https://doi.org/10.3390/fractalfract6030152
APA StyleShammakh, W., Selvam, A. G. M., Dhakshinamoorthy, V., & Alzabut, J. (2022). A Study of Generalized Hybrid Discrete Pantograph Equation via Hilfer Fractional Operator. Fractal and Fractional, 6(3), 152. https://doi.org/10.3390/fractalfract6030152