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Abstract: In this paper, we discuss the existence and uniqueness of solutions for boundary value
problems for Hilfer generalized proportional fractional differential equations with multi-point bound-
ary conditions. Firstly, we consider the scalar case for which the uniqueness result is proved by
using Banach’s fixed point theorem and the existence results are established via Krasnosel’skiĭ’s
fixed point theorem and Leray–Schauder nonlinear alternative. We then establish an existence result
in the Banach space case based on Mönch’s fixed point theorem and the technique of the measure
of noncompactness. Examples are constructed to illustrate the application of the main results. We
emphasize that, in this paper, we initiate the study of Hilfer generalized proportional fractional
boundary value problems of order in (1, 2].

Keywords: Hilfer proportional fractional derivative; Hilfer proportional fractional integral; fixed
point theorems; existence results; measure of noncompactness

1. Introduction

Fractional calculus, as an extension of usual integer calculus, has been applied to
investigate derivatives and integrals of arbitrary orders. Since the derivative and integral
operators of integer orders cannot be applied to model all real phenomena, different
types of fractional operators have been considered by many authors as a generalization of
these operators. The considered equations in fractional calculus are often unable to study
complex systems and one can say that the applied methods in fractional calculus have
been used to model many phenomena in physics, chemistry, mechanics and other sciences
(see [1–7]). For numerical methods applied to fractional differential equations, see [8,9].
In consequence, a diversity of new fractional operators have been introduced by many
studies to improve the field of fractional calculus, as can be seen, for example, in [10–15].
Katugampola [16,17] combined the Riemann–Liouville and Hadamard fractional operators
by introducing the so-called generalized fractional operator. Jahard et al. [14] modified
the generalized derivatives to cover the Caputo and Caputo–Hadamard derivatives [18].
On the other hand, the implication of a conformable derivative was introduced in [19,20]
and then studies have researched the nonlocal versions of these operators (see [15]). The
conformable derivative has a primary defect so that when this operator with an order of 0
is applied to a function, it does not give the function itself. The deficit was solved in [21,22]
by redefining the conformable derivative to obtain the function itself when the order of
this operator is zero. The modified definition of the conformable derivative was followed
by Jarad et al. [23] so that the fractional version of the mentioned operator was suggested.
For some recent results containing Hilfer or proportional fractional differential operators,
we refer the reader to [24–29] and the references cited therein. Following the mentioned
works, in [30], the notion of fractional derivative of the Hilfer generalized proportional
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type was defined and the existence and uniqueness of solutions for the nonlinear fractional
differential problem of the form were investigated:

Dp1,p2,ηu(z) = g(z, u(z)), z ∈ [c, T],

I1−γ,ηu(c) =
m

∑
i=1

diu(ξi), γ = p1 + p2 − p1 p2, ξi ∈ (c, T),
(1)

where the symbols Dp1,p2,η and I1−γ,η indicate the Hilfer generalized proportional fractional
derivative and integral, respectively, p1 ∈ (0, 1), (1− γ) ∈ [p1, 1] are the order of fractional
derivative and integral, respectively, p2 ∈ [0, 1] is a parameter of Hilfer type, η ∈ (0, 1],
g : [c, T]×R→ R is continuous, di ∈ R and c < ξ1 < ξ2 < · · · < ξm = T.

To the best of our knowledge, there is no other paper in the literature dealing with
Hilfer generalized proportional fractional derivative. Thus, motivated by the above paper,
our goal in this paper is to enrich this new research area. Thus, in this paper, we inset
and study a nonlocal boundary value problem of Hilfer generalized proportional FDEs
given by 

(
Dδ,η,σ

c+ + kDδ−1,η,σ
c+

)
w(z) = h(z, w(z)), z ∈ [c, d],

w(c) = 0, w(d) =
m

∑
j=1

θjw(ξ j),
(2)

where Dδ,η,σ
c+ is the fractional derivative of a Hilfer generalized proportional type of order

1 < δ < 2, the Hilfer parameter 0 ≤ η ≤ 1, σ ∈ (0, 1], k ∈ R, h : [c, d] × R → R is a
continuous function, c ≥ 0, θj ∈ R, ξ j ∈ (c, d) for j = 1, 2, 3, . . . , m.

We prove the existence and uniqueness results in the scalar case by applying the
classical Banach’s and Krasnosel’skiĭ’s fixed point theorems, as well as the Leray–Schauder
nonlinear alternative. Then, by using the measure of noncompactness and Mönch’s fixed
point theorem, we established an existence result for Problem (2), when f : [c, d]× E→ E
is a given function, and (E, ‖ · ‖∞) is a real Banach space.

Compared with the existing literature, the novelty of this research lies in the fact that
we introduce and study a new nonlocal boundary value problem for Hilfer generalized
proportional fractional differential equations of order in (1, 2]. Moreover, we considered
sequential fractional derivatives, and studied both cases: the scalar case and the Banach
space case. The used methods are standard, but their configuration to Problem (2) is new.

The remaining part of this manuscript is structured as follows: Section 2 contains
some basic notations, definitions and basic results of fractional calculus needed in this
paper. In Section 3, we prove an auxiliary result which plays a vital role in transforming
the Problem (2) into a fixed point problem. In Section 4, based on Banach’s contraction
mapping principle, we first establish the existence of a unique solution for the Problem (2)
and then via Krasnosel’skiĭ’s fixed point theorem and Leray–Schauder nonlinear alternative,
we prove two existence results. Then, in Section 5, we establish an existence result based
on Mönch’s theorem and the technique of the measure of noncompactness. Additionally,
Section 6 provides examples to illustrate the applicability of the results developed in
Sections 4 and 5.

2. Preliminaries

In this section, some notations, definitions and lemmas from the fractional calculus
are recalled.

We denote by C([c, d], E) the Banach space of all continuous functions u : [c, d] → E
endowed by

‖u‖∞ = sup{‖u(z)‖, z ∈ [c, d]}.

In the case where E = R, we use the notation

‖u‖ = sup{|u(z)|, z ∈ [c, d]}.
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Definition 1 ([31]). Let p ∈ L1([c, d],R). The fractional integral of the Riemann–Liouville type
with order δ > 0 is defined by

Iδ
c+ p(z) =

1
Γ(δ)

∫ z

c
(z− τ)δ−1 p(τ)dτ,

where Γ(·) denotes the classical Gamma function.

Definition 2 ([31]). Let p ∈ Cn([c, d],R). The fractional derivative of Caputo type with order
δ > 0 of the function p is defined by

CDδ
c+ p(z) =

1
Γ(n− δ)

∫ z

c
(z− s)n−δ−1 p(n)(s)ds, δ > 0, n− 1 < δ < n, n ∈ N.

Definition 3 ([23]). Let σ ∈ (0, 1] and δ ∈ C with Re(δ) > 0. Then, the fractional operator

Iδ,σ
c+ p(z) =

1
σδΓ(δ)

∫ z

c
e

σ−1
σ (z−s)(z− s)δ−1 p(s)ds, z > c,

is called the left-sided generalized proportional integral of order δ > 0 of the function p.

Definition 4 ([23]). The left generalized proportional fractional derivative of order δ > 0 and
σ ∈ (0, 1] of the function h is defined by

Dδ,σ
c+ p(z) =

Dn,σ

σn−δΓ(n− δ)

∫ z

c
e

σ−1
σ (z−s)(z− s)n−δ−1 p(s)ds, δ ∈ C, Re(δ) > 0,

where Γ(·) indicates the Gamma function and n = [δ] + 1, [δ] denotes the integer part of a real
number δ.

Definition 5 ([23]). The left-sided generalized proportional fractional derivative of Caputo type of
order δ > 0 and σ ∈ (0, 1] of the function p ∈ Cn([c, d],R) is defined by

CDδ,σ
c+ p(z) =

1
σn−δΓ(n− δ)

∫ z

c
e

σ−1
σ (z−s)(z− s)n−δ−1Dn,σ p(s)ds, δ ∈ C, Re(δ) > 0,

provided the right-hand side exists.

Some properties of the generalized proportional fractional integral and derivative are
given in the next lemmas.

Lemma 1 ([23]). Assume that δ, δ ∈ C so that Re(δ) ≥ 0 and Re(δ) > 0. Then, for any σ ∈ (0, 1],
we have:

(Iδ,σ
c+ e

σ−1
σ s(s− c)δ−1)(z) =

Γ(δ)
σδΓ(δ + δ)

e
σ−1

σ z(z− c)δ+δ−1,

(Dδ,σ
c+ e

σ−1
σ s(s− c)δ−1)(z) =

σδΓ(δ)
Γ(δ− δ)

e
σ−1

σ z(z− c)δ−δ−1,

(Iδ,σ
c+ e

σ−1
σ (c−s)(c− s)δ−1)(z) =

Γ(δ)
σδΓ(δ + δ)

e
σ−1

σ (c−z)(c− z)δ+δ−1,

(Dδ,σ
c+ e

σ−1
σ (c−s)(s− c)δ−1)(z) =

σδΓ(δ)
Γ(δ− δ)

e
σ−1

σ (c−z)(c− z)δ−δ−1.
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Lemma 2 ([23]). Suppose that σ ∈ (0, 1], Re(δ1) > 0 and Re(δ2) > 0. If p ∈ C([c, d],R), then:

Iδ,σ
c+ (Iδ,σ p)(z) = Iδ,σ

c+ (Iδ,σ p)(z) = (Iδ+δ,σ
c+ p)(z), z ≥ c. (3)

Lemma 3 ([23]). Let σ ∈ (0, 1] and 0 ≤ m < [Re(δ)] + 1. If p ∈ L1([a, b]) then:

Dm,σ
c+ (Iδ,σ

c+ p)(z) =
(

Iδ−m
c+ p

)
(z), z > c.

Now the Hilfer generalized proportional fractional derivative is introduced.

Definition 6 ([30]). Let n− 1 < δ < n, n ∈ N, σ ∈ (0, 1] and 0 ≤ η ≤ 1. Then, the fractional
proportional derivative of Hilfer type with order δ, parameter η and proportional number σ of the
function p is praised by

(Dδ,η,σ
c+ p)(z) = Iη(n−δ),σ

c+ [Dσ(I(1−η)(n−δ),σ
c+ p)](z),

in which Dσ p(z) = (1− σ)p(z) + σp′(z) and I(·),σ is the generalized proportional fractional
integral defined in Definition 3.

The Hilfer generalized proportional fractional derivative is equivalent to:

(Dδ,η,σ
c+ p)(z) = Iη(n−δ),σ

c+ [Dn,σ](I(1−η)(n−δ),σ
c+ p)(z) = (Iη(n−δ),σ

c+ Dγ,σ p)(z),

where γ = δ + η(n − δ). Thus, the operator Dδ,η,σ
c+ can be represented in terms of the

operators given in Definition 1 and Definition 2. The parameter γ satisfies:

1 < γ ≤ 2, γ ≥ δ, γ > η, n− γ < n− η(n− δ).

Lemma 4 ([30]). Let n− 1 < δ < n, σ ∈ (0, 1], 0 ≤ η ≤ 1 and γ = δ + η(n− δ) ∈ [δ, n]. If
p ∈ L1(c, d) and In−γ,σ

c+ p ∈ Cn([c, d],R), then:

Iδ,σ
c+ Dδ,η,σ

c+ p(z) = p(z)−
n

∑
j=1

e
σ−1

σ (z−c) (z− c)γ−j

σγ−jΓ(γ + 1− j)

(
I j−γ,σ p

)
(c+).

3. An Auxiliary Result

The following lemma dealing with a linear variant of the Problem (2) is the basic tool
for transforming the Problem (2) into a fixed point problem.

Lemma 5. Let 1 < δ < 2, 0 ≤ η ≤ 1, γ = δ + η(2− δ) ∈ [δ, 2], σ ∈ (0, 1], g ∈ C([c, d],R)
and:

∆ =
(d− c)γ−1

Γ(γ)
e

σ−1
σ (d−c) −

m

∑
j=1

θj
(ξ j − c)γ−1

Γ(γ)
e

σ−1
σ (ξ j−c) 6= 0.

Then, u is the solution of the linear problem:
(

Dδ,η,σ
c+ + kDδ−1,η,σ

c+

)
u(z) = g(z), z ∈ [c, d],

u(c) = 0, u(d) =
m

∑
j=1

θju(ξ j),
(4)
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if and only if:

u(z) = Iδ,σ
c+ g(z) +

(z− c)γ−1

∆Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1g(s)ds

− 1
σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1g(s)ds

− k
σ

m

∑
j=1

θj

∫ ξ j

c
u(s)e

σ−1
σ (ξ j−s)ds +

k
σ

∫ d

c
u(s)e

σ−1
σ (d−s)ds

]
e

σ−1
σ (z−c)

− k
σ

∫ z

c
u(s)e

σ−1
σ (z−s)ds. (5)

Proof. Let u be a solution of the Problem (4). Then, in view of Lemma 4, we conclude that

u(z) = Iδ,σ
c+ g(z) + c0

(z− c)γ−2

Γ(γ− 1)
e

σ−1
σ (z−c)

+c1
(z− c)γ−1

Γ(γ)
e

σ−1
σ (z−c) − k

σ

∫ z

c
u(s)e

σ−1
σ (z−s)ds. (6)

Now, due to u(c) = 0, we have c0 = 0. Consequently:

u(z) = Iδ,σ
c+ g(z) + c1

(z− c)γ−1

Γ(γ)
e

σ−1
σ (z−c) − k

σ

∫ z

c
u(s)e

σ−1
σ (z−s)ds. (7)

From u(d) = ∑m
j=1 θju(ξ j), we obtain:

c1 =
1
∆

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1g(s)ds

− 1
σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1g(s)ds

− k
σ

m

∑
j=1

θj

∫ ξ j

c
u(s)e

σ−1
σ (ξ j−s)ds +

k
σ

∫ d

c
u(s)e

σ−1
σ (d−s)ds

]
. (8)

By inserting c1 in (7), we obtain (5).
Conversely, by taking the operators Dδ,η,σ

c+ and Dδ−1,η,σ
c+ to (5) and putting them to the

left hand side of the first equation in (4), we can obtain the right hand side of (4). It is
obvious that u(c) = 0. By substituting z = d and z = ξ j in (4) and direct computation, we
have the second condition of (4). The proof is completed.

4. Existence and Uniqueness Results in the Scalar Case

By Lemma 5, we define an operator F : C([c, d],R) −→ C([c, d],R) associated with the
Problem (2) as

(Fu)(z) = Iδ,σ
c+ h(z, u(z))

+
(z− c)γ−1

∆Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1h(s, u(s))ds

− 1
σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1h(s, u(s))ds

− k
σ

m

∑
j=1

θj

∫ ξ j

c
u(s)e

σ−1
σ (ξ j−s)ds +

k
σ

∫ d

c
u(s)e

σ−1
σ (d−s)ds

]
e

σ−1
σ (z−c)

− k
σ

∫ z

c
u(s)e

σ−1
σ (z−s)ds. (9)
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Notice that the existence of fixed points of the operator F implies the existence of solutions
for Problem (2).

For the computational convenience, we set:

Φ1 =
(d− c)δ

σδΓ(δ + 1)
+

(d− c)γ−1

|∆|Γ(γ)
1

σδΓ(δ + 1)

[ m

∑
j=1

θj(ξ j − c)δ + (d− c)δ

]
, (10)

Φ2 =
(d− c)γ−1

|∆|Γ(γ)
k
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]
+

k
σ
(d− c). (11)

In this section, fixed point theorems are applied to present the existence and unique-
ness results concerning the Problem (2). First, Banach’s theorem is applied to establish the
uniqueness result.

Lemma 6 (Banach fixed point theorem [32]). Let G be a closed set in X and H : G → G
satisfies:

|Hu1 − Hu2| ≤ λ|u1 − u2|, for some λ ∈ (0, 1), and for all u1, u2 ∈ G.

Then, H admits a unique fixed point in G.

Theorem 1. Let 1 < δ < 2, 0 ≤ η ≤ 1, γ = δ + η(2− δ) ∈ [δ, 2], σ ∈ (0, 1]. Assume that:

(D1)There exists L > 0 such that:

|h(z, u1)− h(z, u2)| ≤ L|u1 − u2|, ∀z ∈ [c, d], u1, u2 ∈ R.

Then, Problem (2) has a unique solution on [c, d], provided that:

LΦ1 + Φ2 < 1, (12)

where Φ1 and Φ2 are defined by (10) and (11), respectively.

Proof. First, we show that F defined by (9) satisfies FBr ⊂ Br, where Br = {u ∈ C([c, d],R) :

‖u‖ ≤ r} with r >
MΦ1

1− LΦ1 −Φ2
and supz∈[c,d] |h(z, 0)| = M < ∞. For any u ∈ Br, and

using the condition (D1), we have

|h(z, u)| = |h(z, u)− h(z, 0) + h(z, 0)| ≤ L‖u‖+ M ≤ Lr + M.

Thus, for any u ∈ Br, and using the fact that |e σ−1
σ z| ≤ 1, we have:

|(Fu)(z)| ≤ 1
σδΓ(δ)

∫ z

c
e

σ−1
σ (z−s)(z− s)δ−1|h(s, u(s))|ds

+
(z− c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (z−s)(ξ j − s)δ−1|h(s, u(s))|ds

+
1

σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1|h(s, u(s))|ds

+
k
σ

m

∑
j=1

θj

∫ ξ j

c
|u(s)|e

σ−1
σ (ξ j−s)ds +

k
σ

∫ d

c
|u(s)|e

σ−1
σ (ξ j−s)ds

]
e

σ−1
σ (z−c)

+
k
σ

∫ z

c
|u(s)|e

σ−1
σ (z−s)ds



Fractal Fract. 2022, 6, 154 7 of 18

≤ (Lr + M)

σδΓ(δ + 1)
(d− c)δ

+
(Lr + M)(d− c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ + 1)

m

∑
j=1

θj(ξ j − c)δ +
1

σδΓ(δ + 1)
(d− c)δ

]

+
(d− c)γ−1r
|∆|Γ(γ)

k
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]
+

k
σ
(d− c)r

= LrΦ1 + rΦ2 + MΦ1 < r,

which implies that ‖Fu‖ ≤ r and consequently Fu ∈ Br, for any u ∈ Br. Therefore,
FBr ⊂ Br.

We then show that F is a contraction. For all u1, u2 ∈ C([c, d],R) and z ∈ [c, d],
we have:

|(Fu1)(z)− (Fu2)(z)|

≤ 1
σδΓ(δ)

∫ z

c
e

σ−1
σ (z−s)(z− s)δ−1|h(s, u1(s))− h(s, u2(s))|ds

+
(z− c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (z−s)(ξ j − s)δ−1|h(s, u1(s))− h(s, u2(s))|ds

+
1

σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1|h(s, u1(s))− h(s, u2(s))|ds

+
k
σ

m

∑
j=1

θj

∫ ξ j

c
|u1(s)− u2(s)|e

σ−1
σ (ξ j−s)ds

+
k
σ

∫ d

c
|u1(s)− u2(s)|e

σ−1
σ (ξ j−s)ds

]
e

σ−1
σ (z−c)

+
k
σ

∫ z

c
|u1(s)− u2(s)|e

σ−1
σ (z−s)ds

≤ L‖u1 − u2‖
σδΓ(δ + 1)

(d− c)δ

+
L(d− c)γ−1‖u1 − u2‖

|∆|Γ(γ)

[
1

σδΓ(δ + 1)

m

∑
j=1

θj(ξ j − c)δ +
1

σδΓ(δ + 1)
(d− c)δ

]

+
(d− c)γ−1‖u1 − u2‖

|∆|Γ(γ)
k
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]
+

k
σ
(d− c)‖u1 − u2‖.

Hence:

‖Fu1 − Fu2‖

≤
{

L
[

(d− c)δ

σδΓ(δ + 1)
+

(d− c)γ−1

|∆|Γ(γ)
1

σδΓ(δ + 1)

[ m

∑
j=1

θj(ξ j − c)δ + (d− c)δ

]

+
(d− c)γ−1

|∆|Γ(γ)
k
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]
+

k
σ
(d− c)

}
‖u1 − u2‖

= (LΦ1 + Φ2)‖u1 − u2‖.

Consequently, by (12), F is a contraction and by applying Banach’s fixed point theorem,
Problem (2) has a unique solution. The proof is completed.

Now, by applying Krasnosel’skiĭ’s fixed point theorem, we prove the existence of the
result of Problem (2).
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Lemma 7 (Krasnosel’skiĭ fixed point theorem [33]). Let N indicate a closed, bounded, convex
and nonempty subset of a Banach space Y and C, D be operators such that (i) Cx + Dy ∈ N where
x, y ∈ N, (ii) C is compact and continuous and (iii) D is a contraction mapping. Then, there exists
z ∈ N such that z = Cz + Dz.

Theorem 2. Let 1 < δ < 2, 0 ≤ η ≤ 1, γ = δ + η(2− δ) ∈ [δ, 2], σ ∈ (0, 1]. Assume that:

(D2) h : [c, d]×R→ R is a continuous function such that:

|h(z, u(z))| ≤ φ(z), ∀(z, u) ∈ [c, d]×R with φ ∈ C([c, d]×R+).

(D3) Φ2 < 1, where Φ2 is defined by (11).

Then, the Problem (2) has at least one solution on [c, d].

Proof. We verify that the assumptions of Krasnosel’skiĭ’s fixed point theorem (Lemma 7)
are satisfied by the operator F. To do this we split the operator F defined by (9) into the
sum of two operators F1 and F2 on the closed ball Bρ = {u ∈ C([c, d],R) : ‖u‖ ≤ ρ} with

ρ ≥ ‖φ‖Φ1

1−Φ2
, supt∈[c,d] φ(t) = ‖φ‖, where:

(F1u)(z) = Iδ,σ
c+ h(z, u(z))

+
(z− c)γ−1

∆Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1h(s, u(s))ds

− 1
σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1h(s, u(s))ds

]
e

σ−1
σ (z−c),

and:

(F2u)(z) =
(z− c)γ−1

∆Γ(γ)

[
− k

σ

m

∑
j=1

θj

∫ ξ j

c
u(s)e

σ−1
σ (ξ j−s)ds

+
k
σ

∫ d

c
u(s)e

σ−1
σ (d−s)ds

]
e

σ−1
σ (z−c) − k

σ

∫ z

c
u(s)e

σ−1
σ (z−s)ds.

For all z ∈ [c, d] and u, v ∈ Bρ, we have:

|(F1u)(z) + (F2)v(z)|

≤ ‖φ‖
σδΓ(δ + 1)

(d− c)δ

+
‖φ‖(d− c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ + 1)

m

∑
j=1

θj(ξ j − c)δ +
1

σδΓ(δ + 1)
(d− c)δ

]

+
(d− c)γ−1ρ

|∆|Γ(γ)
k
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]
+

k
σ
(d− c)ρ

= ‖φ‖Φ1 + ρΦ2 < ρ,

and consequently, ‖F1u + F2v‖ ≤ ρ which means that we have F1u + F2v ∈ Bρ. We can
easily show that F2 is a contraction using assumption (D3).

In the final step, it is shown that F1 is compact and continuous. Since h is continuous,
we conclude that F1 is also continuous. Furthermore, F1 is uniformly bounded on Br since

‖F1u‖ ≤ Φ1‖φ‖.
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Now, we prove that F1 is compact. If sup(z,u)∈[c,d]×Bρ
|h(z, u(z))| = h̄, then for all

c < z1 < z2 < T, we obtain:

|(F1u)(z2)− (F1u)(z1)|

≤ 1
σδΓ(δ)

∫ z2

c
[(z2 − s)δ−1 − (z1 − s)δ−1]|h(s, u(s))|ds

+
1

σδΓ(δ)

∫ z2

z1

(z2 − s)δ−1|h(s, u(s))|ds

+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1|h(s, u(s))|ds

+
1

σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1|h(s, u(s))|ds

]
≤ h̄

σδΓ(δ + 1)

[
|(z2 − c)δ − (z1 − c)δ|+ 2(z2 − z1)

δ
]

+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ) h̄
1

σδΓ(δ + 1)

[ m

∑
j=1

θj(ξ j − c)δ + (d− c)δ

]
,

which tends towards zero as z2 → z1, independently of u ∈ Bρ. Thus, F1 is equicontinuous.
According to Arzelá–Asccoli theorem, we conclude that F1 is compact on Bρ. Hence, the
hypotheses of Krasnosel’skiĭ’s fixed point theorem hold true, and consequently, the operator
F1u+ F2u = Fu has a fixed point, which implies that the Problem (2) has at least one solution
on [c, d]. The proof is finished.

Now, we apply Leray–Schauder’s nonlinear alternative to present the second existence
result.

Lemma 8 (Leray–Schauder nonlinear alternative [34]). Let the set Ω be a closed bounded
convex in X and O an open set contained in Ω with 0 ∈ O. Then, for the continuous and compact
T : Ū → Ω, either:

(a) T admits a fixed–point in Ū; or
(aa) ∃ u ∈ ∂U and µ ∈ (0, 1) with u = µT(u).

Theorem 3. Let (D3) holds. In addition, we assume that:

(D4) there exist ψ ∈ C([0, ∞), (0, ∞)) and p ∈ C([c, d],R+) such that:

|h(z, u)| ≤ p(t)ψ(|u|) for each (z, u) ∈ [c, d]×R;

(D5)A constant K > 0 exists, such that:

(1−Φ2)K
L1ψ(K)‖p‖Φ1

> 1,

where Φ1 and Φ2 are defined by (10) and (11), respectively.

Then, the Problem (2) has at least one solution on [c, d].

Proof. Let the operator F be defined by (9). Firstly, we shall show that the operator F maps
bounded sets into bounded sets in C([c, d],R). Let Br = {x ∈ C([c, d],R) : ‖u‖ ≤ r} r > 0,
be a bounded ball in C([c, d],R). Then, for t ∈ [a, b], we have:
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|(Fu)(z)| ≤ 1
σδΓ(δ)

∫ z

c
e

σ−1
σ (z−s)(z− s)δ−1|h(s, u(s))|ds

+
(z− c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (z−s)(ξ j − s)δ−1|h(s, u(s))|ds

+
1

σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1|h(s, u(s))|ds

+
k
σ

m

∑
j=1

θj

∫ ξ j

c
|u(s)|e

σ−1
σ (ξ j−s)ds +

k
σ

∫ d

c
|u(s)|e

σ−1
σ (ξ j−s)ds

]
e

σ−1
σ (z−c)

+
k
σ

∫ z

c
|u(s)|e

σ−1
σ (z−s)ds

≤ ‖p‖ψ(‖u‖)
σδΓ(δ + 1)

(d− c)δ

+
‖p‖ψ(‖u‖)(d− c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ + 1)

m

∑
j=1

θj(ξ j − c)δ +
1

σδΓ(δ + 1)
(d− c)δ

]

+
(d− c)γ−1‖u‖
|∆|Γ(γ)

k
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]
+

k
σ
(d− c)‖u‖

≤ ‖p‖ψ(r)Φ1 + rΦ2,

and consequently,
‖Fu‖ ≤ ‖p‖ψ(r)Φ1 + rΦ2.

Secondly, we will show that the operator F maps bounded sets into equicontinuous
sets of C([c, d],R). Let z1, z2 ∈ [c, d] with z1 < z2 and u ∈ Br. Then, we have:

|(Fu)(z2)− (Fu)(z1)|

≤ 1
σδΓ(δ)

∫ z2

c
[(z2 − s)δ−1 − (z1 − s)δ−1]|h(s, u(s))|ds

+
1

σδΓ(δ)

∫ z2

z1

(z2 − s)δ−1|h(s, u(s))|ds

+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1|h(s, u(s))|ds

+
1

σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1|h(s, u(s))|ds

]
+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ)
k
σ

[ m

∑
j=1

θj

∫ ξ j

c
|u(s)|e

σ−1
σ (ξ j−s)ds

+
∫ d

c
|u(s)|e

σ−1
σ (ξ j−s)ds

]
+

k
σ

[ ∫ z1

c
|u(s)|

[
e

σ−1
σ (z1−s) − e

σ−1
σ (z2−s)

]
ds +

∫ z2

z1

|u(s)|
[
e

σ−1
σ (z2−s)

]
ds
]

≤ ‖p‖ψ(r)
σδΓ(δ + 1)

[
|(z2 − c)δ − (z1 − c)δ|+ 2(z2 − z1)

δ
]
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+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ) ‖p‖ψ(r) 1
σδΓ(δ + 1)

[ m

∑
j=1

θj(ξ j − c)δ + (d− c)δ

]

+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ)
kr
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]

+r
k
σ

[ ∫ z1

c

(
e

σ−1
σ (z1−s) − e

σ−1
σ (z2−s)

)
ds +

∫ z2

z1

(
e

σ−1
σ (z2−s)

)
ds
]

.

The right-hand side in the above inequality is independent of u ∈ Br and tends
towards zero as z2 − z1 → 0. Hence, according to the Arzelá–Ascoli theorem, the operator
F : C([c, d],R)→ C([c, d],R) is completely continuous.

Finally, we will prove that the set of all solutions to equation u = λFu for λ ∈
(0, 1) is bounded.

Let u be a solution. Then, we have for z ∈ [c, d], as in the first step,

|u(t)| ≤ ‖p‖ψ(‖x‖)Φ1 + ‖u‖Φ2,

and consequently,
(1−Φ2)‖u‖
‖p‖ψ(‖x‖)Φ1

≤ 1.

By (D5), there exists K such that ‖u‖ 6= K. Consider the set:

U = {u ∈ C([c, d],R) : ‖u‖ < K}.

The operator F : Ū → C([c, d],R) is completely continuous. There is no u ∈ ∂U such
that u = λFu for some λ ∈ (0, 1), by the choice of U. Thus, F has a fixed point u ∈ Ū, by
Lemma 8, which is a solution of the Problem (2). The proof is completed.

Corollary 1. Setting A, B > 0, we give two special cases of a function ψ(u) as follows:

(i) If ψ(u) = A|u|+ B and if A‖p‖Φ1 +Φ2 < 1, then there exists a constant K > ‖p‖Φ1
1−(A‖p‖Φ1+Φ2)

satisfying (D5).

(ii) If ψ(u) = Au2 + B and if 4AB‖p‖2Φ2
1

(1−Φ2)2 < 1 then from (D5), there exists a constant K such
that:

K ∈

1−
√

1− 4AB‖p‖2Φ2
1

(1−Φ2)2

2 A‖p‖Φ1
(1−Φ2)

,
1 +

√
1− 4AB‖p‖2Φ2

1
(1−Φ2)2

2 A‖p‖Φ1
(1−Φ2)

.

5. Existence Results in Banach Space

In this section, the technique of measuring noncompactness is applied to construct
an existence result concerning the Problem (2). First, some elementary concepts about the
notion of the measure of noncompactness are recalled.

Definition 7 ([35]). Assume that E is a Banach space and ME indicates the set of all bounded
subsets of E. The mapping Ω : ME −→ [0, ∞) is defined via:

Ω(N) = inf
{

ε > 0 : N ⊆ ∪m
i=1Ni, diam(Ni) ≤ ε

}
,

which is called the Kuratowski measure of noncompactness.

The measure of noncompactness Ω has the following properties [35]:

(1) Ω(N) = 0⇔ N is compact;
(2) Ω(N) = Ω(N);
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(3) N1 ⊂ N2 ⇒ Ω(N1) ≤ Ω(N2);
(4) Ω(N1 + N2) ≤ Ω(N1) + Ω(N2);
(5) Ω(λN) = |λ|Ω(N), λ ∈ R; and
(6) Ω(convN) = Ω(N).

Lemma 9 ([36]). Assume that G ⊆ C([c, d], E) is a bounded and equicontinuous subset. Then,
the function z −→ Ω(G(z)) is continuous on [c, d]:

ΩC(G) = max
z∈[c,d]

Ω(G(z)),

and:

Ω
( ∫ d

c
u(s)ds

)
≤
∫ d

c
Ω(G(s))ds,

where G(s) = {u(s) : u ∈ G}, s ∈ [c, d].

Theorem 4 (Mönch’s fixed point theorem [37]). Let the set V be a closed, bounded and convex
subset in a Banach space Y such that 0 ∈ Y and let T : V −→ V be a continuous mapping
satisfying:

V = convT(V), or V = T(V) ∪ {0} ⇒ Ω(V) = 0, (13)

for all subset V of V. Then, T has a fixed point.

Definition 8 ([38]). The function h : [c, d]× E −→ E satisfies the Carathéodory conditions if:

(i) h(z, u) is measurable with respect to z for all u ∈ E;
(ii) h(z, u) is continuous with respect to u ∈ E for z ∈ [c, d].

Theorem 5. Let (D3) holds. In addition, assume that:

(G1) The Carathéodory conditions are satisfied by the function h : [c, d]× E −→ E;
(G2) There exist Ωh ∈ C([c, d],R+) and ϕ ∈ C(R+,R+) with ϕ being nondecreasing such that:

‖h(z, u)‖ ≤ Ωh(z)ϕ(‖u‖), for a.e. z ∈ [c, d] and u, v ∈ E.

(G3) For each bounded set G ⊆ E and for all z ∈ [c, d], we have:

Ω(h(z, G)) ≤ Ωh(z)Ω(G).

If:

Ω∗hΦ1 + Φ2 < 1, (14)

where Ω∗h = supz∈[c,d] Ωh(z), then the boundary value Problem (2) has at least one solution
on [c, d] :

Proof. Consider the operator F : C([c, d], E) −→ C([c, d], E) defined by (9). Define:

Br =
{

u ∈ C([c, d], E) : ‖u‖ ≤ r
}

,

where:

r ≥
Ω∗h ϕ(r)Φ1

1−Φ2
.
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Step 1. F maps Br into itself.

For all u ∈ Br and z ∈ [c, d], we obtain:

‖(Fu)(z)‖ ≤ 1
σδΓ(δ)

∫ z

c
(z− c)δ−1e

σ−1
σ (z−s)‖h(s, u(s))‖ds

+
(z− c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1‖h(s, u(s))‖ds

+
1

σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1‖h(s, u(s))‖ds

+
k
σ

m

∑
j=1

θj

∫ ξ j

c
‖u(s)‖e

σ−1
σ (ξ j−s)ds +

k
σ

∫ d

c
‖u(s)‖e

σ−1
σ (d−s)ds

]
e

σ−1
σ (z−c)

+
k
σ

∫ z

c
‖u(s)‖e

σ−1
σ (z−s)ds

≤
Ω∗h ϕ(r)

σδΓ(δ + 1)
(d− c)δ

+
Ω∗h ϕ(r)(d− c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ + 1)

m

∑
j=1

θj(ξ j − c)δ +
1

σδΓ(δ + 1)
(d− c)δ

]

+
(d− c)γ−1r
|∆|Γ(γ)

k
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]
+

k
σ
(d− c)r

= Ω∗h ϕ(r)Φ1 + rΦ2 ≤ r.

Hence, the ball Br is transformed into itself.

Step 2. The operator F is continuous.

Let {un} ∈ Br such that un −→ u as n −→ ∞. We indicate that ‖Fun − Fu‖ → 0
as n → ∞. Since h satisfies the Carathéodory conditions, we conclude that h(s, un(s)) →
h(s, u(s)), as n→ ∞. Hence, from (G2) and the Lebesgue dominated convergence theorem,
we have ‖Fun − Fu‖ → 0 as n→ ∞, which implies that F is continuous on Br.

Step 3. The operator F is equicontinuous (with respect to z).

Let z1, z2 ∈ [c, d] with z1 < z2 and u ∈ Br. Then, we have:

‖(Fu)(z2)− (Fu)(z1)‖

≤ 1
σδΓ(δ)

∫ z2

c
[(z2 − s)δ−1 − (z1 − s)δ−1]‖h(s, u(s))‖ds

+
1

σδΓ(δ)

∫ z2

z1

(z2 − s)δ−1‖h(s, u(s))‖ds

+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1‖h(s, u(s))‖ds

+
1

σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1‖h(s, u(s))‖ds

]
+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ)
k
σ

[ m

∑
j=1

θj

∫ ξ j

c
‖u(s)‖e

σ−1
σ (ξ j−s)ds

+
∫ d

c
‖u(s)‖e

σ−1
σ (ξ j−s)ds

]
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+
k
σ

[ ∫ z1

c
‖u(s)‖

[
e

σ−1
σ (z1−s) − e

σ−1
σ (z2−s)

]
ds +

∫ z2

z1

‖u(s)‖
[
e

σ−1
σ (z2−s)

]
ds
]

≤
Ω∗h ϕ(r)

σδΓ(δ + 1)

[
|(z2 − c)δ − (z1 − c)δ|+ 2(z2 − z1)

δ
]

+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ)
Ω∗h ϕ(r)

σδΓ(δ + 1)

[ m

∑
j=1

θj(ξ j − c)δ + (d− c)δ

]

+
(z2 − c)γ−1 − (z1 − c)γ−1

|∆|Γ(γ)
kr
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]

+r
k
σ

[ ∫ z1

c

(
e

σ−1
σ (z1−s) − e

σ−1
σ (z2−s)

)
ds +

∫ z2

z1

(
e

σ−1
σ (z2−s)

)
ds
]

,

which tends towards zero as z2 −→ z1, independently of u ∈ Br. Hence, F is equicontinu-
ous.

Step 4. The Condition (13) of Theorem 4 is satisfied.

Let V ⊆ conv(F(V) ∪ {0} be a bounded and equicontinuous subset. Hence, the
function T(z) = Ω(V(z)) is continuous on [c, d]. Now, in view of Lemma 9 and (G3),
we have:

T(z) = K(V(z)) ≤ Ω(conv(F(V) ∪ {0})) ≤ Ω(F(V)(z))

≤ Ω
{

1
σδΓ(δ)

∫ z

c
e

σ−1
σ (z−s)(z− s)δ−1h(s, u(s))ds : u ∈ V

}
+
(z− c)γ−1

∆Γ(γ)

[
Ω
{

1
σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1h(s, u(s))ds : u ∈ V

}

+Ω
{

1
σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1h(s, u(s))ds : u ∈ V

}
+Ω

{
k
σ

m

∑
j=1

θj

∫ ξ j

c
u(s)e

σ−1
σ (ξ j−s)ds : u ∈ V

}

+Ω
{

k
σ

∫ d

c
u(s)e

σ−1
σ (d−s)ds : u ∈ V

}]
e

σ−1
σ (z−c)

+Ω
{

k
σ

∫ z

c
u(s)e

σ−1
σ (z−s)ds : u ∈ V

}
≤ 1

σδΓ(δ)

∫ z

c
e

σ−1
σ (z−s)(z− s)δ−1Ω(h(s, V(s)))ds

+
(z− c)γ−1

∆Γ(γ)

[
1

σδΓ(δ)

m

∑
j=1

θj

∫ ξ j

c
e

σ−1
σ (ξ j−s)(ξ j − s)δ−1Ω(h(s, V(s)))ds

+
1

σδΓ(δ)

∫ d

c
e

σ−1
σ (d−s)(d− s)δ−1Ω(h(s, u(s)))ds

+
k
σ

m

∑
j=1

θj

∫ ξ j

c
Ω(V(s))ds +

k
σ

∫ d

c
Ω(V(s))ds

]
+

k
σ

∫ z

c
Ω(V(s))ds

≤ ‖T‖
{
(d− c)δΩ∗h
σδΓ(δ + 1)

+
(d− c)γ−1

|∆|Γ(γ)
Ω∗h

σδΓ(δ + 1)

[ m

∑
j=1

θj(ξ j − c)δ + (d− c)δ

]

+
(d− c)γ−1

|∆|Γ(γ)
k
σ

[ m

∑
j=1

θj(ξ j − c) + (d− c)
]
+

k
σ
(d− c)

}
.

This give that:
‖T‖∞ ≤ (Ω∗hΦ1 + Φ2)‖T‖∞.
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Due to (14), we conclude that ‖T‖∞ = 0. Consequently, for all z ∈ [c, d], we have
T(z) = 0 which implies that Ω(V(z)) = 0. Thus, V(z) is relatively compact in E and
according to the Arzelá–Ascoli theorem, V is relatively compact in Br. Now, by Theorem 13,
F has a fixed point on Br which is a solution of the Problem (2). This completes the
proof.

6. Illustrative Examples

Example 1. Consider the problem:

(
D

3
2 , 2

3 , 4
5

1
8

+
1
12

D
1
2 , 2

3 , 4
5

1
8

)
u(z) = h(z, u(z)), z ∈

[
1
8

,
11
8

]
,

u
(

1
8

)
= 0, u

(
11
8

)
=

1
11

u
(

3
8

)
+

2
21

u
(

5
8

)
+

3
31

u
(

7
8

)
+

4
41

u
(

9
8

)
.

(15)

Here δ = 3/2, η = 2/3, σ = 4/5, k = 1/12, c = 1/8, d = 11/8, m = 4, θ1 = 1/11,
θ2 = 2/21, θ3 = 3/31, θ4 = 4/41, ξ1 = 3/8, ξ2 = 5/8, ξ3 = 7/8 and ξ4 = 9/8. We can then
find that γ = 11/6, ∆ ≈ 0.7455888545, Φ1 ≈ 4.363182248 and Φ2 ≈ 0.3968238407.

(i) Let the nonlinear function h(z, u) be given by

h(z, u) =
e− sin2 πt

16

(
u2 + 2|u|
1 + |u|

)
+

1
3

. (16)

We can then find that h(z, u) satisfies the condition (D1) |h(z, u)− h(z, v)| ≤ (1/8)|u−
v| in Theorem 1 by setting L = 1/8. Therefore, we have LΦ1 + Φ2 ≈ 0.9422216217 < 1.
Hence, (12) holds and by applying Theorem 1, the Problem (15) with h given by (16) has a
unique solution u(z) on [1/8, 11/8] such that ‖u‖ ≤ r, where r ≥ ((1/3)Φ1)/(1− LΦ1 +
Φ2) ≈ 25.17194365.

(ii) We now consider the nonlinear function h(z, u) as

h(z, u) =
1
2

(
|u|

1 + |u| cos2 t
)
+

1
4

. (17)

It is obvious that h(z, u) satisfies the Lipchitz condition with a constant L = 1/2. In
addition, we obtain |h(z, u)| ≤ (1/2) cos2 t + (1/4) := φ(z). Since Φ2 ≈ 0.3968238407 < 1,
then (D3) is true. The conclusion of Theorem 2 can be applied and thus the Problem (15)
with h given by (17) has at least one solution on [1/8, 11/8]. Now, we remark that the
uniqueness result cannot be obtained in this situation since LΦ1 + Φ2 ≈ 2.578414965 > 1.

(iii) If h(z, u) is defined by

h(z, u) =
1
5

(
8

8t + 15

)(
|u|33

u32 + 1
+

5
11

)
, (18)

then setting p(t) = (8/(8t + 15)) and ψ(|u|) = (1/5)|u|+ (1/11), we obtain |h(z, u)| ≤
p(t)ψ(|u|). Choosing ‖p‖ = 1/2, A = 1/5 and B = 1/11, we obtain A‖p‖Φ1 + Φ2 ≈
0.8331420655 < 1. Therefore, by Corollary 1, the Problem (15) with (18) has at least one
solution on [1/8, 11/8].

(iv) If the term |u|33 of h(z, u) in (18) is replaced by u34 as

h(z, u) =
1
5

(
8

8t + 15

)(
u34

u32 + 1
+

5
11

)
. (19)

We then have:

|h(z, u)| ≤
(

8
8t + 15

)(
1
5

u2 +
1

11

)
.
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Consequently setting constants as in (iii), we obtain 4AB‖p‖2Φ2
1

(1−Φ2)2 ≈ 0.9513836480 < 1.
The benefit of Corollary 1 implies that Problem (15) with h given by (19) has at least one
solution on [1/8, 11/8].

Example 2. Let:
E = c0 =

{
u = (u1, u2, . . . , un, . . . ) : un → 0

}
be the Banach space of real sequences converging to zero, endowed with the norm:

‖u‖∞ = sup
n≥1
|un|.

Consider the problem given in Example 15.
Let h : [1/8, 11/8]× c0 −→ c0 be defined by

h(z, u) =
{

1
z + 10

( 1
3n + ln

(
1 + |un|

)}
n≥1

, u = {un} ∈ c0. (20)

Obviously, the hypothesis (G1) holds true. Furthermore, for all z ∈ [1/8, 11/8], we obtain:

‖h(u, z)‖∞ ≤
∥∥∥ 1

z + 1

( 1
3n + |un|

)∥∥∥
∞
≤ 1

z + 10
(‖u‖+ 1) = Ωh(z)ϕ(‖u‖).

Hence, the assumption (G2) is satisfied with Ωh(z) = 1
z+10 and ϕ(u) = 1 + u. On the other hand,

if D ⊆ c0 be a bounded set, then:

Ω(h(z, D)) ≤ Ωh(z)Ω(D).

We have Ω∗h = 8
81 and from the given data, we obtain:

Ω∗hΦ1 + Φ2 ≈ 0.8277554207 < 1.

Consequently, by Theorem 5, the Problem (15) with h given by (20) has at least one solution on
[1/8, 11/8].

7. Conclusions

In this paper, we presented the existence and uniqueness criteria for solutions of Hilfer
generalized proportional fractional differential equations supplemented with nonlocal
boundary conditions. First, the nonlinear boundary value problem at hand is converted
into a fixed point problem by proving an auxiliary result concerning a linear variant of
the given problem. We then studied two cases. The scalar case in which we proved the
existence of a unique solution via Banach fixed point theorem and two existence results by
using Krasnosel’skiĭ’s fixed point theorem and Leray–Schauder nonlinear alternative. Then,
in the Banach space case, we established an existence result based on Mönch’s fixed point
theorem and the technique of the measure of noncompactness. All results obtained for
scalar and Banach space cases are well illustrated by numerical examples. We emphasize
that, in this paper, we initiated the study of Hilfer generalized proportional fractional
boundary value problems of order in (1, 2]. Our results are new in the given configuration
and enrich the literature on boundary value problems for Hilfer generalized proportional
fractional differential equations. We plan to apply the methods of this paper in future
studies to obtain similar results for different types of boundary conditions or different
kinds of sequential fractional derivatives.
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