Dynamic Analysis and Bifurcation Study on Fractional-Order Tri-Neuron Neural Networks Incorporating Delays
Abstract
:1. Introduction
- There exist positive constants such that
- There exist positive constants such that
2. Prerequisite Theory
3. Existence and Uniqueness
4. Boundedness
5. Bifurcation Study
- () where
- () The following inequalities hold:
6. Bifurcation Control
- () where
- () The following inequalities hold:
7. Numerical Simulations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopfield, J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 1984, 81, 3088–3092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.J.; Liao, M.X.; Li, P.L.; Liu, Z.X.; Yuan, S. New results on pseudo almost periodic solutions of quaternion-valued fuzzy cellular neural networks with delays. Fuzzy Set. Syst. 2021, 411, 25–47. [Google Scholar] [CrossRef]
- Thoiyab, N.M.; Muruganantham, P.; Zhu, Q.X.; Gunasekaran, N. Novel results on global stability analysis for multiple time-delayed BAM neural networks under parameter uncertainties. Chaos Solitons Fractals 2021, 152, 111441. [Google Scholar] [CrossRef]
- Cao, Y.; Ramajayam, S.; Sriraman, R.; Samidurai, R. Leakage delay on stabilization of finite-time complex-valued BAM neural network: Decomposition approach. Neurocomputing 2021, 463, 505–513. [Google Scholar] [CrossRef]
- Xu, C.J.; Tang, X.H.; Liao, M.X. Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays. Neural Netw. 2010, 23, 872–880. [Google Scholar] [CrossRef]
- Wei, J.J.; Velarde, M.G. Bifurcation analysis and existence of periodic solutions in a simple neural network with delays. Chaos 2004, 14, 940–953. [Google Scholar] [CrossRef]
- Wang, S.Z.; Zhang, Z.Y.; Lin, C.; Chen, J. Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control. Chaos Solitons Fractals 2021, 153, 111583. [Google Scholar] [CrossRef]
- Gan, Y.T.; Liu, C.; Peng, H.; Liu, F.; Rao, H.X. Anti-synchronization for periodic BAM neural networks with Markov scheduling protocol. Neurocomputing 2020, 417, 585–592. [Google Scholar] [CrossRef]
- Syed Ali, M.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B. Global Mittag–Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105088. [Google Scholar] [CrossRef]
- Chen, S.L.; Li, H.L.; Kao, Y.G.; Zhang, L.; Hu, C. Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach. J. Franklin Inst. 2021, 358, 7650–7673. [Google Scholar] [CrossRef]
- Cong, E.Y.; Han, X.; Zhang, X. Global exponential stability analysis of discrete-time BAM neural networks with delays: A mathematical induction approach. Neurocomputing 2020, 379, 227–235. [Google Scholar] [CrossRef]
- Duan, L.Y.; Li, J.M. Fixed-time synchronization of fuzzy neutral-type BAM memristive inertial neural networks with proportional delays. Inf. Sci. 2021, 576, 522–541. [Google Scholar] [CrossRef]
- Yan, M.Y.; Jian, J.G.; Zheng, S. Passivity analysis for uncertain BAM inertial neural networks with time-varying delays. Neurocomputing 2021, 435, 114–125. [Google Scholar]
- Ayachi, M. Measure-pseudo almost periodic dynamical behaviors for BAM neural networks with D operator and hybrid time-varying delays. Neurocomputing 2021. [Google Scholar] [CrossRef]
- Kumar, R.; Das, S. Exponential stability of inertial BAM neural network with time-varying impulses and mixed time-varying delays via matrix measure approach. Commun. Nonlinear Sci. Numer. Simul. 2020, 81, 105016. [Google Scholar] [CrossRef]
- Syed Ali, M.; Yogambigai, J.; Saravanan, S.; Elakkia, S. Stochastic stability of neutral-type Markovian-jumping BAM neural networks with time varying delays. J. Comput. Appl. Math. 2019, 349, 142–156. [Google Scholar]
- Bruce, W.J. Colloquium: Fractional calculus view of complexity: A tutorial. Rev. Modern Phys. 2014, 86, 1169–1186. [Google Scholar]
- Shi, J.P.; He, K.; Fang, H. Chaos, Hopf bifurcation and control of a fractional-order delay financial system. Math. Comput. Simul. 2022, 194, 348–364. [Google Scholar] [CrossRef]
- Zhou, B.; Song, Q.K. Stability and Hopf bifurcation analysis of a tri-neuron BAM neural network with distributed delay. Neurocomputing 2012, 82, 69–83. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Cao, J.; Rihan, F.A.; Seadawy, A.R. Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations. Chaos Solitons Fractals 2020, 131, 109491. [Google Scholar] [CrossRef]
- Petráš, I. Control of fractional order Chua’s system. J. Elect. Eng. 2002, 53, 219–222. [Google Scholar]
- Zhang, F.H.; Huang, T.W.; Wu, Q.J.; Zeng, Z.G. Multistability of delayed fractional-order competitive neural networks. Neural Netw. 2021, 140, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Hu, C.; Zhang, L.; Jiang, H.J.; Cao, J.D. Complete and finite-time synchronization of fractional-order fuzzy neural networks via nonlinear feedback control. Fuzzy Set. Syst. 2021. [Google Scholar] [CrossRef]
- Padmaja, N.; Balasubramaniam, P. New delay and order-dependent passivity criteria for impulsive fractional-order neural networks with switching parameters and proportional delays. Neurocomputing 2021, 454, 113–123. [Google Scholar] [CrossRef]
- Ke, L. Mittag–Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays. Neurocomputing 2021, 465, 53–62. [Google Scholar] [CrossRef]
- Du, F.F.; Lu, J.G. Finite-time stability of fractional-order fuzzy cellular neural networks with time delays. Fuzzy Set. Syst. 2021. [Google Scholar] [CrossRef]
- Xu, C.J.; Zhang, W.; Liu, Z.X.; Yao, L.Y. Delay-induced periodic oscillation for fractional-order neural networks with mixed delays. Neurocomputing 2021. [Google Scholar] [CrossRef]
- Udhayakumar, K.; Rihan, F.A.; Rakkiyappan, R.; Cao, J.D. Fractional-order discontinuous systems with indefinite LKFs: An application to fractional-order neural networks with time delays. Neural Netw. 2022, 145, 319–330. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, Z.; Xia, J.W. Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders. J. Franklin Inst. 2019, 356, 8278–8295. [Google Scholar] [CrossRef]
- Li, C.P.; Dao, X.H.; Guo, P. Fractional derivatives in complex planes. Nonlinear Anal. TMA 2009, 71, 1857–1869. [Google Scholar] [CrossRef]
- Guariglia, E. Riemann zeta fractional derivative-functional equation and link with primes. Adv. Diff. Equat. 2019, 261, 15. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Coito, F. From differences to derivatives. Frac. Calc. Appl. Anal. 2004, 7, C459–C471. [Google Scholar]
- Guariglia, E.; Silvestrov, S. A functional equation for the Riemann zeta fractional derivative. AIP Conf. Proceed. 2017, 1798, 020063. [Google Scholar]
- Wu, G.C.; Lee, E.W.M. Fractional variational iteration method and its application. Phys. Lett. A 2010, 374, 2506–2509. [Google Scholar] [CrossRef]
- Xu, C.J.; Zhang, W.; Aouiti, C.; Liu, Z.X.; Liao, M.X.; Li, P.L. Further investigation on bifurcation and their control of fractional-order BAM neural networks involving four neurons and multiple delays. Math. Meth. Appl. Sci. 2021. [Google Scholar] [CrossRef]
- Xu, C.J.; Liu, Z.X.; Aouiti, C.; Li, P.L.; Yao, L.Y.; Yan, J.L. New exploration on bifurcation for fractional-order quaternion-valued neural networks involving leakage delays. Cogn. Neurodyn. 2022. [Google Scholar] [CrossRef]
- Xu, C.J.; Liao, M.X.; Li, P.L.; Yuan, S. Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks. Chaos Solitons Fractals 2021, 142, 110535. [Google Scholar] [CrossRef]
- Xu, C.J.; Liu, Z.X.; Yao, L.Y.; Aouiti, C. Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays. Appl. Math. Comput. 2021, 410, 126458. [Google Scholar] [CrossRef]
- Huang, C.D.; Nie, X.B.; Zhao, X.; Song, Q.K.; Cao, J.D. Novel bifurcation results for a delayed fractional-order quaternion-valued neural network. Neural Netw. 2019, 117, 67–93. [Google Scholar] [CrossRef]
- Xiao, M.; Zheng, W.X.; Lin, J.X.; Jiang, G.P.; Zhao, L.D.; Cao, J.D. Fractional-order PD control at Hopf bifurcations in delayed fractional-order small-world networks. J. Franklin Inst. 2017, 354, 7643–7667. [Google Scholar] [CrossRef]
- Yan, Y.P. Hopf bifurcation and stability for a delayed tri-neuron neural networks. J. Comput. Appl. Math. 2006, 196, 579–595. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.J.; Zhang, W.; Liu, Z.X.; Li, P.L.; Yao, L.Y. Bifurcation study for fractional-order three-layer neural networks involving four time delays. Cogn. Comput. 2022. [Google Scholar] [CrossRef]
- Song, Y.L.; Han, M.A.; Wei, J.J. Stability and Hopf bifurcation on a simplified BAM neural network with delays. Phys. D 2005, 200, 185–204. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Bandyopadhyay, B.; Kamal, S. Stabliization and Control of Fractional Order Systems: A Sliding Mode Approach; Springer: Heidelberg, Germany, 2015; Volume 317. [Google Scholar]
- Li, Y.; Chen, Y.Q.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 2009, 59, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
- Li, H.L.; Zhang, L.; Hu, C.; Jiang, Y.L.; Teng, Z.D. Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J. Appl. Math. Comput. 2017, 54, 435–449. [Google Scholar] [CrossRef]
- Matignon, D. Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 1996, 2, 963–968. [Google Scholar]
- Deng, W.H.; Li, C.P.; Lü, J.H. Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 2007, 48, 409–416. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, L.Z.; Huang, C.D.; Xiao, M. A novel hybrid control technique for bifurcation in an exponential RED algorithm. Int. J. Circ. Theory Appl. 2020, 48, 1476–1492. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Yan, J.; Xu, C.; Shang, Y. Dynamic Analysis and Bifurcation Study on Fractional-Order Tri-Neuron Neural Networks Incorporating Delays. Fractal Fract. 2022, 6, 161. https://doi.org/10.3390/fractalfract6030161
Li P, Yan J, Xu C, Shang Y. Dynamic Analysis and Bifurcation Study on Fractional-Order Tri-Neuron Neural Networks Incorporating Delays. Fractal and Fractional. 2022; 6(3):161. https://doi.org/10.3390/fractalfract6030161
Chicago/Turabian StyleLi, Peiluan, Jinling Yan, Changjin Xu, and Youlin Shang. 2022. "Dynamic Analysis and Bifurcation Study on Fractional-Order Tri-Neuron Neural Networks Incorporating Delays" Fractal and Fractional 6, no. 3: 161. https://doi.org/10.3390/fractalfract6030161
APA StyleLi, P., Yan, J., Xu, C., & Shang, Y. (2022). Dynamic Analysis and Bifurcation Study on Fractional-Order Tri-Neuron Neural Networks Incorporating Delays. Fractal and Fractional, 6(3), 161. https://doi.org/10.3390/fractalfract6030161