Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy
Abstract
:1. Introduction
2. Preliminaries
3. Qualitative Study of the Proposed Model
3.1. Existence Theory
3.2. Stability Result
- .
4. Numerical Scheme
5. Numerical Simulations and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parra, G.G.; Charpentier, B.C.; Kojouharov, H.V. Mathematical modeling of crime as a social epidemic. J. Interdiscip. Math. 2018, 21, 623–643. [Google Scholar] [CrossRef]
- McMillon, D.; Simon, C.P.; Morenoff, J. Modeling the underlying dynamics of the spread of crime. PLoS ONE 2014, 9, e88923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkan, S.E. Social Problems: Continuity and Change; Flat World Knowledge: New York, NY, USA, 2013; 532p. [Google Scholar]
- Allely, S.C.; Minnis, H.; Thompson, L.; Wilson, P.; Gillberg, C. Neurodevelopmental and psychosocial risk factors in serial killers and mass murderers. Aggress. Violent Behav. 2014, 19, 288–301. [Google Scholar] [CrossRef] [Green Version]
- Syed, F.S.; Li, D.; Zhang, X.; Guo, Z. Mathematical Modelling in Criminology. Malays. J. Math. Sci. 2013, 7, 125–145. [Google Scholar]
- Boduszek, D.; Hyland, P. Fred West: Bio-psycho-social investigation of psychopathic sexual serial killer. Int. J. Criminol. Sociol. Theory 2012, 5, 864–870. [Google Scholar]
- Grover, C.; Soothill, K. British serial killing: Towards a structural explanation. In Proceedings of the British Criminology Conferences: Selected Proceedings, Belfast, Ireland, 15–19 July 1997; Volume 2. [Google Scholar]
- Fraser, A.; Hagedorn, J.M. Gangs and a global sociological imagination. Theor. Criminol. 2018, 22, 42–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, J.C. Youth Gangs: An Overview; National Institute of Justice: Rockville, MD, USA, 1998.
- Sooknanan, J.; Bhatt, B.; Comissiong, D.M.G. Life and death in a gang-a mathematical model of gang membership. J. Math. Res. 2012, 4, 10–27. [Google Scholar]
- Ugwuishiwu, C.H.; Sarki, D.S.; Mbah, G.C.E. Nonlinear Analysis of the Dynamics of Criminality and Victimisation: A Mathematical Model with Case Generation and Forwarding. J. Appl. Math. 2019, 2019, 9891503. [Google Scholar] [CrossRef]
- Misra, A.K. Modeling the effect of police deterrence on the prevalence of crime in the society. Appl. Math. Comput. 2014, 237, 531–545. [Google Scholar] [CrossRef]
- Nyabadza, F.; Ogbogbo, C.P.; Mushanyu, J. Modelling the role of correctional services on gangs: Insights through a mathematical model. R. Soc. Open Sci. 2017, 4, 170511. [Google Scholar] [CrossRef] [Green Version]
- Short, M.B.; Brantingham, P.J.; D’orsogna, M.R. Cooperation and punishment in an adversarial game: How defectors pave the way to a peaceful society. Phys. Rev. E 2010, 82, 066114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantrell, R.S.; Cosner, C.; Manásevich, R. Global bifurcation of solutions for crime modeling equations. SIAM J. Math. Anal. 2012, 44, 1340–1358. [Google Scholar] [CrossRef]
- Short, M.B.; Bertozzi, A.L.; Brantingham, P.J. Nonlinear patterns in urban crime: Hotspots, bifurcations, and suppression. SIAM J. Appl. Dyn. Syst. 2010, 9, 462–483. [Google Scholar] [CrossRef] [Green Version]
- Short, M.B.; D’orsogna, M.R.; Pasour, V.B.; Tita, G.E.; Brantingham, P.J.; Bertozzi, A.L.; Chayes, L.B. A statistical model of criminal behavior. Math. Model. Methods Appl. Sci. 2008, 18, 1249–1267. [Google Scholar] [CrossRef]
- Goyal, M.; Baskonus, H.M.; Prakash, A. An efficient technique for a time fractional model of lassa hemorrhagic fever spreading in pregnant women. Eur. Phys. J. Plus 2019, 134, 482. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. Chaos Solitons Fractals 2020, 134, 109696. [Google Scholar] [CrossRef]
- Alqahtani, R.T.; Ahmad, S.; Akgül, A. Dynamical Analysis of Bio-Ethanol Production Model under Generalized Nonlocal Operator in Caputo Sense. Mathematics 2021, 19, 2370. [Google Scholar] [CrossRef]
- Ikram, M.D.; Asjad, M.I.; Akgül, A.; Baleanu, D. Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates. Alex. Eng. J. 2021, 60, 3593–3604. [Google Scholar] [CrossRef]
- Farman, M.; Akgül, A.; Ahmad, A.; Baleanu, D.; Saleem, M.U. Dynamical transmission of coronavirus model with analysis and simulation. CMES Comput. Model. Eng. Sci. 2021, 127, 753–769. [Google Scholar] [CrossRef]
- Khan, H.; Li, Y.; Khan, A.; Khan, A. Existence of solution for a fractional order lotka-volterra reaction diffusion model with mittag-leffler kernel. Math. Meth. Appl. Sci. 2019, 42, 3377–3387. [Google Scholar] [CrossRef]
- Khan, R.A.; Shah, K. Existence and uniqueness of solutions to fractional order multi-point boundary value problems. Commun. Appl. Anal. 2015, 19, 515–526. [Google Scholar]
- Ahmad, S.; Ullah, A.; Akgül, A.; De la Sen, M. A Novel Homotopy Perturbation Method with Applications to Nonlinear Fractional Order KdV and Burger Equation with Exponential-Decay Kernel. J. Funct. Spaces 2021, 2021, 8770488. [Google Scholar] [CrossRef]
- Ahmad, S.; Rahman, M.U.; Arfan, M. On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator. Chaos Solitons Fractals 2021, 146, 110892. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Akgül, A.; De la Sen, M. A study of fractional order Ambartsumian equation involving exponential decay kernel. AIMS Math. 2021, 6, 9981–9997. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Shah, K.; Akgül, A. Computational analysis of the third order dispersive fractional PDE under exponential-decay and Mittag-Leffler type kernels. Numer. Methods Partial Differ. Equ. 2021, 1–15. [Google Scholar] [CrossRef]
- Baleanu, D.; Fernandez, A.; Akgül, A. On a fractional operator combining proportional and classical differintegrals. Mathematics 2020, 8, 360. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. J. Therm. Sci. 2016, 20, 763–785. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.U.; Arfan, M.; Shah, Z.; Kumam, P.; Shutaywi, M. Nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete treatment under Atangana-Baleanu derivative. Alex. Eng. J. 2021, 60, 2845–2856. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Akgül, A.; Baleanu, D. Analysis of the fractional tumour-immune-vitamins model with Mittag–Leffler kernel. Results Phys. 2021, 19, 103559. [Google Scholar] [CrossRef]
- Rahman, M.U.; Arfan, M.; Shah, Z.; Debani, W.; Kumam, P. Analysis of time-fractional Kawahara equation under Mittag-Leffler Power Law. Fractals 2021, 30, 2240021. [Google Scholar] [CrossRef]
- Zameer, M.; Ullah, I.; Nadeem, F.; Abbas, N.; Shah, K. Study on the Control and Eradication of Serial Killing. 2022; submitted. [Google Scholar]
Notation | Description of the Parameter |
---|---|
Rate of recruitment in the susceptible class | |
b | Rate of contact of susceptible and gangs members |
Rate of fraction of weaponized individuals opting to serial killing | |
Probability rate of weaponized in susceptible class | |
Rate of probability of susceptible to be serial killer | |
Rate of arrest members of gang | |
Rate of sentence of jail | |
Rate of fraction of serial killers moving to gang | |
Rate of arrest of serial killer | |
Rate of natural death |
Parameter | Value | Control Strategy | Control Strategy-I | Control Strategy-II |
---|---|---|---|---|
b | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.u.; Ahmad, S.; Arfan, M.; Akgül, A.; Jarad, F. Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy. Fractal Fract. 2022, 6, 162. https://doi.org/10.3390/fractalfract6030162
Rahman Mu, Ahmad S, Arfan M, Akgül A, Jarad F. Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy. Fractal and Fractional. 2022; 6(3):162. https://doi.org/10.3390/fractalfract6030162
Chicago/Turabian StyleRahman, Mati ur, Shabir Ahmad, Muhammad Arfan, Ali Akgül, and Fahd Jarad. 2022. "Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy" Fractal and Fractional 6, no. 3: 162. https://doi.org/10.3390/fractalfract6030162
APA StyleRahman, M. u., Ahmad, S., Arfan, M., Akgül, A., & Jarad, F. (2022). Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy. Fractal and Fractional, 6(3), 162. https://doi.org/10.3390/fractalfract6030162