New Explicit Solutions of the Extended Double (2+1)-Dimensional Sine-Gorden Equation and Its Time Fractional Form
Abstract
:1. Introduction
2. Symmetry Analysis of the Extended Double (2+1)-Dimensional Sine-Gorden Equation (2)
3. Symmetry Reductions and Analytical Solutions of the Extended Double (2+1)-Dimensional Sine-Gorden Equation (2)
3.1. Symmetry Reductions
3.1.1.
3.1.2.
3.1.3.
3.1.4. Traveling Wave Transformation
3.2. Symmetry Analysis of Reduced Equations
3.2.1. Lie Symmetry of Equations (17) and (18)
3.2.2. Lie Symmetry of Equation (19)
3.3. Analytical Solutions of the Extended Double (2+1)-Dimensional Sine-Gorden Equation (2)
4. Conservation Laws of Equation (2)
5. Analytical Solutions of the Extended Double Time Fractional (2+1)-Dimensional Sine-Gorden Equation (3)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.; Yang, K.; Gu, H.; Guan, F.; Kara, A.H. A (2+1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions. Nucl. Phys. B 2020, 953, 114956. [Google Scholar] [CrossRef]
- Jumarie, G. Modified Riemann–Liouville derivative and fractional taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Guo, Q.; Zhao, M. On the solutions of (2+1)-dimensional time-fractional Schrödinger Equation. Appl. Math. Lett. 2020, 94, 238–243. [Google Scholar] [CrossRef]
- Li, Z.B.; He, J.H. Fractional complex transform for fractional differential equations. Math. Comput. Appl. 2010, 15, 970–973. [Google Scholar] [CrossRef] [Green Version]
- Perring, J.K.; Skyrme, T.H. A model unified field equation. Nucl. Phys. 1962, 31, 550. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Wazwaz, A.M. Multiple optical kink solutions for new Painlevé integrable (3+1)-dimensional sine-Gordon equations with constant and time-dependent coefficients. Optik 2020, 219, 165003. [Google Scholar] [CrossRef]
- Xie, Y.X.; Tang, J.S. A unified approach in seeking the solitary wave solutions to sine-Gordon type equations. Chin. Phys. B. 2005, 14, 1303–1306. [Google Scholar]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. Method for solving the sine-Gordon equation. Phys. Rev. Lett. 1973, 30, 1262. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The tanh method and a variable separated ODE method for solving double sine-Gordon equation. Phys. Lett. A 2006, 350, 367–370. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Application of Lie Group to Differential Equation; Springer: New York, NY, USA, 1986. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.; Anco, S. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Wang, G.W.; Kara, A.H. A (2+1)-dimensional KdV equation and mKdV equation: Symmetries, group invariant solutions and conservation laws. Phys. Lett. A 2019, 383, 728–731. [Google Scholar] [CrossRef]
- Wang, G.; Vega-Guzman, J.; Biswas, A.; Alzahrani, A.K.; Kara, A.H. (2+1)-dimensional Boiti-Leon-Pempinelli equation-Domain walls, invariance properties and conservation laws. Phys. Lett. A 2020, 384, 126255. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Wu, Y.; Su, X. Symmetry analysis for a seventh-order generalized KdV equation and its fractional version in fluid mechanics. Fractals 2020, 28, 2050044. [Google Scholar] [CrossRef]
- Wang, G.W.; Liu, X.Q.; Ying, Y.Y. Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simulat. 2013, 18, 2321–2326. [Google Scholar] [CrossRef]
- Wang, G.W.; Wazwaz, A.M. On the modified Gardner type equation and its time fractional form, Chaos. Solitons Fractals 2022, 155, 111694. [Google Scholar] [CrossRef]
- Wang, G.W. A novel (3+1)-dimensional sine-Gorden and sinh-Gorden equation: Derivation, symmetries and conservation laws. Appl. Math. Lett. 2021, 113, 106768. [Google Scholar] [CrossRef]
- Wang, G.W. A new (3+1)-dimensional Schrödinger equation: Derivation, soliton solutions and conservation laws. Nonlinear Dyn. 2021, 104, 1595–1602. [Google Scholar] [CrossRef]
- Lou, S.Y.; Ma, H.C. Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys. A Math. Gen. 2005, 38, L129–L137. [Google Scholar] [CrossRef]
- Zhao, Z.L.; He, L. Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a (2+1)-dimensional KdV-mKdV equation. Theor. Math. Phys. 2021, 206, 142–162. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Z.; Zhao, Y.; Deng, Z. Symmetry breaking of infinite-dimensional dynamic system. Appl. Math. Lett. 2020, 103, 106207. [Google Scholar] [CrossRef]
- Hu, W.P.; Zhang, C.Z.; Deng, Z.C. Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs. Commun. Nonlinear Sci. Numer. Simul. 2020, 84, 105199. [Google Scholar] [CrossRef]
- Hu, W.P.; Ye, J.; Deng, Z.C. Internal resonance of a flexible beam in a spatial tethered system. J. Sound Vib. 2020, 475, 115286. [Google Scholar] [CrossRef]
- Hu, W.P.; Yu, L.J.; Deng, Z.C. Minimum Control Energy of Spatial Beam with Assumed Attitude Adjustment Target. Acta Mech. Solida Sin. 2020, 33, 51–60. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Rogers, C.; Schief, W.K. Bäcklund and Darboux Transformations, Geometry and Morden Applications in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Hu, X.B.; Zhu, Z.N. A Bäcklund transformation and nonlinear superposition formula for the Belov-Chaltikian lattice. J. Phys. A 1998, 31, 4755. [Google Scholar] [CrossRef]
- Gu, C.; Hu, H.; Hu, A.; Zhou, Z. Darboux Transformations in Integrable Systems Theory and Their Applications to Geometry; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Lax Pairs and special polynomials associated with self-similar reductions of Sawada-Kotera and Kupershmidt equations. Regul. Chaotic Dyn. 2020, 25, 59–77. [Google Scholar] [CrossRef]
- Moaddy, K.; Momani, S.; Hashim, I. The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics. Comput. Math. Appl. 2011, 61, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- He, J. Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods. Appl. Mech. Eng. 1998, 167, 57–68. [Google Scholar] [CrossRef]
- Grigorenko, L.; Grigorenko, E. Chaotic dynamics of the fractional lorenz system. Phys. Rev. Lett. 2003, 91, 034101. [Google Scholar] [CrossRef] [PubMed]
- Mainardi, F. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics, Fractals and Fractional Calculus in Continuum Mechanics; Springer: New York, NY, USA, 1997. [Google Scholar]
- Abbasb, Y.S.; Kazem, S.; Alhuthali, M.S.; Alsulami, H.H. Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection-diffusion equation. Appl. Math. Comput. 2015, 266, 31–40. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: San Diego, CA, USA, 2006. [Google Scholar]
- Huang, F.H.; Guo, B.L. General solutions to a class of time fractional partial differential equations. Appl. Math. Mech. 2010, 31, 815–826. [Google Scholar] [CrossRef]
- Momani, S.; Noor, M.A. Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 2006, 182, 754–760. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, Z.G.; Li, J.J.; Yang, H.W. Analysis of Lie symmetries with conservation laws and solutions of generalized (4+1)-dimensional time-fractional Fokas equation. Fractal Fract. 2022, 6, 108. [Google Scholar] [CrossRef]
- Sene, N. Analytical solutions of a class of Fluids models with the Caputo fractional derivative. Fractal Fract. 2022, 6, 35. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Li, L.; Wang, Q.; Geng, J. New Explicit Solutions of the Extended Double (2+1)-Dimensional Sine-Gorden Equation and Its Time Fractional Form. Fractal Fract. 2022, 6, 166. https://doi.org/10.3390/fractalfract6030166
Wang G, Li L, Wang Q, Geng J. New Explicit Solutions of the Extended Double (2+1)-Dimensional Sine-Gorden Equation and Its Time Fractional Form. Fractal and Fractional. 2022; 6(3):166. https://doi.org/10.3390/fractalfract6030166
Chicago/Turabian StyleWang, Gangwei, Li Li, Qi Wang, and Juan Geng. 2022. "New Explicit Solutions of the Extended Double (2+1)-Dimensional Sine-Gorden Equation and Its Time Fractional Form" Fractal and Fractional 6, no. 3: 166. https://doi.org/10.3390/fractalfract6030166
APA StyleWang, G., Li, L., Wang, Q., & Geng, J. (2022). New Explicit Solutions of the Extended Double (2+1)-Dimensional Sine-Gorden Equation and Its Time Fractional Form. Fractal and Fractional, 6(3), 166. https://doi.org/10.3390/fractalfract6030166