A Local Fractional Elzaki Transform Decomposition Method for the Nonlinear System of Local Fractional Partial Differential Equations
Abstract
:1. Introduction
2. Preliminaries
3. Local Fractional Elzaki Transform
4. Local Fractional Elzaki Transform Decomposition Method
5. Applications
6. Discussion
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local Fractional Integral Transforms and Their Applications; Academic Press: London, UK, 2015. [Google Scholar]
- Babakhani, A.; Daftardar-Gejji, V. On calculus of local fractional derivatives. J. Math. Anal. Appl. 2002, 270, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Sun, W. Some Hermite–Hadamard type inequalities for generalized h-preinvex function via local fractional integrals and their applications. Adv. Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Yan, S.P.; Jafari, H.; Jassim, H.K. Local fractional Adomian decomposition and function decomposition methods for Laplace equation within local fractional operators. Adv. Math. Phys. 2014, 2014. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.M. Some new local fractional inequalities associated with generalized (s, m) (s, m)-convex functions and applications. Adv. Differ. Equ. 2020, 2020, 406. [Google Scholar] [CrossRef]
- Yang, X.J.; Gao, F.; Tenreiro Machado, J.A.; Baleanu, D. Exact Travelling Wave Solutions for Local Fractional Partial Differential Equations in Mathematical Physics. In Mathematical Methods in Engineering. Nonlinear Systems and Complexity; Taş, K., Baleanu, D., Machado, J., Eds.; Springer: Cham, Switzerland, 2019; Volume 24. [Google Scholar] [CrossRef]
- Wang, K.; Wang, K. A new analysis for Klein-Gordon model with local fractional derivative. Alex. Eng. J. 2020, 59, 3309–3313. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Cattani, C.; Samet, B. Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solitons Fractals 2020, 135, 109811. [Google Scholar] [CrossRef]
- Ghanbari, B.; Kumar, S.; Kumar, R. A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 2020, 133, 109619. [Google Scholar] [CrossRef]
- Goufo, E.F.D.; Kumar, S.; Mugisha, S.B. Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals 2020, 130, 109467. [Google Scholar] [CrossRef]
- Kumar, S.; Nisar, K.S.; Kumar, R.; Cattani, C.; Samet, B. A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force. Math. Methods Appl. Sci. 2020, 43, 4460–4471. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Samet, B.; Gómez-Aguilar, J.F.; Osman, M.S. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos Solitons Fractals 2020, 141, 110321. [Google Scholar] [CrossRef]
- Kumar, S.; Ghosh, S.; Samet, B.; Goufo, E.F.D. An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator. Math. Methods Appl. Sci. 2020, 43, 6062–6080. [Google Scholar] [CrossRef]
- Adda, F.B.; Cresson, J. About non-differentiable functions. J. Math. Anal. Appl. 2001, 263, 721–737. [Google Scholar] [CrossRef] [Green Version]
- Carpinteri, A.; Cornetti, P.; Kolwankar, K.M. Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos Solitons Fractals 2004, 21, 623–632. [Google Scholar] [CrossRef]
- Chen, W. Time–space fabric underlying anomalous diffusion. Chaos Solitons Fractals 2006, 28, 923–929. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yan, Y.; Zhang, K. On the local fractional derivative. J. Math. Anal. Appl. 2010, 362, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, X.D.; Korošak, D. Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simul. 2010, 11, 3–10. [Google Scholar] [CrossRef]
- He, J.H.; Wu, G.C.; Austin, F. The variational iteration method which should be followed. Nonlinear Sci. Lett. A 2010, 1, 1–30. [Google Scholar]
- He, J.H. A new fractal derivation. Therm. Sci. 2011, 15, 145–147. [Google Scholar] [CrossRef]
- Kolwankar, K.M.; Gangal, A.D. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos Interdiscip. J. Nonlinear Sci. 1996, 6, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Kolwankar, K.M.; Gangal, A.D. Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80, 214. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.J. Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4, 1–225. [Google Scholar]
- Wazwaz, A.M. A reliable modification of Adomian decomposition method. Appl. Math. Comput. 1999, 102, 77–86. [Google Scholar] [CrossRef]
- Ahmad, J.; Mohyud-Din, S.T.; Yang, X.J. Applications of local fractional decomposition method to integral equations. J. Sci. Arts 2014, 14, 81. [Google Scholar]
- Jafari, H.; Jassim, H.K. Local fractional Adomian decomposition method for solving two dimensional heat conduction equations within local fractional operators. J. Adv. Math. 2014, 9, 2574–2582. [Google Scholar]
- Yang, X.J.; Baleanu, D.; Zhong, W.P. Approximate solutions for diffusion equations on Cantor space-time. Proc. Rom. Acad. A 2013, 14, 127–133. [Google Scholar]
- Yang, X.J.; Baleanu, D.; Lazaveric, M.P.; Cajic, M.S. Fractal boundary value problems for integral and differential equations with local fractional operators. Therm. Sci. 2015, 19, 959–966. [Google Scholar] [CrossRef]
- Jassim, H.K. Local fractional Laplace decomposition method for nonhomogeneous heat equations arising in fractal heat flow with local fractional derivative. Int. J. Adv. Appl. Math. Mech. 2015, 2, 1–7. [Google Scholar]
- Ziane, D.; Cherif, M.H.; Belghaba, K. Exact solutions for linear systems of local fractional partial differential equations. Malaya J. Mat. 2018, 6, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Ziane, D.; Baleanu, D.; Belghaba, K.; Cherif, M.H. Local fractional Sumudu decomposition method for linear partial differential equations with local fractional derivative. J. King Saud Univ. Sci. 2019, 31, 83–88. [Google Scholar] [CrossRef]
- Ziane, D.; Cherif, M.H.; Cattani, C.; Belghaba, K. Yang-Laplace Decomposition Method for Nonlinear System of Local Fractional Partial Differential Equations. Appl. Math. Nonlinear Sci. 2019, 4, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Tenreiro Machado, J.A.; Cattani, C.; Baleanu, M.C.; Yang, X.J. Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators. Abst. Appl. Anal. 2014, 6, 48. [Google Scholar] [CrossRef]
- Ma, X.J.; Srivastava, H.M.; Baleanu, D.; Yang, X.J. A new Neumann series method for solving a family of local fractional Fredholm and Volterra integral equations. Math. Probl. Eng. 2013, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.J. Local Fractional Functional Analysis and Its Applications; Asian Academic: Hong Kong, China, 2011. [Google Scholar]
- Yang, X.J. Advanced Local Fractional Calculus and Its Applications; World Science: New York, NY, USA, 2012. [Google Scholar]
- Yang, X.J.; Baleanu, D.; Machado, J.A.T. Mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. Bound. Value Probl. 2013, 1, 131. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D.; Yang, X.J. Local fractional Sumudu transform with application to IVPs on Cantor sets. Abstr. Appl. Anal. 2014, 8, 529. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, A.; Baleanu, D. Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves. Nonlinear Dyn. 2016, 85, 699–715. [Google Scholar] [CrossRef]
- Zhu, Y.; Chang, Q.; Wu, S. A new algorithm for calculating Adomian polynomials. Appl. Math. Comput. 2005, 169, 402–416. [Google Scholar] [CrossRef]
- Rawashdeh, M.S.; Al-Jammal, H. New approximate solutions to fractional nonlinear systems of partial differential equations using the FNDM. Adv. Differ. Equ. 2016, 1, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Jassim, H.K.; Baleanu, D.; Chu, Y.M. On the approximate solutions for a system of coupled Korteweg–de Vries equations with local fractional derivative. Fractals 2021, 29, 2140012. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anac, H. A Local Fractional Elzaki Transform Decomposition Method for the Nonlinear System of Local Fractional Partial Differential Equations. Fractal Fract. 2022, 6, 167. https://doi.org/10.3390/fractalfract6030167
Anac H. A Local Fractional Elzaki Transform Decomposition Method for the Nonlinear System of Local Fractional Partial Differential Equations. Fractal and Fractional. 2022; 6(3):167. https://doi.org/10.3390/fractalfract6030167
Chicago/Turabian StyleAnac, Halil. 2022. "A Local Fractional Elzaki Transform Decomposition Method for the Nonlinear System of Local Fractional Partial Differential Equations" Fractal and Fractional 6, no. 3: 167. https://doi.org/10.3390/fractalfract6030167
APA StyleAnac, H. (2022). A Local Fractional Elzaki Transform Decomposition Method for the Nonlinear System of Local Fractional Partial Differential Equations. Fractal and Fractional, 6(3), 167. https://doi.org/10.3390/fractalfract6030167