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Abstract: The present study addresses the problem of fixed-time stabilization (FTS) of mobile robots
(MRs). The study’s distinguishing aspects are that the system under examination is subjected to
external disturbances, and the system states are pushed to zero in a finite time. This paper suggests
new control techniques for chained-form nonholonomic systems (CFNS) subjected to disturbances.
First, a switching fractional-order (FO) control approach is proposed for a first-order subsystem
(FOS) of an MR under complex disturbances. Secondly, an FO generic global sliding mode control
approach is designed for the second-order system (SOS) of the MR in the presence of disturbances.
The suggested sliding manifold for the SOS of the MR guarantees global system stability and reduces
the chattering problem during control operations. A conventional quadratic Lyapunov function (QLF)
is used to converge to the origin in a finite time (FnT). Through this study, a stabilizer for an MR
in the presence of disturbances based on an FO switching time-varying controller that can stabilize
immeasurable states in a fixed time is proposed. Finally, three case simulations are provided to
demonstrate the efficacy of the control strategy proposed in this work against external disturbances.

Keywords: fractional calculus; fractional-order sliding manifold; mobile robot; fixed-time stability;
external disturbances

1. Introduction

In recent years, a growing body of research on robotic building has revealed a number of
benefits including increased safety, faster construction, and better quality control [1,2]. Construc-
tion robots, however, have had a slow acceptance rate [2]. As a consequence, the anticipated
benefits have not been realized, which is problematic in an era when mass-scale building
and remodeling with high levels of efficiency and quality is in great demand [2]. The fourth
industrial revolution brought a wave of change to logistics. Since the beginning of human
society, transportation has been one of the most urgent concerns [2]. There are a variety of
applications for diverse tasks that are all targeted at enhancing processes and, as a result,
production and volume [3]. Some logistics-related collaborative robots can even be taught
to execute tasks. This reduces unused programming time and speeds up the bespoke
packaging process. The logistics and transportation industries are being progressively
infiltrated by robots [3].

Stabilization of nonholonomic systems (SNS) has attracted a great deal of interest in
recent years due to its practical applications in various fields sych as wheeled vehicles and
mobile robotics. Controlling MRs, however, is difficult due to the fact that the number of
control inputs is smaller than the degrees of freedom [4]. Stationary continuous feedback
cannot be stabilized in this type of robot [5,6]. Furthermore, certain complex situations with
regard to these MRs in terms of initial conditions make stabilization more complicated [4,7].
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The problem of SNS becomes more difficult in the presence of external disturbances [8].
To solve these difficulties, several control techniques have been proposed in the literature,
including output feedback control and adaptive state feedback techniques [9–11], expo-
nential regulation [12], and global robust stabilization [13,14]. Recently, the concept of
finite-time controllers for nonholonomic systems was presented in [7,15–18]. Finite-time sta-
bility (FnTS) is more powerful than traditional asymptotic stability. FnTS usually has higher
accuracy, a faster convergence rate, and higher resilience. In [19], the FnT stabilization
problem of nonholonomic systems with output constraints was investigated. The authors
of [19] proposed output feedback for an MR using an FnT control technique with input
saturation. The work developed in [19] addressed the design of the finite-time feedback
controller and observer.

Recently, many researchers have addressed the problem of the fixed-time stabilization
of these MRs, which are characterized by a fixed-time convergence [20,21]. The authors
of [21] proposed output feedback for uncertain NSs using a fixed-time control. The work
reported in [20] involved the development of a new switching time-varying observer
capable of estimating immeasurable states in a fixed time, allowing us to design an output
feedback controller.

The theory of integrals and derivatives of any real or complex order has progressed
with the development of fractional calculus. Many studies have been reported in the
literature that combine the fractional order with sliding mode control (SMC) to increase the
performance stabilization of dynamical systems. The authors in [22,23] proposed an FO-
SMC technique for controlling nonlinear dynamical systems by choosing the specific sliding
variables that are used to achieve the FnTS. However, stabilization of MR systems in the
presence of disturbances is more commonly addressed using FO controllers. In addition, by
combining FO fixed-time controllers and SMC, the controller becomes more robust against
disturbances and provides more degrees of freedom. To the best of our knowledge, however,
there is no literature describing the fractional-order fixed-time control method for mobile
robots. This paper addresses the design of fixed-time FO controllers for mobile robots
in the presence of disturbances. Fractional calculus, in fact, opens up new possibilities
for controller design. Compared to integer-order controllers, fractional-order controllers
offer more opportunities to improve control performance and resilience [24]. Furthermore,
fractional-order controllers can aid in the stabilization of dynamical systems [25].

In this paper, two new FO first/second-order fixed-time convergent controllers are de-
signed for an MR subjected to external disturbances to its global stabilization convergence
time. The considered controllers are based on the FO-SMC [23,26–29], with fixed-time
control techniques [30], which are particularly suitable for this situation as a robust rejec-
tion of disturbances is achieved. The robustness is studied for various cases in terms of
disturbances and the initial conditions. We are concerned with fixed-time stabilization via
state feedback for a type of uncertain chained-form nonholonomic system with FO in this
study, as part of our ongoing research. The key contributions of this study are as follows,
compared to similar existing results in the literature:

• The fixed-time convergence is fully addressed in this work, taking into consideration
real system needs.

• In contrast to previous finite-time/fixed-time control methods, the present paper
combines fixed-time control and fractional theory.

• Two FO fixed-time controllers are designed for first/second order systems, and two
switching strategies are suggested to ensure the fixed-time stability of uncertain
chained-form nonholonomic systems.

• The second-order controller proposed in this work possesses better performance with
regard to reduction of the chattering phenomenon and global stabilization.

• The theory results are confirmed by numerical results for various cases and are com-
pared with recent fixed-time controls [30].
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Some basic properties, definitions, and lemmas on fractional calculus and fixed-time
stability are presented in Section 2. Section 3 gives the main results. Numerical simulation
results are reported in Section 4. A conclusion is presented in Section 5.

Z+ and R+ are the sets of integer numbers and positive real numbers, respectively.
Throughout the paper, while C and R represent separately the set of complex real numbers,
Rn denotes the n-dimensional Euclidean space. For a vector ϑ = [ϑ1, ϑ2, . . . , ϑn]T ∈ Rn,

we use ‖ϑ‖2 =
√

∑n
i=1 |ϑi|2 to denote the two-norm of vector ϑ, while ‖ϑ‖ represents an

arbitrary norm of vector ϑ.

2. Preliminaries and Conceptualization of the Problem
2.1. Preliminary Considerations on Fractional Calculus

The Caputo derivative is the most frequently used fractional-order derivative of Υ(t),
given as [31–33]:

C
a Da

t Υ(t) =
1

Γ(a− β)

∫ t

a

Υ(β)(τ)

(t− τ)a−β+1 dτ (1)

where β ∈ N∗, a denotes the order of the derivative such that (β− 1) < a < β, and Γ(.) is
the gamma function, which is defined by the following equation:

Γ(ζ) =
∫ ∞

0
e−ttζ−1dt, (2)

The Caputo operators [31,33] are usually the two definitions of the fractional-order
derivative used.

Property 1. Equation (3) applies to the Caputo derivative

C
t0Da

t (
C
t0D−λ

t Υ(t)) =C
t0 Da−λ

t Υ(t) (3)

where a > λ > 0.

Property 2. If 0 < a < 1, we can write (4) the Caputo derivative

C
t0D1−κ

t (C
t0Da

t Υ(t)) =C
t0 Da

t (
C
t0D1−κ

t Υ(t)) = Υ̇(t) (4)

Throughout this article, the notation CDa for the Caputo operator will be substituted
with Dκ .

2.2. Preliminary Considerations for Finite/fixed-Time Stability

We take the system below:

ẋ = Θ(x; Ψ) (5)

where x ∈ Rn is the state variable of the system in (5). The notation Ψ is a constant
parameter of the system in Equation (5).

The function Θ(x; Φ) : Rn −→ Rn is nonlinear, and the origin is considered to be an
equilibrium point in the system in Equation (5). Its initial conditions are x0 = x(0) ∈ Rn.

Definition 1. [34,35] If there is such a thing as a function ΦT : Rn −→ R+, the origin of (5)
is globally finite-time stable. Thus, the solution Ψ(t, x0) of the system in (5) reaches the point
of equilibrium in a certain amount of time. Hence, the settling time function can be defined as
t ∈ [0, Ψ(x0)], for t ≥ ΦT(x0), Θ(x0, t) = 0.

Definition 2. [34,35] It is a globally fixed-time equilibrium if the system in Equation (5) is
globally finite-time stable and the settling-time expression is ΦT(x0) is limited by a positive value
ΦTMax > 0.
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To explain finite-time stability in the face of rapid temporal convergence, Lemmas 1 and 2
are used.

Lemma 1. [36] Consider the notation Π(t) as the Lyapunov function (LF) given by the following
equation:

Π̇(t) ≤ −v1Π(t)−v2 ϕς(t), ∀ > t0, ϕ(t0) > 0 (6)

where, v1 > 0, v2 > 0, ϕ0 is the initial value of Π(t), and 0 < ς < 1. Let Π(t), ∀t > t1, then
following a basic calculation, ts is,

ts = t0 +
1

v1(1− ς)
ln

v1 ϕ1−ς(t0) + v2

v2
(7)

Lemma 2. [37] Consider LF Π(t) with initial value ϕ0 as

Π̇(t) ≤ −v1Π(t), ∀ > t0, ϕ(t0) > 0 (8)

where, v1 > 0 and 0 < ς < 1. Let Π(t), ∀t > t1.
Then, the corresponding settling time ts can be given as

tr ≤ t0 +
v1 ϕ1−ς(t0)

νa(1− ς)
(9)

Lemma 3. [34] For the system in Equation (5), if there is a C1and ϕ(x)positively defined on a
neighborhoodof the origin Â, with Â⊆ A, where Υx, Υy > 0, 0 < Θ1 < 1, and Θ1 > 0 such that
ϕ̇(x) 6 −Υx ϕθ1(x)− Υy ϕθ2(x), then the origin of the system in (5) is fixed-time stable and the
settling time ΦT(x0)satisfies φT(x) 6 ΦTMax := 1

Υx(1−Θ1)
+ 1

Υy(1−Θ2)
, for all x ∈ Â.

2.3. Problem Formulation

Consider the MR presented in Figure 1, which is riding a unicycle. It has two driving
wheels controlled by two actuators each, as well as one passive wheel that keeps the plane
from flipping over while in motion. The position of the center of mass (x, y) is at the
intersection of a straight line passing between the robot’s center and the axes of the two
driving wheels. This MR’s configuration is as follows:

Y(t) = [x y θ]T ,

The heading angle of the MR is denoted by θ. The following equation gives the
non-slipping and pure rolling conditions:

sin(θ)ẋ− cos(θ)ẏ = 0. (10)

Under nonholonomic restrictions, the kinematics of the wheeled MR are as follows:

ẋ = cos(θ)ν

ẏ = sin(θ)ν (11)

θ̇ = ω

The angular/linear velocities are denoted, respectively, by the notations ω(t)/ν(t).
Let us make the following changes.
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ε0 = x(t)

ε1 = y

ε2 = tan(θ) (12)

τ0 = ν cos(θ)

τ1 = ω sec2(θ)

Using the transformation, system (11) can be described as:
ε̇0 = τ0 + d0

ε̇1 = τ0ε1
ε̇2 = τ1 + d1

(13)

where d0 and d1 are unknown perturbations.

y

x

� 

Y

X
O

Figure 1. The planar graph of a mobile robot.

3. Main Results

This section describes a constructive approach for designing the FxT stabilizer of (13)
in the face of perturbations, at any time T > 0. At τ0, we start by choosing an appropriate
non-zero constant input ρ. As a result, the ε-subsystem may be thought of as a nonlinear
control, for which the fixed-time stabilizing controller was created. We propose a novel FO
controller τ to fixed-time stabilize the ε0-subsystem after τ0 reaches zero before a defined
time and remains at zero.

3.1. Stabilization of the First-Order System (FOS) of the MR in the Presence of Perturbation

The FxTS of the first-order system of the CFD is presented in this subsection. The
switching controller presented in the following proposition ensures the fixed-time stability
of the FOS under perturbations.
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Proposition 1. Consider an FOS with the following switching control scheme:

τ0 =

{
ρ i f t ≤ T1
−Ξ0|ε0|γ1 sign(ε0)− Ξ1|ε0|γ2 sign(ε0)− Ξ2sign(ε0)

(14)

where Ξi is a positive constant. Then, the ε0-subsystem is fixed-time stable.

Proof. The candidate Lyapunov function (CLF) is selected as:

Vε0 =
1
2

ε2
0 (15)

The time-derivative of Vε0 is given by:

V̇ε0 = −Ξ0|ε0|γ1+1 − Ξ1|ε0|γ2+2 − Ξ2|ε0| (16)

≤ −Ξ0(2Vε0)
γ1+1

2 − Ξ1(2Vε0)
γ2+1

2 − Ξ2(2Vε0)
1
2 (17)

≤ −Ξ0(2Vε0)
γ1+1

2 − Ξ1(2Vε0)
γ2+1

2 (18)

We define the new variables as Υφ1 = 2Ξ0, Υφ2 = 2Ξ1, Υθ1 = γ1+1
2 , Υθ2 = γ2+1

2 .
Then, (18) becomes

V̇0(t) ≤ −Υφ1V0(t)Υθ1 − Υφ2V0(t)Υθ2 (19)

The ε0-subsystem is fixed-time stable based on Lemma 3.

The FOS with matching perturbation is stabilized using a simple switching controller
in this subsection. Based on this controller and using FO operators, a new control technique
is designed in the next subsection.

3.2. Stabilization of the (FOS) of the MR Based on FO Control Method in the Presence
of Perturbation

An FO-FxT switching control law (FO-FxT-SCL) is suggested for the optimization
of the FOS of the MR under perturbations, based on t0 Dλ

t sign(ε). The first property of
t0 Dλ

t sign(ε) ensures that the output is within an arbitrarily small neighborhood of the
optimal operating point and stays close to it thereafter in the FO-FxT-SCL. The second
attribute has the potential to increase the control performance (i.e., convergence speed and
accuracy). The changes in t0 Dλ

t sign(ε), 0 ≤ λ < 1 with regard to λ and t are depicted to
demonstrate how the FO sign function’s characteristics lead to improved tracking behavior.

Lemma 4 ([38]). Considering the Caputo fractional derivative t0 Dλ
t ϕ(t) =

1
Γ(1− λ)

d
dt

∫ t
0

ϕ(τ)

(t− τ)λ
dτ, 0 6 λ < 1, and the sign function, we obtain

t0 Dλ
t sign(ε(t)) =

{
> 0, i f ε(t) > 0, t > 0
< 0, i f ε(t) < 0, t > 0

(20)

Remark 1. Consider the following scenarios: (i) for ε > 0, we have t0 Dλ
t sign(ε) = t−λ

Γ(1−λ)
; (ii)

for ε < 0, we also have t0 Dλ
t sign(ε) = − t−λ

Γ(1−λ)
. In both situations, Dλ

t sign(ε) is bounded.
Because the absolute value in the aforementioned situations is higher than that of the other cases,
Dλ

t sign(ε), ∀ε is bounded, i.e., there exists an h̄ > 0 such that
∣∣Dλ

t sign(ε)
∣∣ < h̄.
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Theorem 1. Consider the FOS with the following switching control scheme:

τ0 =


ρ i f t ≤ T1
−Ξ0Dλ1{|ε0|γ1 sign(ε0)}
−Ξ1Dλ2{|ε0|γ2 sign(ε0)} − Ξ2Dλ3{sign(ε0)}

(21)

with 0 < λi < 1 and λi < γi. Then, the ε0-subsystem is fixed-time stable. Then, ε0 = 0 is
Mittag–Leffler stable. If the assumption applies globally to Rn, then ε0 = 0 is globally fixed-time
Mittag–Leffler stable.

Proof. The candidate Lyapunov function (CLF) is selected as:

Vε1 =
1
2

ε2
0 (22)

The time-derivative of Vε1 can be defined as:

V̇ε1 = −Ξ0γ1Dλ1{|ε|γ1+1} − Ξ1Dλ2{|ε|γ2+2} − Ξ2εDλ3 ε

≤ −Ξ0Dλ1{(2Vε1)
γ1+1

2 } − Ξ1Dλ2{(2Vε1)
γ2+1

2 } (23)

Then, (23) becomes

V̇ε1 ≤ −Υφ1Dλ1 VΥθ1
ε1 − Υφ2Dλ1 VΥθ2

ε1 (24)

The ε0-subsystem is fixed-time stable.

3.3. Design of FO Global Sliding Mode Controller for SOS

In this subsection, the problem of the stabilization of SOS is addressed. An FxT FO
global SMC (FxT-FO-GSMC) is proposed for stabilizing the SOS of the MR in the presence
of disturbances.

The method for the stabilization of the SOS based on FxT-FO-GSMC is as follows. The
design process for the MR second system’s control input τ1 will be given in this subsection.
Consider the following SOS with uncertainty and disturbances:

ε̇1 = ε2

ε̇2 = ∆P(ε) + d1 + τ1
(25)

with,
|d1| = |(∆P(ε) + d1)| ≤ δ1 (26)

where δ1 is the upper bound on the uncertainty/disturbance.
The goal is to create sliding manifolds with state variables that stay on them.
Using Caputo fractional operators, the FO sliding manifold σ ∈ R1 SOS can be defined

as [23]:

σ = βIκε1 + γD1−κε1 + D1−κε2 (27)

where a ∈ (0, 1), β, and γ are positive parameters.
For the sliding manifold (27), according to Properties 1 and 2 and attaching a Caputo

type of fractional derivative, we have

Dκσ = βε1 + γε2 + ε̇2 (28)
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The equivalent control law may be derived by negating the terms on the right-hand
side of (28), and then expressing the equivalent control law as

τeq1 = −{βε1 + γε2} (29)

To cope with the disturbances, a switching control law is introduced as follows:

τ1 = τeq1 − ϕ1 I1−κsigqσ + ϕ2 I1−κσ (30)

where ϕ1,2 is a positive constant, and
sigqσ , sign(σ)|σ|q, q ∈ (0, 1), with sign(X) = 1 if X > 0 or sign(X) = −1 if X < 0.

Remark 2. The tangent function was used to replace the discontinuous control components in the
control law, as sign(X) = tanh

(
X
µp

)
, in order to rule out the chattering effect.

Theorem 2. The FxT-FO-GSMC (30) for the ε-subsystem can guarantee the system finite-time sta-
bility, and its state variables converge to the sliding manifold σ within the finite time
Tr ≤ 1

ϕ2(1−q) ln(1 + ϕ2
ϕ1
‖σ(0)‖1−q

2 ).

Proof. Choose the CLF for the SOS as

Vε12 =
1
2

σ2 (31)

The time-derivative of Vε12 can be given by

V̇ε12 = σσ̇ = σD1−κ(Dκσ) (32)

Substituting (28) and (30) into (32), we obtain

V̇ε12 ≤ σD1−κ(−ϕ1 I1−κ tanh
(

σ

µ

)
|σ|q − ϕ2 I1−κσ) (33)

= σ(−ϕ1 tanh
(

σ

µ

)
|σ|q − ϕ2σ) (34)

= sign(σ)|σ|(−ϕ1 tanh
(

σ

µ

)
|σ|q)− ϕ2σ2 (35)

= −ϕ1sign(σ) tanh
(

σ

µ

)
|σ|q+1 − ϕ2σ2 (36)

= −ϕ1

∣∣∣∣tanh
(

σ

µ

)∣∣∣∣.|σ|q+1 − ϕ2σ2 (37)

≤ −ϕ1|σ|1+q − ϕ2σ2 (38)

Then, we obtain

V̇ε12 ≤ −ϕ1|σ|1+q (39)

The ineqaulity (39) can be rewritten as

V̇ε12 ≤ −ϕ2‖σ‖
1+q
2 (40)

Thus, from the above analysis, it can be concluded that the state variables will asymp-
totically converge to σ = 0. Using Equation (33), we have

V̇ε12 ≤ −ϕ1|σ|1+q − ϕ2σ2 = −ϕ1(2Vε12)
1+q

2 − ϕ2(2Vε12) (41)
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Hence, after simple calculation we can obtain

dt ≤ − dVε12

ϕ1(2Vε12)
1+q

2 + ϕ2(2Vε12)

≤ −1
2

(2Vε12)
− 1

2 d(2Vε12)

ϕ1(2Vε12)
q
2 + ϕ2(2Vε12)

1
2

≤ − d(2Vε12)
1
2

ϕ1(2Vε12)
q
2 + ϕ2(2Vε12)

1
2

(42)

≤ − d‖σ‖2

ϕ1‖σ‖
q
2 + ϕ2‖σ‖2

≤
‖σ‖−q

2 d‖σ‖2

ϕ1 + ϕ2‖σ‖
1−q
2

≤ − 1
ϕ2(1− q)

d(ϕ2‖σ‖
1−q
2 )

ϕ1 + ϕ2‖σ‖
1−q
2

By integrating Equation (42) from 0 to tr with s1(tr) = 0, we obtain

tr − 0 ≤ − 1
ϕ2(1− q)

∫ tr

0

d(ϕ2‖σ‖
1−q
2 )

ϕ1 + ϕ2‖σ‖
1−q
2

≤ − 1
ϕ2(1− q)

ln(ϕ1 + ϕ2‖σ‖
1−q
2 )|tr

0 (43)

≤ − 1
ϕ2(1− q)

[ln(ϕ1)− ln(ϕ1 + ϕ2‖σ(0)‖
1−q
2 )]

≤ 1
ϕ2(1− q)

ln(1 +
ϕ2

ϕ1
‖σ(0)‖1−q

2 )

The reaching time to the sliding surface which is also the convergence time of states
variables is Tr, which satisfies

Tr = tr − 0 ≤ 1
ϕ2(1− q)

ln(1 +
ϕ2

ϕ1
‖σ(0)‖1−q

2 ) (44)

This completes the proof.

3.4. Stabilization of Nonholonomic Chained-Form Systems with Unknown Perturbations

The switching technique is utilized in the following theorem to provide fixed-time sta-
bility of the closed-loop system for uncertain NS with CFD in the presence of disturbances,
based on the previous results for first- and second-order subsystems.

Theorem 3. For the system in (13), we use the following switching controllers:

τ0 =


ρ i f t ≤ T1
−Ξ0Dλ1{|ε0|γ1 sign(ε0)}
−Ξ1Dλ2{|ε0|γ2 sign(ε0)} − Ξ2Dλ3{sign(ε0)}

(45)

τ1 =

{
= −βε1 − γε2 − ϕ1 I1−κsigqσ + ϕ2 I1−κσ i f t ≤ T1
= −K2sign(Z2(t)) i f t > T1

(46)

where K2 is a positive constant.
The closed-loop system in (13) becomes fixed-time stable as a result.

Proof. In order to prove the above Theorem 3, two parts will be defined.
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(1) For t ≤ T1, τ0 = ρ(t) is used as a constant control input. Then, in the presence of a
disturbance, one may deduce that ε1 and ε1 converge to zero in the fixed finite time
T1, based on the result of Theorem 2.

(2) For t ≥ T1, the control signal τ1 is developed to drive ε2 = 0. Consider the candidate
LF Vε2 = |ε2| and its time-derivative V̇ε2 ≤ −|ε2|(K2 − δ1). We choose K2 > δ1, then
ε = 0 for all t ≥ T1.

Remark 3. There are two elements to the FxT-FO-GSMC approach suggested in this paper. The first
portion is utilized to build a type reaching rule that leads to quickly stabilizing performance with a
high precision of state variables, while ignoring system limits and demands. The second portion,
on the other hand, is intended to create resilience against these system limits, while allowing for
additional parameter design freedom.

4. Analysis of Simulation Results

Numerical results are provided in this section to demonstrate the efficacy and applica-
tion of the suggested control method. Consider that a robot with unicycle-like dynamics as
given in (11) may be transformed into the system given in (13). A robot works as a system
stabilizer (13) when it operates in a restricted context. The MR’s principal control aim is to
solve the FnT stabilization problem.

We choose the simulations’ control parameters as ρ = 1, α1 = 1.2, Ξ0 = 0.3, Ξ1 = 0.78,
Ξ2 = 1.3, λi = −0.2, β = 1, γ = 10, κ = 0.99, q = 0.6, ϕ1 = 10, and ϕ2 = 0.6.

Equation (13) is a fixed-time stable system with a preset time T1 = 4 s, notwithstanding
the existence of disturbances, as a result of the FO switching control laws in Equations (45)
and (46). Three scenarios are presented in the simulations to examine the efficacy of the
suggested control method. The initial conditions are proposed as follows: (i) for the first
scenario, (ε0(0), ε1(0), ε2(0)) = (−0.5, 0.6, 2); (ii) for the second scenario, (−0.5, 0.9, 6); and
(iii) for the third scenario (−0.7, 1, 60).

Three distinct perturbations are chosen to further examine the performance of the
fixed-time method utilizing FO-FxT-SCL and FxT-FO-GSMC:

(i)
{

d0 = 0.2 cos(10t)
d1 = 0.4 cos(13t)

(47)

(ii)
{

d0 = 0.2 sin(17t)
d1 = 0.4 cos(14t)

(48)

and

(iii)
{

d0 = −0.2 tanh(20t− 10) + 0.2 cos(10t)
d1 = −0.2 tanh(25t− 10) + 0.5 cos(15t)

(49)

The simulation results using the proposed controller are plotted in in Figures 2–4 for
the first case. The suggested controller’s convergence time is about 5 s, which is virtually
constant and significantly less than the intended length of 10 s as the starting value increases,
as shown in Figure 2. In the first case, Figure 2 depicts the appropriate linear and angular
velocities, whereas Figure 3 depicts the control inputs. The figures clearly indicate that
the suggested control method stabilizes the MR outputs under perturbations in the fixed
time T = 4 s, and that the control inputs are smooth and have lower magnitudes during
transients. The sliding manifold, which converges to zero, is presented in Figure 4. This
demonstrates that in the presence of disruptions, all states remain stable.
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Figure 2. State trajectory graphs corresponding to the proposed FO-FxT-SCL and FxT-FO-GSMC in
case 1.
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Figure 3. Control inputs obtained by the proposed FO-FxT-SCL and FxT-FO-GSMC in case 1.
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Figure 4. Evolution of the sliding manifold using the proposed FO-FxT-SCL and FxT-FO-GSMC in
case 1.
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In order to show that the proposed control approach is superior, we used the
fixed-time approach presented by Defoort et al. in [30] for comparison. The control
system suggested in [30] was used as a representative example of existing FxT techniques.
The simulated circumstances for the two controllers were set to be the same in order to
make a fair comparison.

The controller in this situation is

τ0 =

{
1 i f t ≤ T1

−c0|ε0|2sign(ε0)− (ζ0 + c1)sign(ε0)
(50)

τ1 =

{
− a1+2ζ1+3a2ε2

2 sign(σ)− sig(a3σ + a4sig(σ)3)0.5 i f t ≤ T1
−γisign(ε2) else

(51)

with the sliding variable σ = ε2 + sig(sig(ε2)
2 + b1ε1 + b2sig(ε1)

3)0.5.
In addition, c0 = 0.78, ζ0 = 0.78, c1 = 0.1, a1 = 4.2, a2 = 4.2, a3 = 2.1, a4 = 2.1,

ζ1 = 0.3, b1 = 4.2, b2 = 4.2, and γi = 0.3.
Figures 5–7 depict the appropriate results from [30]. It is apparent that in the study by

Defoort et al., the convergence time is considerably overestimated. During transients, this
also leads to a greater control magnitude. In addition, the control signals are not smooth.
It is clear that the FO controllers proposed in this paper have better performance than the
switching control method proposed in [30].
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Figure 5. State trajectory graphs corresponding to the controller from [30] in case 1.

In the second case, the state variables are shown for the proposed controller in
Figures 8–10 and the controller in [30] in Figures 11–13. We can observe from these results
that, in the presence of external shocks, the position and rolling angle converge to their
starting circumstances. We can observe from the results in Figure 9 that the control inputs
are smooth and that the FO controller can reject unknown disturbances. In reality, this
scenario is more realistic, and the FO control methods are primarily responsible for the
MR’s stability and the sliding manifold converging to zero as shown in Figure 10.
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Figure 6. Control inputs obtained by the controller from [30] in case 1.
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Figure 7. Evolution of the sliding manifold using the controller from [30] in case 1.
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Figure 8. State trajectory graphs corresponding to the proposed FO-FxT-SCL and FxT-FO-GSMC in
case 2.
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Figure 9. Control inputs obtained by the proposed FO-FxT-SCL and FxT-FO-GSMC in case 2.
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Figure 10. Evolution of the sliding manifold using the proposed FO-FxT-SCL and FxT-FO-GSMC in
case 2.
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Figure 11. State trajectory graphs corresponding to the controller from [30] in case 2.

In the last case, the state variables, control inputs, and sliding manifold are represented,
respectively, in Figures 14–16. Under perturbations, all state outputs converge to their
initial conditions in a fixed time. The smooth and realizable amplitudes of the inputs, as
shown in Figure 15, indicate that the MR is more stable in these circumstances.
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Figure 12. Control inputs obtained by the controller from [30] in case 2.
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Figure 13. Evolution of the sliding manifold using the controller from [30] in case 2.
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Figure 14. State trajectory graphs corresponding to the proposed FO-FxT-SCL and FxT-FO-GSMC in
case 3.
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Figure 15. Control inputs obtained by the proposed FO-FxT-SCL and FxT-FO-GSMC in case 3.
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Figure 16. Evolution of the sliding manifold using the proposed FO-FxT-SCL and FxT-FO-GSMC in
case 3.

To demonstrate that the suggested control strategy is preferable, we compared it to
the high-order sliding mode control approach, as an example of an existing super-twisting
approach used in the simulation in case 1. To establish a fair comparison, the simulated
circumstances for the two controllers were configured to be the same. The controller in this
situation is

τ0 =

{
1 i f t ≤ T1

−c0|ε0|2sign(ε0)− (ζ0 + c1)sign(ε0)
(52)

τ1 =

{
−ε2 − 4|σ|0.5sign(σ)− 2

∫
sign(σ)dτ i f t ≤ T1

−γisign(ε2) else
(53)

with the sliding variable σ = ε1 + ε2. The results of this simulation are presented in
Figures 17–19.

The state variables are plotted in Figure 17. The difference between the proposed control
and the super-twisting control is that the convergence time of the ST control algorithm
increases slowly and is maintained below the prescribed time of 10 s as the initial values
increase. In other words, regardless of the starting conditions, the proposed control algorithm
ensures that the robot may be parked within the given time without violating the limitations.
The ST method, on the other hand, has an excessively long convergence time. Furthermore,
the advantages of the fixed-time FO control proposed in this paper over existing controls such
as the super-twisting algorithm and the fixed-time control proposed by Defoort et al. [30] are
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that the proposed control provides higher accuracy and faster convergence due to the use of
fractional operators in the concepts of sliding manifolds and control inputs.
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Figure 17. State trajectory graphs corresponding to the super-twisting control in case 1.
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Figure 18. Control inputs obtained by the super-twisting control in case 1.
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Figure 19. Evolution of the sliding manifold using the super-twisting control in case 1.
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Remark 4. The suggested control method was compared to the fixed-time strategy mentioned in [30].
In addition, unlike in [27], where the state variables can only converge to zero asymptotically due to
the use of sliding variables, the proposed control scheme, which uses fractional-order global sliding
surface manifolds, can guarantee finite-time zero stability in the second system and fixed-time stability
in the first system.

5. Conclusions

In this paper, two switching control approaches were designed for the first- and second-
order systems of an MR under external disturbances. An original FO switching control law
with Dγ(ε), 0 ≤ ε < 1 was suggested for the stabilization of the first-order systems of the
MR. This controller was designed based on the FO sign function. Compared to an integer-
order (IO) sign function, the proposed controller with an FO sign function can achieve faster
convergence. To obtain FxT stability, the FO controller was combined with constant gain. In
addition„ an original FO global SMC was developed for the global stabilization the second-
order system of the MR. This method used a specific sliding manifold to achieve a finite-
time convergence of the state variables. It was demonstrated that the proposed controllers
coped with external disturbances and provided FxT stability. Finally, the simulation results
supported the anticipated convergence time constraint and showed that the proposed
control strategy can accomplish stabilization of the MR and suppress the negative effect
of disturbances.
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