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Abstract: In this paper, we give an affirmative answer to a question about the sufficient conditions
which ensure that the set of mild solutions for a fractional impulsive neutral differential inclusion
with state-dependent delay, generated by a non-compact semi-group, are not empty compact and
an Rδ-set. This means that the solution set may not be a singleton, but it has the same homology
group as a one-point space from the point of view of algebraic topology. In fact, we demonstrate that
the solution set is an intersection of a decreasing sequence of non-empty compact and contractible
sets. Up to now, proving that the solution set for fractional impulsive neutral semilinear differential
inclusions in the presence of impulses and delay and generated by a non-compact semigroup is an
Rδ-set has not been considered in the literature. Since fractional differential equations have many
applications in various fields such as physics and engineering, the aim of our work is important. Two
illustrative examples are given to clarify the wide applicability of our results.

Keywords: impulsive fractional differential inclusions; neutral differential inclusions; mild solutions;
contractible sets; Rδ-set

1. Introduction

Impulsive differential equations and inclusions describe phenomena in which states
are changing rapidly at certain moments. In [1–8], the authors examined whether a mild
solution for different types of impulsive differential inclusions exist.

The study of neutral differential equations appears in many applied mathematical sci-
ences, such as viscoelasticity and equations that describe the distribution of heat. The struc-
ture of neutral equations involve derivatives related to delay beside the function. Neutral
differential equations and inclusions were studied in [9–12]. These papers examined the
mild solutions and controllability of the system.

Because the set of mild solutions for a differential inclusion having the same initial
point may not be a singleton, many authors are interested in investigating the structure
of this set in a topological point of view. An important aspect of such structure is the
Rδ-property, which means that the homology group of the set of mild solutions is the
same as a one-point space. We list some studies in which the authors demonstrated the
solution sets satisfying Rδ-property: Gabor [13] considered impulsive semilinear differen-
tial inclusions with finite delay on the half-line of order one generated by a non-compact
semi-group; Djebali et al. [14] worked on impulsive differential inclusions on unbounded
domains; Zhou et al. [15] studied the neutral evolution inclusions of order one generated
by a non-compact semi-group; Zhou et al. [16] considered fractional stochastic evolu-
tion inclusions generated by a compact semi-group; Zhao et al. [17] studied a stochastic
differential equation of Sobolev-type which is semilinear with Poisson jumps of order
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α ∈ (1, 2); Beddani [18] examined a differential inclusion involving Riemann–Liouville frac-
tional derivatives; Wang et al. [19] worked on semilinear fractional differential inclusions
with non-instantaneous impulses; Ouahab et al. [20] considered fractional inclusions that
are non-local and have impulses at different times; Zaine [21] studied weighted fractional
differential equations. Recently, Zhang et al. [22] proved that the set of C0-solutions for
impulsive evolution inclusions of order one is an Rδ-set and generated by m–dissipative op-
erator. Wang et al. [23] proved that the solution for evolution equations that have nonlinear
delay and multivalued perturbation on a non-compact interval is an Rδ-set.

In [6,24–26], the authors studied different kinds of fractional differential inclusions,
and, in all cases, they showed that the set of solutions is a compact set. For more work
related to this, the reader can consult the book in [27] about the topological properties for
evolution inclusions.

However, up to now, proving that the solution set for fractional impulsive neutral semi-
linear differential inclusions involving delay and generated by a non-compact semigroup is
an Rδ-set has not been considered in the literature. Thus, this topic is new and interesting
and, hence, the question whether there exists a solution set carrying an Rδ-structure remains
unsolved for fractional differential inclusions when there are impulses, delay (finite or
infinite) and the operator families generated by the linear part lack compactness. Therefore,
our main goal is to give an affirmative answer to this question. In fact, we study a neutral
fractional impulsive differential inclusion with delay which is generated by a non-compact
semigroup, and we show that the set of solutions is non-empty and equal to an intersection
of a decreasing sequence of sets each of which is non-empty compact and has a homotopy
equivalent to a point.

Let α ∈ (0, 1), r > 0, J = [0, b], T = {Υ(η) : η ≥ 0} a semigroup on E, which is
Banach space, and A the infinitesimal generator of T. Let F : J × Θ → 2E − {φ} be a
multifunction, h : J ×Θ → E, 0 = η0 < η1 < · · · < ηm < ηm+1 = b, and ψ ∈ Θ be given.
For every η ∈ J, let κ(η) : H → Θ, (κ(η)x)(θ) = x(η + θ); θ ∈ [−r, 0]; where Θ andH are
defined later.

The present paper shows the solution set of a fractional neutral impulsive semilinear
differential inclusion with delay having details as follows:

cD α
0,η [x(η)− h(η,κ(η)x)] ∈ Ax(η) + F(η,κ(η)x), a.e. η ∈ [0, b]− {η1, . . . , ηm},

Iix(η−i ) = x(η−i )− x(η+
i ), i = 1, . . . , m,

x(η) = ψ(η), η ∈ [−r, 0],
(1)

is not empty, compact and an Rδ-set, where Ii : E −→ E, i = 1, . . . , m, and x(η+
i ), x(η−i )

are the limits of the function x evaluated at ηi from the right and the left. Furthermore,
cD α

0,η denotes the Caputo derivative that has order α ∈ (0, 1) and lower limit at zero [28].
In the following points, we clarify the originality, importance and the main contribu-

tions of this article:

1. Up to now, proving that the solution set is an Rδ-set for fractional impulsive neutral
semilinear differential inclusions involving delay and generated by a non- compact
semigroup has not been considered in the literature.

2. Demonstrating that the set of solutions is an Rδ-set for fractional neutral differential
inclusions involving impulses and delay has not been considered yet.

3. We do not assume that the semi-group which generates the linear part is compact.
4. Proving that the set of solutions is an Rδ-set for neutral differential inclusions (without

impulses) with a finite delay, α = 1, and generated by a non-compact semigroup,
has been investigated in [15], while stochastic neutral differential inclusions (without
impulsive effects) with finite delay of order α ∈ (0, 1) and generated by a compact
semigroup has been examined in [16].

5. Gabor [13] considered Problem 1 on the half-line when α = 1 and h ≡ 0.
6. Problem 1 is investigated in [19] when h ≡ 0 and in the absence of delay.
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7. Our technique can be used to derive suitable conditions, which implies that the solu-
tion set is an Rδ-set for the problems studied in [13–23] when they contain impulses
and delay.

In order to clarify the difficulties encountered to achieve our aim, we point to the
normed space PC([−r, b], E], which consists of piecewise continuous bounded functions
defined on [−r, b] with a finite number of discontinuity points and is left continuous at the
discontinuity points, and is not necessarily complete. Moreover, unlike the Banach spaces
C([−r, b], E) and PC(J, E), the Hausdorff measure of noncompactness on PC([−r, b], E] is
not specific. Thus, when the problem involves delay and impulses, we cannot consider
PC([−r, b], E] as the space of solutions. To overcome these difficulties, a complete metric
space H is introduced as the space of mild solutions (see the next section). In addition,
the function η → κ(η)x; x ∈ H is not necessarily measurable (see Remark 1, and so, a norm
different from the uniform convergence norm is introduced (see Equation (2) below).

For recent contributions on neutral differential inclusions of fractional order,
Burqan et al. [29] give a numerical approach in solving fractional neutral pantograph equations
via the ARA integral transform. Ma et al. [30] studied the controllability for a neutral differ-
ential inclusion with Hilfer derivative, and Etmad et al. [31] investigated a neutral fractional
differential inclusion of Katugampola-type involving both retarded and advanced arguments.

For more recent papers we cite [32–34].
The sections of the paper are organized as follows: We include some background

materials in Section 2 as we need them in the main sections. Section 3 is assigned for
proving that the solution set of Problem (1) is non-empty and compact. In Section 4, we
show that this set is an Rδ-set in the complete metric space H. In Section 5, e give an
example as an application of the obtained results. Sections 6 and 7 are the discussion and
conclusion sections.

2. Preliminaries and Notation

In all the text we denote for the set of mild solutions for Problem 1 by ΣF
ψ[−r, b] and by

L1(J, E) to the quotient space consisting of E−valued Bohner integrable functions defined
on J having the norm ‖ f ‖L1(J,E) =

∫ b
0 ‖ f (θ)‖dθ. Let Pck(E) = {B ⊆ E : B be non-empty,

convex and compact}.

Definition 1. (Ref. [35]) Let h : J → E, {Υ(η) : η ≥ 0} a C0−semigroup and A be the
infinitesimal generator of it. A continuous function x : J → E is called a mild solution for the
problem: { cD αz(η) = Az(η) + h(η), η ∈ J,

z(0) = z0 ∈ E,

if

z(η) = K1(η)z0 +
∫ η

0
(η − τ)α−1K2(η − τ)h(τ)dτ, η ∈ J,

where K1(η) =
∫ ∞

0 ξα(θ)Υ(η αθ)dθ,K2(η) = α
∫ ∞

0 θξα(θ)Υ(ηαθ)dθ,

ξα(θ) =
1
α θ−1− 1

α wα(θ
− 1

α ) ≥ 0, wα(θ) =
1
π ∑∞

n=1(−1)n−1θ−αn−1 Γ(n α+1)
n! sin(nπα), θ ∈

(0, ∞) and
∫ ∞

0 ξα(θ)dθ = 1.

Lemma 1. (Ref. [35] (lemma 3.1)) The properties stated below are held:

(i) For every fixed η ≥ 0, K1(η),K2(η) are linear and bounded.
(ii) Assuming ||η(η)|| ≤ M, η ≥ 0, we have that for any x ∈ E, ||K1(η)x|| ≤ M||x|| and

||K2(η)x|| ≤ M
Γ(α) ||x||.

(iii) If η, τ ≥ 0; then for any x ∈ E,

lim
η→τ
||K1(η)x− K1(τ)x|| = 0, and lim

η→τ
||K2(η)x− K2(τ)x|| = 0.
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Consider the spaces:

1. The normed space

Θ : = {x : [−r, 0]→ E, where x is discontinuous at finite number of

points τ 6= 0, and all the limits x(τ+) and x(τ−) are less than ∞}

endowed with the norm:

||x||Θ :=
∫ 0

−r
||x(τ)||dτ. (2)

2. The Banach space

PC(J, E) : = {u : J → E : u|Ji
∈ C(Ji, E), i = 0, 1, 2, . . . , m, and u(η+

i ),

u(ηi) = u(η−i ) are finite for every i = 1, 2, . . . .m},

where J0 = [0, η1], Ji = (ηi, ηi+1], i = 1, 2, . . . , m, and ||v||PC(J;E) = τupη∈J ||v(η)||.
3. The complete metric space

H = {x : [−r, b]→ E : where x is continuous at η = 0, x|[−r,0]
= ψ,x|Ji

∈ PC (J, E)},

where the metric function is given by:

dH(x, y) = τupη∈J ||x(η)− y(η)||.

4. The Banach space

H := {x : [−r, b]→ E where x(η) = 0, ∀η ∈ [−r, 0],x|Ji
∈ PC (J, E)}

together with the norm ||x||H = τupη∈J ||x(η)||+ ||x|[−r,0]
||Θ = τupη∈J ||x(η)||.

The Hausdorff measure of noncompactness on a Banach space PC(J, E) is given by

χPC(B) := max
i=0,1,2,...,m

χi(B| Ji
),

where B is a bounded subset of PC(J, E) and χi is the Hausdorff measure of noncompact-
ness on the Banach space C(Ji, E) and

B|Ji
:= {x∗ : Ji → E : x∗(η) = x(η), η ∈ Ji and x∗(ηi) = x(η+

i ), x ∈ B}.

The Hausdorff measure of noncompactness onH is defined by:

χH(B) = max
i=0,1,2,...,m

χi(B| Ji
),

where B is a bounded subset ofH.

Remark 1. Since the function η → κ(η)x; x ∈ H is not necessarily measurable, we do not
consider the uniform convergence norm to be the norm defined on the space Θ (see Example 3.1, [36]).
Therefore, the multivalued superposition operator

x → S1
F(.,κ(.)x) = { f ∈ L1(J, E) : f (η) ∈ F(η,κ(η)x), a.e.,η ∈ J}

would not be well defined. Therefore, we consider a norm defined by Equation (2).

Definition 2. A function x ∈ H is said to be a mild solution for (1) if
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x(η) =


ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J = [0, b],

(3)

where f ∈ S1
F(.,κ(.)x).

We assume the following conditions:
(HA) A is the infinitesimal generator of T, 0 is an element of the resolvent of A, ρ(A)

and supη≥0 ||Υ(η)|| ≤ M, where M ≥ 1.
(HF) F : J ×Θ→ Pck(E) where:
(HF1) For any z ∈ Θ, the multifunction η −→ F(η, z) has a measurable selection,

and for η ∈ J, a.e., the multifunction z −→ F(η, z) is upper semicontinuous.
(HF2) There exists a ϕ ∈ LP(I,R+)(P > 1

α ) satisfying

‖F(η, z)‖ ≤ ϕ(η) (1 + ‖z‖Θ), ∀z ∈ Θ and for a.e. η ∈ J.

(HF3) There is a β ∈ LP([0, b], E), p > 1
α such that, for any D ⊂ Θ that is bounded, we

have
χE(F(η, D)) ≤ β(η) sup

θ∈[−r,0]
χE{z(θ) : z ∈ D}, a.e. for η ∈ J. (4)

(HI) For any i = 1, . . . , m, the function Ii : E→ E is continuous, and there are σi > 0
and ςi > 0 satisfying ||Ii(x)|| ≤ σi||x||, and for any bounded subset D ⊆ E,

χE(Ii(D)) ≤ ςiχE(Ii(D)).

Lemma 2. (Ref. [37]) Under condition (HA), for any γ ∈ (0, 1), the fractional power Aγ can be
defined, and it is linear and closed on its domain D(Aγ). In addition, the following properties are
satisfied:

(i) D(Aγ) is a Banach space with the norm

||x||γ = ||Aγx||.

(ii) For any η > 0, x ∈ E, we have Υ(η)x ∈ D(Aγ) and, assuming x ∈ D(Aγ), we get
AγΥ(η)x = Υ(η)Aγx.

(iii) For every η > 0, AγΥ(η) is bounded on E, and there is a constant Cγ > 0 such that

||AγΥ(η)|| ≤
Cγ

ηγ
. (5)

(iv) A−γ is a bounded linear operator on E.
(v) For every x ∈ E,

AK2(η)x = A1−γK2(η)Aγx, η ∈ J, (6)

and

||AγK2(η)|| ≤
αCγΓ(2− γ)

ηαγΓ(1 + α(1− γ))
, η ∈ (0, b]. (7)

We need the next lemmas in order to prove our main results.

Lemma 3. Assume W ⊆ E to be bounded, closed and convex, Φ1 : W → E is a single-valued
function, Φ2 : W → Pck(E) is a multifunction, and for any x ∈W, Φ1(x)+ y ∈W, ∀y ∈ Φ2(x).
Suppose that

(a) Φ1 is a contraction with the contraction constant k < 1
2 ;

(b) Φ2 is a closed and completely continuous multifunction.
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Then, the fixed point set of Φ1 + Φ2 is not empty. Moreover, the set of fixed points for
Φ1 + Φ2 is compact if it is bounded.

Proof. Φ1 is continuous on W since it is a contraction and, hence, it follows by the closeness
of Φ2, that the multifunction R = Φ1 + Φ2 is closed. We show that R is χE−condensing,
where χE is the Hausdorff measure of noncompactness on E. Let Z be a bounded set of W.
Since Φ1 is a contraction with the contraction constant k, we get µE(Φ1(Z)) ≤ kµE(Z) ≤
2kχE(Z) < χE(Z), where µE is the Kuratowski measure of noncompactness on E. Because
Φ2 is compact, χE(Φ2(Z)) = 0. Therefore,

χE(R(Z)) = χE(Φ1(Z)) + χE(Φ2(Z)

= χE(Φ1(Z)) ≤ µE(Φ1(Z))

< χE(Z).

This means that R is χE−condensing. By Proposition 3.5.1 in [38], the fixed point set
of Φ1 + Φ2 is not empty. The second part follows from Proposition 3.5.1 in [38].

3. The Compactness of ΣF
ψ[−r, b]

In this section, we show that the set of mild solutions for Problem 1 is nonempty
and compact.

For any x ∈ H with x(0) = ψ(0), let x ∈ H be defined by

x(η) :=
{

ψ(η), η ∈ [−r, 0],
x(η), η ∈ (0, b].

(8)

Lemma 4. For any x ∈ H, the function η → κ(η)x is continuous from J to Θ.

Proof. Assume η, τ ∈ J, η ≤ τ. Then,

||κ(η)x−κ(τ)x||Θ =
∫ 0

−r
||x(η + θ)− x(τ + θ)||dθ.

Because x is continuous on [−r, b] except for a finite number of points, it follows that
limη→τ ||x(η + θ)− x(τ + θ)|| = 0, a.e. Since x ∈ H, limη→τ

∫ 0
−r ||x(η + θ)− x(τ + θ)||dθ =

0, and the proof is completed.

Theorem 1. Assume that (HA) and (HF) are held and that {Υ(η) : η ≥ 0} is equicontinuous.
Assume also that the following conditions are satisfied.

(Hh) The function h : J ×Θ→ E is continuous and there exists a γ ∈ (0, 1) satisfying
h(η, u) ∈ D(Aγ), ∀(η, u) ∈ J ×Θ and

(i) For any η ∈ J, Aγh(η, .) is strongly measurable.
(ii) There are d1 > 0 and d2 > 0 with

d1||A−γ||+
d1bαγC1−γΓ(1 + γ)

γΓ(1 + αγ)
<

1
2r

, (9)

||Aγh(η, u)|| ≤ d2(1 + ||u||Θ), ∀(η, u) ∈ J ×Θ, (10)

and
||Aγh(η, u1)− Aγh(η, u2)|| ≤ d1||u1 − u2||Θ, ∀η ∈ J. (11)

Then, ΣF
ψ[−r, b] is not empty and a compact subset of H provided that

||A−γ||d2r + d2
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ
r +

M
Γ(α)

∆‖ϕ‖LP
(J,,R+)

r + σM < 1, (12)
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and
4∆M
Γ(α)

||β||LP(J, R+) + 2M
i=m

∑
i=1

ςi <
1
2

, (13)

where σ = ∑i=m
i=1 σi and ∆ = ( P−1

αP−1 )
P−1

P bα− 1
P .

Proof. A multioperator Φ : H → P(H) is defined as the following: let x ∈ H, hence, as a
consequence of (HF1), the multifunction η −→ F(η,κ(η)x) admits a measurable selection
which, by (HF2), belongs to S1

F(.,κ(.)x), and, therefore, y ∈ Φ(x) can be defined by

y(η) =


0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J,

(14)

where f ∈ S1
F(.,κ(.)x) and x is defined by (8).

We show that a point x is a fixed point for Φ if and only if x ∈ ΣF
ψ[−r, b]. Assume x is

a fixed point to Φ. Hence,

x(η) =


0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J.

Therefore,

x(η) =


ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J,

which means that x satisfies (3), and, thus, it is a mild solution for problem (1). In a similar
way, it can be seen that if x satisfies (3), then x is a fixed point for Φ. Let Φ1 : H → H and
Φ2 : Φ2 → P(H) be such that

Φ1(x)(η) =


0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ, η ∈ J,
(15)

and a function y ∈ Φ2(x) if and only if

y(η) =


0, η ∈ [−r, 0],
+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J,

(16)

where f ∈ S1
F(.,κ(.)x). Notice that Φ = Φ1 + Φ2. Let ξ = supθ∈[−r,0] ||ψ(θ)||,

ω = M [ξ + ||A−γ||d2(1 + rξ)]

+(1 + rξ)[||A−γ||d2 + d2
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ
+

M
Γ(α)

∆‖ϕ‖LP
(J,,R+)

]
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and υ be a positive real number satisfying

υ >
ω

1− [||A−γ||d2r + d2
C1−γΓ(1+γ)bαγ

Γ(1+αγ)γ
r + M

Γ(α)∆‖ϕ‖LP
(J,,R+)

r + σM]
. (17)

Put Bυ = {u ∈ H : ||u||H ≤ ν}. Due to (12), υ is well defined. The rest of the proof is
divided in the following steps:

Step 1. This step shows that Φ(Bν) ⊆ Bν. Let x ∈ Bυ and y ∈ Φ(x). There exists
f ∈ S1

F(.,κ(.)x) where

y(η) =


0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J.

Let η ∈ J. For every x ∈ H, we get

||κ(η)x||Θ =
∫ 0

−r
||x(η + θ)||dθ ≤ r(ξ + υ),

which implies that (HF2), || f (τ)|| ≤ ϕ(τ)(1 + ||κ(η)x||Θ) ≤ r(ξ + υ); a.e.τ ∈ J. So, by (ii)
of Lemma 1, and the Holder inequality, it follows that

||
∫ η

0
(η − τ)α−1K2(η − τ) f (τ)dτ||

≤ M
Γ(α)

(1 + r(ξ + υ))
∫ η

0
(η − τ)α−1 ϕ(τ)dτ

≤ M
Γ(α)

∆‖ϕ‖LP
(J,,R+)

(1 + r(ξ + υ)).

Then, from (6), (7), (10) and (HI), one has, for η ∈ J,

||y(η)|| ≤ M [ξ + ||A−γ Aγh(0, ψ)||] + ||A−γ Aγh(η,κ(η)x)||

+
∫ η

0
(η − τ)α−1||A1−γK2(η − τ)Aγh(τ,κ(τ)x)||dτ

+
M

Γ(α)
∆‖ϕ‖LP

(J,,R+)
(1 + r(ξ + υ)) + Mυσ

≤ M [ξ + ||A−γ||d2(1 + rξ)] + ||A−γ||d2(1 + ||κ(η)x||Θ)

+d2(1 + r(ξ + υ))
αC1−γΓ(2− (1− γ)

Γ(1 + α(1− (1− γ))

∫ η

0

(η − τ)α−1

(η − τ)α(1−γ)
dτ

+
M

Γ(α)
(1 + r(ξ + υ))∆‖ϕ‖LP

(J,,R+)
+ Mυσ

≤ M [ξ + ||A−γ||d2(1 + rξ)] + ||A−γ||d2(1 + r(ξ + υ))

+d2(1 + r(ξ + υ))
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ

+
M

Γ(α)
(1 + r(ξ + υ))∆‖ϕ‖LP

(J,,R+)
+ Mυσ.
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This equation with (12) leads to

||y||H ≤ M [ξ + ||A−γ||d2(1 + rξ)]

+(1 + rξ)[||A−γ||d2 + d2
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ
+

M
Γ(α)

∆‖ϕ‖LP
(J,,R+)

]

+υ[||A−γ||d2r + d2
C1−γΓ(1 + γ)bαγ

Γ(1 + αγ)γ
r +

M
Γ(α)

∆‖ϕ‖LP
(J,,R+)

r + σM]

< υ.

Then, Φ(Bυ) ⊆ Bυ.
Step 2. Φ1 is a contraction with a contraction constant k < 1

2 .
Let u, v ∈ Bυ and η ∈ J. Then, ||κ(η)u− κ(η)v||Θ =

∫ 0
−r ||u(η + θ)− v(η + θ)||dθ ≤

r||u− v||H. From (6), (7) and (11), for every u, v ∈ Bυ and any η ∈ J, we have that

||Φ1(u)(η)−Φ1(v)(η)||
≤ ||h(η,κ(η)u)− h(η,κ(η)v)||

+||
∫ η

0
(η − τ)α−1 AK2(η − τ)[h(τ,κ(τ)u)− h(τ,κ(τ)v)]dτ

≤ ||A−γ Aγ[h(η,κ(η)u)− h(η,κ(η)v)]||

+||
∫ η

0
(η − τ)α−1 A1−γK2(η − τ)Aγ[h(τ,κ(τ)u)− h(τ,κ(τ)v)]dτ

≤ ||A−γ|| ||Aγh(η,κ(η)u)− Aγh(η,κ(η)v)||

+
αC1−γΓ(1 + γ)

Γ(1 + αγ)

∫ η

0
(η − τ)αγ−1||Aγh(τ,κ(τ)u)− Aγh(τ,κ(τ)v)||dτ

≤ d1||A−γ|| ||κ(η)u−κ(η)v||Θ

+
d1αC1−γΓ(2− γ)

Γ(1 + αγ)
sup

τ∈[0,η]
||κ(τ)u−κ(τ)v||Θ

bαγ

αγ

≤ ||u− v||H[d1||A−γ||+
d1bαγC1−γΓ(1 + γ)

γΓ(1 + αγ)
]r,

which yields with (9) that Φ1 is a contraction with a contraction constant k < 1
2 .

Step 3. Φ2 has a closed graph and Φ2(x); x ∈ Bυ is compact.
Assume (xn)n≥1 and (yn)n≥1 are sequences in Bυ where xn → x, yn → y and yn ∈

Φ2(xn); n ≥ 1. Then,

yn(η) =


0, η ∈ [−r, 0],
+
∫ η

0 (η − τ)α−1K2(η − τ) fn(τ)dτ
+∑0<ηk<η K1(η − ηk)Ii(xn(η

−
k )), η ∈ J,

(18)

where fn ∈ τ1
F(.,κ(.)xn)

. Using (HF2), it yields that

|| fn(η)|| ≤ ϕ(η)(1 + r(υ + ξ)), a.e.η ∈ J.

So, ( fn)n≥1 is bounded in LP(J, E) and, hence, there exists a subsequence of { fn}∞
n=1.

We denote them by ( fn)n≥1, where fn −→ f ∈ LP(J, E). From Mazur’s Lemma, there exists
a sequence of convex combination, {zn}∞

n=1 of { fn}∞
n=1 that converges almost everywhere

to f . Note that by (HF2), again, for any η ∈ J, τ ∈ (0, η] and any n ≥ 1,

||(η − τ)α−1 fn(τ)|| ≤ |η − τ)|α−1 ϕ(τ)(1 + r(υ + ξ)) ∈ LP((0, η],R+).
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Set

ỹn(η) =


0, η ∈ [−r, 0],
+
∫ η

0 (η − τ)α−1K2(η − τ)zn(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(xn(η

−
i )), η ∈ J.

(19)

Note that by (18), ỹn(η) → y(η), η ∈ J. Moreover, since κ(η)xn → κ(η)x; η ∈ J,
F(η, .); a.e. η ∈ J is upper semicontinuous, it yields f (η) ∈ F(η,κ(η)x), a.e. Therefore,
from the continuity of K2(η − τ); τ ∈ [0, η], Ii (i = 1, 2, . . . ), and by taking the limit of (19)
as n→ ∞ , one gets y ∈ Φ2(x).

To prove that the values of Φ2 are compact, assume x ∈ H and yn ∈ Φ2(x), n ≥
1. Using similar arguments to the above, we get that {yn : n ≥ 1} has a convergent
subsequence (ỹ)n≥1. So, Φ2(x) is relatively compact. Since the graph of Φ2 is closed its
values are closed and, hence, Φ2(x) is relatively compact inH.

Step 4. We claim that the subsets Z|Ji
(i = 0, 1, . . . , m) are equicontinuous, where

Z|Ji
= {y∗ ∈ C(Ji, E) : y∗(η) = y(η), η ∈ (ηi, ηi+1], y∗(ηi) = y(η+

i ), y ∈ Φ2(x), x ∈ Bv}.

Assume y∗ ∈ Z|Ji
. Then, there exists x ∈ Bυ and f ∈ S1

F(.,κ(.)x) , where, for η ∈ Ji,

y∗(η) =
∫ η

0
(η − τ)α−1K2(η − τ) f (τ)dτ

+ ∑
0<ηk<η

K1(η − ηk)Ik(x(η−k )),

and y∗(ηi) = y(η+
i ).

Case 1. Let η1, η2 (η1 < η2) be two points in (ηi, ηi+1]. Then,

‖y∗(η2)− y∗(η1)‖

≤ ||
∫ η2

0
(η2 − τ)α−1K2(η2 − τ) f (τ)dτ

−
∫ η1

0
(η1 − τ)α−1K2(η1 − τ) f (τ)||

+|| ∑
0<ηk<η2

K1(η2 − ηk)Ik(x(η−k ))− ∑
0<ηi<η1

K1(η1 − ηk)Ik(x(η−k ))||

≤ ||
∫ η2

η1

(η2 − τ)α−1K2(η2 − τ) f (τ)dτ||

+
∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1| ||K2(η2 − τ) f (τ)||dτ

+||
∫ η1

0
(η1 − τ)α−1||K2(η2 − τ) f (τ)− K2(η1 − τ) f (τ)|| dτ .

+ ∑
0<ηk<η2

||K1(η2 − ηk)− K1(η1 − ηk)|| ||Ii(x(η−i ))||

=
i=4

∑
i=1

Ii.

The hypothesis (HF2) implies || f (η)|| ≤ ϕ(η) (1 + r(υ + ξ)), a.e.η ∈ J, and, hence,
by Lemma 1, we get

lim
η2→η1

I1 = lim
η2→η1

||
∫ η2

η1

(η2 − τ)α−1K2(η2 − τ) f (τ)dτ||

≤ M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

∫ η2

η1

(η2 − τ)α−1 ϕ(τ)dτ

=
M(1 + r(υ + ξ))

Γ(α)
||ϕ||LP([J,R+) lim

η2→η1
(
∫ η2

η1

(η2 − τ)
P(α−1)

P−1 dτ)
P−1

P = 0.
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For I2, we have

lim
η2→η1

I2 ≤ lim
η2→η1

∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1| ||K2(η2 − τ) f (τ)||dτ

=
M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1|ϕ(τ)dτ.

Note that ω = α−1
1− 1

P
∈ (−1, 0), then, for τ < η1 , we have (η1 − τ)ω ≥ (η2 − τ)ω . As an

application of Lemma 3 in [8] and considering P−1
P ∈ (0, 1), we get

|
[
(η1 − τ)ω

]1− 1
P −

[
(η2 − τ)ω

] P−1
P | ≤

[
(η1 − τ)ω − (η − τ)ω

] P−1
P .

Then,

|(η1 − τ)α−1 − (η2 − τ)α−1| ≤
[
(η1 − τ)ω − (η2 − τ)ω

] P−1
P .

This leads to

|(η − τ)α−1 − (η + λ− τ)α−1|
P−1

P ≤
[
(η − τ)ω − (η + λ− τ)ω

]
.

Therefore,

lim
η2→η1

I2

≤ M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1|ϕ(τ)dτ

≤ M(1 + r(υ + ξ)))

Γ(α)
lim

η2→η1

[∫ η1

0
|(η2 − τ)α−1 − (η1 − τ)α−1|

P
P−1 dτ

] P−1
P
‖ϕ‖LP

(J,R+)

≤ M(1 + r(υ + ξ)))

Γ(α)
lim

η2→η1

[∫ η1

0
[(η2 − τ)ω − (η1 − τ)ω ]dτ

] P−1
P
‖ϕ‖LP

(J,R+)

≤ M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

[
1

ω + 1
[ηω+1

2 − (η2 − η1)
ω+1 − η1

ω+1
] P−1

P
‖ϕ‖LP

(J,R+)

= 0.

For I3,

lim
η2→η1

I3 ≤ lim
η2→η1

||
∫ η1

0
(η1 − τ)α−1||K2(η2 − τ) f (τ)− K2(η1 − τ) f (τ)|| dτ.

Observe that for every τ ∈ [0, η],

(η1 − τ)α−1||Kα(η2 − τ) f (τ)− Kα(η1 − τ) f (τ)||

≤ 2M(ν + 1)
Γ(α)

(η1 − τ)α−1 ϕ(τ) ∈ LP(J,R+).

Moreover, since {η(η) : η > 0} is equicontinuous, and, using the Lebesgue-dominated
convergence theorem, one gets
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lim
η2→η1

I3 ≤ M(1 + r(υ + ξ))

Γ(α)
lim

η2→η1

∫ η1

0
(η1 − τ)α−1||K2(η2 − τ)− K2(η1 − τ)||ϕ(τ)dτ

=
M(1 + r(υ + ξ))

Γ(α)

∫ η1

0

∫ ∞

0
θ(η1 − τ)α−1ζα(θ)×

[ lim
η2→η1

‖(Υ((η2 − τ)αθ)− Υ(η1 − τ)αθ))‖] dθϕ(τ)dτ

= 0.

For I4,

lim
η2→η1

I4 ≤ συ lim
η2→η1

∑
0<ηk<η2

||K1(η2 − ηk)− K1(η1 − ηk)|| = 0.

Case 2. η = ηi , i = 1, . . . , m. Assume δ > 0, ηi + δ ∈ (ηi, ηi+1] and λ > 0 where
ηi < λ < ηi + δ ≤ ηi+1. Hence, as above, it can be shown that

‖y∗(ηi + δ)− y∗(ηi)‖ = lim
λ→η+i

‖y(ηi + δ)− y(λ)‖ = 0.

Then, Z|Ji
(i = 0, 1, . . . , m) are equicontinuous.

Step 5. Set B1 = convΦ(Bυ) and Bn = convΦ(Bn−1), n ≥ 2. Then, the sequence (Bn),
n ≥ 1 is a decreasing sequence of not empty, closed and bounded subsets ofH. So, the set
B =

⋂
n≥1

Bn is bounded, closed, convex and Φ(B) ⊂ B. Next, we show that B is compact.

According to the generalized Cantor’s intersection property, we only need to prove that

lim
n→∞

χH(Bn) = 0, (20)

where χH is the Hausdorff measure of noncompactness onH. Assume n ∈ N and n ≥ 1 are
fixed. From the fact that Φ1 is a contraction with a contraction constant k < 1

2 , it follows that

χHΦ(Bn−1)

≤ χHΦ1(Bn−1) + χHΦ2(Bn−1)

≤ 1
2

χH(Bn−1) + χHΦ2(Bn−1). (21)

Let ε > 0. Using Lemma 5 in [39], there is a (yk)k≥1 in Φ2(Bn−1) with

χHΦ2(Bn−1) ≤ 2χH{yk : k ≥ 1}+ ε.

From the fact that the subsets Z|Ji
(i = 0, 1, . . . , m) are equicontinuous, one obtains

χHΦ2(Bn−1)

≤ 2χH{yk : k ≥ 1}+ ε

≤ 2 sup
η∈[0,b]

χE{yk(η) : k ≥ 1}+ ε. (22)

Now, let xk ∈ Bn−1 and yk ∈ Φ2(xk), k ≥ 1. Then, for every k ≥ 1, there is a
fk ∈ τ1

F(.,κ(η)xk)
such that, for any η ∈ J,

yk(η) =


0, η ∈ [−r, 0],∫ η

0 (η − τ)α−1K2(η − τ) fk(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(xk(η

−
i )), η ∈ J.
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Note that the assumption (HI) implies that for η ∈ J,

χE{ ∑
0<ηi<η

K1(η − ηi)Ii(xk(η
−
i )) : k ≥ 1}

≤ M
i=m

∑
i=1

ςi χE{xk(η
−
i )) : k ≥ 1}

≤ M
i=m

∑
i=1

ςi χE{xk(η
−
i )) : k ≥ 1}

≤ M χH(Bn−1)
i=m

∑
i=1

ςi . (23)

Moreover, from (4) , we have that for a.e.τ ∈ J,

χE{ fk(τ) : k ≥ 1} ≤ χ{F(τ,κ(τ)xk) : k ≥ 1}
≤ β(τ) sup

θ∈[−r,0]
χ{xk(τ + θ) : k ≥ 1}

≤ β(τ) sup
δ∈[−r,τ]

χ{xk(δ) : k ≥ 1}

≤ β(τ) sup
δ∈[0,τ]

χ{xk(δ) : k ≥ 1}

≤ β(τ)χH(Bn−1) = γ(η). (24)

Again, by (HF2)
∗, for every k ≥ 1, and for almost η ∈ J, || fk(η)|| ≤ ϕ(η) (1 + r(υ +

ξ)) and, hence, { fk : k ≥ 1} is integrably bounded. As a consequence of Lemma 4 in [40],
there is a compact set Kε ⊆ E, a measurable set Jε ⊂ J having a measure less than ε and
{zε

k} ⊂ LP(J, E) such that for every τ ∈ J, {zε
k(τ) : k ≥ 1} ⊆ Kε and

|| fk(τ)− zε
k(τ)|| < 2γ(τ) + ε for all k ≥ 1 and all τ ∈ J − Jε. (25)

Then, by (24) and (25) and Minkowski’s inequality, it follows that for k ≥ 1,

||
∫

J−Jε

(η − τ)α−1K2(η − τ)( fk(τ)− zε
k(τ))dτ||

≤ M
Γ(α)

|| fk − zε
k ||LP(J0−Jε ,R+)(

∫
J− Jε

(η − τ)
(α−1)P

P−1 dτ)
P−1

P

≤ ∆M
Γ(α)

|| fk − zε
k ||LP(J0−Jε ,R+)

≤ ∆M
Γ(α)

(2||γ||LP(J− Jε , R+) + εb
1
P )

=
∆M
Γ(α)

(2||β||LP(J, R+) χH(Bn−1) + εb
1
P ), (26)

and

||
∫

Jε

(η − τ)α−1K2(η − τ) fk(τ)dτ||

≤ M
Γ(α)

(1 + r(υ + ξ))
∫

Jε

(η − τ)α−1 ϕ(τ)dτ

≤ M
Γ(α)

(1 + r(υ + ξ)||ϕ||LP(Jε , R+)(
∫

Jε

(η − τ)
(α−1)P

P−1 dτ)
P−1

P . (27)

Moreover, from the fact that {zε
k(τ) : k ≥ 1}; τ ∈ J is contained in a compact subset,

we get
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χ{
∫

J−Jε

(η − τ)α−1K2(η − τ)zε
k(τ)dτ : k ≥ 1} = 0.

Combining this relation with (26) and (27), it follows that

χ{
∫ η

0
(η − τ)α−1K2(η − τ) fk(τ)dτ : k ≥ 1}

≤ ∆M
Γ(α)

(2||β||LP(J, R+) χH(Bn−1) + εb
1
P )

+
(1 + r(υ + ξ)M

Γ(α)
||ϕ||LP(Jε , R+)∆ε, (28)

where ∆ε = (
∫

Jε
(η − τ)

(α−1)P
P−1 dτ)

P−1
P . Using the fact that ε is chosen arbitrary, relation (28)

becomes

χ{
∫ η

0
(η − τ)α−1K2(η − τ) fk(τ)dτ : k ≥ 1}

≤ 2∆M
Γ(α)

||β||LP(J, R+) χH(Bn−1).

Using the above inequality and (21)–(23), in addition to the fact that ε is arbitrary, it
follows that

χH(Bn) ≤ (
4∆M
Γ(α)

||β||LP(J, R+) + 2M
i=m

∑
i=1

ςi +
1
2
)χH(Bn−1).

This leads to

χH(Bn) ≤ (
4∆M
Γ(α)

||β||LP(J, R+) + M
i=m

∑
i=1

ςi +
1
2
)n−1χH(B1), ∀n ≥ 1.

The above inequality holds for any natural number n, and by (13) together with taking
the limit as n → ∞, we get (20). Then, B is not empty and a compact subset of H. So,
Φ : B → Pck(B) is completely continuous. By applying Lemma 3, we conclude that the
fixed points set of Φ is not an empty subset of H. Furthermore, by arguing as in Step 1,
we can prove that the set of fixed points of Φ is bounded and, hence, by Lemma 3, it is
compact inH. Therefore, the set ΣF

ψ[−r, b] is not empty and a compact subset of H.

4. The Structure Topological of ΣF
ψ[−r, b]

In the section we prove that ΣF
ψ[−r, b] is an Rδ-set

Definition 3 ([41]). A topological space X, which is homotopy equivalent to a point, is called
contractible. In other words, there is a continuous map h : [0, 1]× X → X, h(0, .x) = x and
h(1, x) = x0 ∈ X.

Lemma 5 ([41]). Let A ⊆ X, where A is not empty and X is a complete metric space. Then, A is
said to be Rδ-set if and only if it is an intersection of a decreasing sequence {An} of contractible sets
and χX(An)→ 0, as n→ ∞.

Now, consider the multi-valued function F̃ : J ×Θ→ Pck(E) that is given by:

F̃ (η, u) :=

{
F(η, u), ||u|| < υ,
F(η, υu

||u|| ), ||u|| ≥ υ,
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where υ is defined by (17). Since F̃ = F on Dυ, the set of solutions consisting of mild
solutions for Problem (1) is equal to the set of solutions consisting of mild solutions for
the problem:

cD α
0,η [x(η)− h(η,κ(η)x)] ∈ Ax(η) + F̃(η,κ(η)x), a.e. η ∈ [0, b]− {η1, . . . , ηm},

Ii(x(η−i )) = x(η−i )− x(η+
i ), i = 1, . . . , m,

x(η) = ψ(η), η ∈ [−r, 0].

Obviously, F̃ verifies (HF1) and, for η ∈ J, a.e.,

||F̃ (η, u)|| ≤
{

ϕ(η)(1 + ||u||) ≤ ϕ(η)(1 + r(ξ + υ)) = ζ(η), ||u|| < υ,
ϕ(η)(1 + || υu

||u|| ||) = ϕ(η)(1 + r(ξ + υ)) = ζ(η), ||u|| ≥ υ.

Then, we can assume that F verifies the next condition:
(HF2)

∗ There exists a function ξ ∈ LP(I,R+)(P > 1
α ), where for every z ∈ Θ,

‖F(η, z)‖ ≤ ζ(η), a.e. η ∈ J.

We recall the next Lemma. For its proof, we refer the reader to the second step in the
proof of Theorem 3.5 in [13].

Lemma 6. Assume that (HF1) and (HF2)
∗ are satisfied. Then, there exists a sequence of multi-

functions {Fi}∞
i=1 with Fi : J ×Θ→ Pck(E) such that:

(i) Every Fi (η, .) is continuous for almost η ∈ J.
(ii) F(η, x) ⊆ . . . . ⊆ Fi+1(η, x) ⊆ Fi(η,κ(η)x) ⊆ · · · ⊆ coF(η, {y ∈ Θ : ||y − x|| ≤

31−i}), i ≥ 1, for each η ∈ J and x ∈ Θ.
(iii) F(η, z) = ∩i ≥1Fi(η, z).
(iv) For all i ≥ 1, there is a selection gi : J ×Θ→ E of Fi such that gi(., x) is measurable for each

x ∈ Θ and for gi(η, .) is locally Lipschitz.

Remark 2. (Ref. [19]) The property (iv) in Lemma 6 implies that, for almost η ∈ J, gi(η, .), i ≥ 1
is continuous.

Assume ΣFi
ψ [−r, b] is the mild solutions set of the following fractional neutral impulsive

semilinear differential inclusions with delay:
cD α

0,η [x(η)− h(η,κ(η)x)] ∈ Ax(η) + Fi(η,κ(η)x), a.e. η ∈ [0, b]− {η1, . . . , ηm},
Ii(x(η−i )) = x(η−i )− x(η+

i ), i = 1, . . . , m,
x(η) = ψ(η), η ∈ [−r, 0].

(29)

Theorem 2. Assume that the conditions in Theorem 1 after substituting (HF2) by (HF2)∗ are
held. Then, there exists N0 ∈ N such that, for i ≥ N0, the set ΣFi

ψ [−r, b] is compact and not empty
in H.

Proof. Let i be a fixed natural number. We define a multioperator Φi : H → P(H) as the
following : y ∈ Φi(x) if and only if

y(η) =


0, η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J,



Fractal Fract. 2022, 6, 188 16 of 26

where f ∈ τ1
Fi(.,κ(.)x). Due to Lemma 5, Fi verifies (F1), (F2)

∗. As a result of Theorem 1,
Φi is closed , Φi(Bυ) ⊆ Bυ and Φi(Bυ) is equicontinuous. Set B1,i = convΦi(Bυ) and
Bn,i = convΦi(Bn−1,i), n ≥ 2. As in Theorem 1, the sequence (Bn,i), n ≥ 1 is a decreasing
sequence of non-empty, closed and bounded subsets ofH. We show that

lim
n→∞

χC([−r,b],E)(Bn,i) = 0. (30)

Let ε > 0. Choose a natural number N0 with 31−N0 < ε
2||β||LP(J, R+)

and let i > N0 be a

fixed natural number. Using a similar argument as the one used in the proof of Theorem 1,
one gets

χH(Bn,i)

≤ 2 sup
η∈J

χE{yk(η) : k ≥ 1}+ ε

2
,

where

yk(η) =


0, η ∈ [−r, 0]∫ η

0 (η − τ)α−1K2(η − τ) fk(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J,

and fk ∈ τ1
Fi(.,κ(η)xk)

. Next, due to Remark 4.2 in [7], it follows that for any bounded subset
D ⊂ Θ,

χE(Fi(η, D)) ≤ β(η)[ sup
θ∈[−r,η]

χE{z(θ) : z ∈ D}+ 31−i]. (31)

Then, it yields from (ii) in Lemma 5 and (31), for a.e.τ ∈ J,

χE({ fk(τ) : k ≥ 1}
≤ χE{Fi(τ,κ(τ)xk) : k ≥ 1}
≤ β(τ)[ sup

θ∈[−r,0]
χE{xk(τ + θ) : k ≥ 1}+ 31−N0 ]

≤ β(τ)[ sup
δ∈[−r,τ]

χE{xk(δ) : k ≥ 1}+ 31−N0 ]

≤ β(τ)[ sup
θ∈[0,,τ]

χE{xk(δ) : k ≥ 1}+ 31−N0 ]

≤ β(τ)χH(Bn−1,i) + β(τ)31−N0 = γ(τ). (32)

As in (28) but by using (32) instead of (24), we get

χ{
∫ η

0
(η − τ)α−1K2(η − τ) fk(τ)dτ : k ≥ 1}

≤ ∆M
Γ(α)

(2||β||LP(J, R+) χH(Bn−1) + εb
1
P ) +

ε

2

+
M

Γ(α)
(1 + rυ + rξ)×

||ϕ||LP(Jε , R+)(
∫

Jε

(η − τ)
P

P−1 dτ)
P−1

P .

Similarly, as in the proof of Theorem 1, we confirm the validity of (30). Therefore, by
the generalized Cantor’s intersection property, the set Bi is not empty and compact inH.
As in Theorem 1, the fixed points set of the multivalued function Φi : Bi → Pck(Bi) is not
empty and a compact subset in H. Consequently, the set ∑Fn

ψ [−r, b] is not empty and a
compact subset of H.

Theorem 3. Under the conditions of Theorem 2, ∑F
ψ[−r, b] = ∩∞

n=N0
∑Fn

ψ [−r, b].



Fractal Fract. 2022, 6, 188 17 of 26

Proof. In view of (iii) in Lemma 8, it can be seen that ∑F
ψ[−r, b] ⊆ ∩∞

n=N0
∑Fn

ψ [−r, b]. Let

x ∈ ∩∞
n=N0

∑Fn
ψ [−r, b]. Then, there is fn ∈ τ1

Fn(.,κ(.)x), n ≥ N0 such that

x(η) =


ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ)fn(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J.

(33)

It follows from (HF2)∗ that

||fn(η)|| ≤ ζ(η), for a.e.η ∈ J.

This means that the sequence (fn)n≥1 is weakly relatively compact in LP(J, E), so we
can assume fn ⇀ f weakly, where f ∈ LP(J,R+). As in the proof of Theorem 1, there is a
sequence of convex combinations (zn)n≥1 of (fn)n≥1 that converges almost everywhere to
f . Note that

x(η) =


ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ)zn(τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J,

(34)

and zn(η) ∈ Fn (η,κ(η)x), n ≥ 1. It yields, from (ii) of Lemma 8, that for almost η ∈ J,

zn(η) ∈ coF(η, {y ∈ Θ : ||y−κ(η)x|| ≤ 31−n}), n ≥ 1,

which implies that f (η) ∈ F(η,κ(η)x), for a.e. η ∈ J. Moreover, using the fact that
K2(η)(η > 0) is continuous, and taking the limit as n→ ∞ in (34), one gets

x(η) =


ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J.

This means that x ∈ ∑F
ψ[−r, b].

To prove our main results, we need the next lemma.

Lemma 7 ([19], Lemma 4.5). Assume that (X, d) and (Y, ρ) are two metric spaces. Then, if
f : (M, d)→ (Y, ρ) is locally Lipschitz, then it is Lipschitz on all subsets of X that are compact.

Theorem 4. Under the assumptions of Theorem 2, the set ∑F
ψ[−r, b] is an Rδ-set in H provided

that rd1||A−γ|| < 1.

Proof. Using Lemma 4 and Theorems 1–3, we only need to prove that ∑Fn
ψ [−r, b], where

n ≥ N0 is contractible. Assume that n ∈ N and n ≥ N0 . Consider the following fractional
neutral impulsive semilinear:

cD α
0,η [x(η)− h(η,κ(η)x)] = Ax(η) + gn(η,κ(η)x), a.e. η ∈ [0, b]− {η1, . . . , ηm},

Ii(x(η−i )) = x(η−i )− x(η+
i ), i = 1, . . . , m,

x(η) = ψ(η), η ∈ [−r, 0].
(35)
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Using Lemma 6 and Remark 3, gn(., u) is measurable, and for η ∈ J, a.e., gn(η, .) is
continuous. Since the multi-valued F satisfies (F2)

∗and (F3), then, following the arguments
employed in the proof of Theorem 2, the fractional differential Equation (35) has a mild
solution y ∈ ∑Fn

ψ [−r, b] satisfying the following integral equation:

y(η) =


ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)y)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)y)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ)gn(η,κ(η)y)dτ
+∑0<ηi<η K1(η − ηi)Ii(y(η−i )), η ∈ J.

(36)

Next, we show that the solution is unique. Assume that x ∈ ∑Fn
ψ [−r, b] is another

mild solution for (35). Then,

x(η) =


ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ)gn(η,κ(η)x)dτ
+∑0<ηi<η K1(η − ηi)Ii(x(η−i )), η ∈ J.

(37)

Let η ∈ [0, η1] be fixed. Due to (6), (7), (11) (36) and (37), it yields

||y(η)− x(η)||
≤ ||h(η,κ(η)y)− h(η,κ(η)x)||

+||
∫ η

0
(η − τ)α−1 AK2(η − τ)(h(τ,κ(τ)y)− h(τ,κ(τ)x))dτ||

+||
∫ η

0
(η − τ)α−1K2(η − τ)(gn(τ,κ(τ)y)− gn(τ,κ(τ)x))dτ||

≤ ||A−γ||||Aγh(η,κ(η)y)− Aγh(η,κ(η)x)||

+
∫ η

0
(η − τ)α−1||A1−γK2(η − τ)|| ||Aγh(τ,κ(τ)y)− Aγh(τ,κ(τ)x))||dτ

+
M

Γ(α)

∫ η

0
(η − τ)α−1||gn(τ,κ(τ)y)− gn(τ,κ(τ)x))||dτ.

≤ d1||A−γ|| ||κ(η)y−κ(η)x||Θ

+d1||A−γ||
αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ η

0
(η − τ)αγ−1||κ(τ)y−κ(τ)x||Θdτ

+
M

Γ(α)

∫ η

0
(η − τ)α−1||gn(τ,κ(τ)y)− gn(τ,κ(τ)x))||dτ. (38)

Now, from Lemma 5, the function τ → κ(τ)x is continuous from [0, η1] to Θ and,
hence, the subset Zx = {κ(τ)x : τ ∈ [0, η1]} is compact in Θ. Similarly, the set Zy =
{κ(τ)y : τ ∈ [0, η1]} is compact in Θ and, therefore, the set Zx,y = Zx ∪ Zy is compact in Θ,
and consequently, [0, η1]× Zx,y is compact in [0, η1]×Θ. Thus, by (iv) in Lemma 6 and
Lemma 7, there exists cη1 > 0 , for which the estimate

||gn(τ,κ(τ)y)− gn(τ,κ(τ)x)|| ≤ cη1 ||κ(τ)y−κ(τ)x||Θ,
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holds for τ ∈ J. Therefore, from (38), it yields

||x(η)− y(η)||
≤ d1||A−γ|| ||κ(η)y−κ(η)x||Θ

+d1||A−γ||
αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ η

0
(η − τ)αγ−1||κ(τ)y−κ(τ)x||Θdτ

+
Mcη1

Γ(α)

∫ η

0
(η − τ)α−1||κ(τ)y−κ(τ)x||Θdτ.

Note that when τ ∈ [0, η], we have

||κ(τ)y−κ(τ)x||Θ =
∫ 0

−r
||y(τ + θ)− x(τ + θ)||dθ

≤ r sup
δ∈[0,τ]

||y(δ)− x(δ)||.

It yields

||x(η)− y(η)||
≤ d1||A−γ|| ||κ(η)y−κ(η)x||Θ

+rd1||A−γ||
αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ η

0
(η − τ)αγ−1 sup

δ∈[a,τ]
||y(δ)− x(δ)||dτ

+
rMcη1

Γ(α)

∫ η

0
(η − τ)α−1 sup

δ∈[0,τ]
||y(δ)− x(δ)||dτ.

Since x and y are continuous on [0, η], there is ρ ∈ [0, η] with ||x(ρ) − y(ρ)|| =
supδ∈[0,η] ||x(δ)− y(δ)||. Then,

sup
δ∈[0,η]

||x(δ)− y(δ)|| = ||x(ρ)− y(ρ)||

≤ d1||A−γ|| ||κ(ρ)y−κ(ρ)x||Θ

+rd1||A−γ||
αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ ρ

0
(ρ− τ)αγ−1 sup

δ∈[0,τ]
||y(δ)− x(δ)||dτ

+
rMcη1

Γ(α)

∫ ρ

0
(ρ− τ)α−1 sup

δ∈[0,τ]
||y(δ)− x(δ)||dτ

≤ rd1||A−γ|| sup
δ∈[0,η]

||x(δ)− y(δ)||

+rd1||A−γ||
αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ ρ

a
(ρ− τ)αγ−1 sup

δ∈[a,τ]
||y(δ)− x(δ)||dτ

+
rMcη1

Γ(α)

∫ ρ

a
(ρ− τ)α−1 sup

δ∈[a,τ]
||y(δ)− x(δ)||dτ.

Since rd1||A−γ|| < 1, the last relations lead to

sup
δ∈[0,η]

||x(δ)− y(δ)||

≤ 1
1− rd1||A−γ|| [

∫ ρ

0
(ρ− τ)αγ−1d1||A−γ||

rαC1−γΓ(1 + γ)

Γ(1 + αγ))

+
∫ ρ

0
(ρ− τ)α−1 rMcV

Γ(α)
] sup

δ∈[0,τ]
||y(δ)− x(δ)||dτ.
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Using the generalized Gronwall inequality [42], one has supδ∈[0,η] ||x(δ)− y(δ)|| = 0.
Since η ∈ [0, η1] is arbitrary, we conclude that x = y on [0, η1].

Next, let η ∈ [η1, η2] be fixed. Note that x(η−1 ) = y(η−1 ). Then,

||y(η)− x(η)||
≤ ||h(η,κ(η)y)− h(η,κ(η)x)||Θ

+||
∫ η

η1

(η − τ)α−1 AK2(η − τ)(h(τ,κ(τ)y)− h(τ,κ(τ)x))dτ||

+||
∫ η

η1

(η − τ)α−1K2(η − τ)(gn(τ,κ(τ)y)− gn(τ,κ(τ)x))dτ||

≤ d1||A−γ|| ||κ(η)y−κ(η)x||Θ

+d1||A−γ||
αC1−γΓ(1 + γ)

Γ(1 + αγ))

∫ η

a
(η − τ)αγ−1||κ(τ)y−κ(τ)x||Θdτ

+
M

Γ(α)

∫ η

η1

(η − τ)α−1||gn(τ,κ(τ)y)− gn(τ,κ(τ)x))||dτ.

By repeating the arguments employed above, we get x = y on [η1, η2]. Continuing
with the same processes, we arrive to x = y on J.

Next, we prove that ∑Fn
ψ [−r, b] is homotopically equivalent to y. To this end, we define

a continuous function Zn : [0, 1] × ∑Fn
ψ [−r, b] → ∑Fn

ψ [−r, b], where Zn (0, x̃) = x̃ and

(1, x̃) = y. Assume (λ, x̃ ) ∈ [0, 1]×∑Fn
ψ [−r, b] is fixed. Then, there exists a f ∈ τ1

Fn(.,κ(.)x̃)
such that

x̃(η) =


ψ(η), η ∈ [−r, 0],
K1(η)[ψ(0)− h(0, ψ)] + h(η,κ(η)x̃)
+
∫ η

0 (η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x̃)dτ

+
∫ η

0 (η − τ)α−1K2(η − τ) f (τ)dτ
+∑0<ηi<η K1(η − ηi)Ii(x̃(η−i )), η ∈ J.

(39)

Consider the partition { 0, 1
m+1 , 2

m+1 , . . . , m+1
m+1} for J = [0, 1]. We consider the following

cases:
(i) λ ∈ [0, 1

m+1 ]. Put a1
λ = ηm+1 − λ (m + 1)(ηm+1 − ηm). The following fractional

neutral differential inclusion is a result of the above discussion:{
cD α

a1
λ ,η

[x(η)− h(η,κ(η)x)] = Ax(η) + gn(η,κ(η)x), a.e. η ∈ [aλ,1, b],

x(η) = x̃(η), η ∈ [−r, a1
λ],

has a unique mild solution x1
λ ∈ ∑Fn

ψ [−r, b] satisfying the next integral equation:

x1
λ(η) =



x̃(η), η ∈ [−r, a1
λ],

K1(η − a1
λ)[x̃(a1

λ)− h(a1
λ,κ(a1

λ)x̃(a1
λ)]

+h(η,κ(η)x1
λ(η))

+
∫ η

a1
λ

(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x1
λ(η))dτ

+
∫ η

a1
λ

(η − τ)α−1K2(η − τ)gn(η,κ(η)x1
λ)dτ, η ∈ [aλ,1, b].

(40)

Note that x1
0(η) = x̃(η); η ∈ [−r, b].

(ii) λ ∈ ( 1
m+1 , 2

m+1 ].Put a2
λ = ηm − (m + 1)(λ− 1

m+1 )(ηm − ηm−1). Again, the follow-
ing fractional neutral differential inclusion:

cD α
a2

λ ,η
[x(η)− h(η,κ(η)x)] = Ax(η) + gn(η,κ(η)x), a.e. η ∈ [a2

λ, b]− {ηm},
Im(x(η−m )) = x(η−m )− x(η+

m ),
x(η) = x̃(η), η ∈ [−r, a2

λ],
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has a unique mild solution x2
λ ∈ ∑Fn

ψ [−r, b] and

x2
λ(η) =



x̃(η), η ∈ [−r, a2
λ],

K1(η − a2
λ)[x̃(a2

λ)− h(aλ,1,κ(a2
λ)x̃(a2

λ)]
+h(η,κ(η)x2

λ(η))
+
∫ η

a2
λ

(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)x2
λ(η))dτ

+
∫ η

a2
λ

(η − τ)α−1K2(η − τ)gn(η,κ(η)x2
λ)dτ

+∑a2
λ<ηi<η K1(η − ηi)Ii(x2

λ(η
−
i )), η ∈ [a2

λ, b].

We continue up to m + 1−step. That is λ ∈ ( m
m+1 , 1] and put am+1

λ = η1 − (m +

1)(λ − m
m+1 )η1. Let xm+1

λ ∈ ∑Fn
ψ [−r, b ] be the unique mild solution for the impulsive

fractional neutral differential inclusion:
cD α

am+1
λ ,η

[x(η)− h(η,κ(η)x)] = Ax(η) + gn(η,κ(η)x), a.e. η ∈ [am+1
λ , b]− {η1, η2, . . . ηm},

Ii(x(η−i )) = x(η−i )− x(η+
i ), i = 1, 2, . . . , m

x(η) = x̃(η), η ∈ [−r, am+1
λ ].

Then,

xm+1
λ (η) =



x̃(η), η ∈ [−r, am+1
λ ],

K1(η)[x̃(am+1
λ )− h(aλ,1,κ(am+1

λ )x̃(am+1
λ )]

+h(η,κ(η)xm+1
λ )

+
∫ η

am+1
λ

(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)xm+1
λ (η))dτ

+
∫ η

am+1
λ

(η − τ)α−1K2(η − τ)gn(η,κ(η)xm+1
λ )dτ

+∑am+1
λ <ηi<η

K1(η − ηi)Ii(xm+1
λ (η−i )), η ∈ [am+1

λ , b].

(41)

Note that am+1
1 = 0 and xm+1

1 = y. Now, we define Zn at (λ, x̃) as

Zn(λ, x̃) =



x1
λ, if λ ∈ [0, 1

m+1 ],
x2

λ, if λ ∈ ( 1
m+1 , 2

m+1 ],
.
.
.
xm+1

λ , if λ ∈ ( m
m+1 , 1].

(42)

Therefore, Zn(0, x̃) = x1
λ = x̃ and Zn(1, x̃) = xm+1

1 = y.
It remains to clarify the continuity of Zn. Let (λ, u ), ($, v) ∈ [0, 1]× ∑Fn

ψ [−r, b]. Let

λ = $ = 0. Then, by (42), limu→v Zn(λ, u) = limu→v u = v = Zn($, v). Let λ, $ ∈ (0, 1
m+1 ].

So, Zn(λ, u) = u1
λ and Zn(λ, v) = v1

µ, where

u1
λ(η) =



x̃(η), η ∈ [−r, a1
λ],

K1(η − a1
λ)[x̃(a1

λ)− h(a1
λ,κ(a1

λ)x̃(a1
λ)]

+h(η,κ(η)u1
λ(η))

+
∫ η

a1
λ

(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)u1
λ(η))dτ

+
∫ η

a1
λ

(η − τ)α−1K2(η − τ)gn(η,κ(η)u1
λ)dτ, η ∈ [aλ,1, b],

(43)
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and

v1
µ(η) =



x̃(η), η ∈ [−r, a1
µ],

K1(η − a1
λ)[x̃(a1

λ)− h(a1
µ,κ(a1

µ)x̃(a1
µ)]

+h(η,κ(η)v1
µ(η))

+
∫ η

a1
µ
(η − τ)α−1 AK2(η − τ)h(τ,κ(τ)v1

µ(η))dτ

+
∫ η

a1
µ
(η − τ)α−1K2(η − τ)gn(η,κ(η)v1

µ)dτ, η ∈ [a1
µ, b],

(44)

a1
λ = b−µ(m+ 1)(b− τm) and a1

µ = b−µ(m+ 1)(b− τm). Obviously, limλ→µ a1
λ = a1

µ

and, hence, by (43) and (44), and by arguing as above, we get

lim
λ→µ
u→v

Zn(λ, u) = Zn(µ, v),

which implies the continuity of Zn(., .), when λ ∈ [0, 1
m+1 ]. Similarly, we can show the

continuity of Zn and consequently, ∑Fn
ψ [−r, b] is contractible. This completes the proof.

5. Example

Example 1. Assume that E = L2([0, π],R), J = [0, 1], r = 1
2 , m = 1, η0 = 0 and η1 = 1

2 ,
η2 = 1. For any x : J → E = L2([0, π],R), we denote by x(η, ω); η ∈ J, ω ∈ [0, π] the value of
x(η) at ω. Let A : D(A) ⊆ L2[0, π]→ L2[0, π] , Ax(η, ω) := − ∂2

∂ω2 x(η, ω) and domain A be
defined as

D(A) = {x ∈ L2[0, π] : x, x′ are absolutely continuous, x′′ ∈ L2[0, 1],

x(η, 0) = x(η, π) = 0}.

Using [37], there is a compact analytic semi-group {Υ(η) : η ≥ 0} generated by A and

Ax =
∞

∑
n=1

n2 < x, xn > xn, x ∈ D(A), (45)

where xn(y) =
√

2 sin ny, n = 1, 2, . . . is the orthonormal set of eigenvalues of A. In
addition, for all x ∈ L2[0, 1], one gets

Υ(η)(x) =
∞

∑
n=1

e−n2η < x, xn > xn.

So, M = sup{||Υ(η)|| : η ≥ 0} = 1. Furthermore, for each x ∈ L2([0, π],R),

A
−1
2 x =

∞

∑
n=1

1
n
< x, xn > xn.

A
1
2 x =

∞

∑
n=1

n < x, xn > xn,

and ||A−1
2 || = 1. The domain of A

1
2 is defined as

D(A
1
2 ) = {x ∈ L2([0, π],R) :

∞

∑
n=1

n < x, xn > xn ∈ L2([0, π],R)}.

Let h : J ×Θ→ E be such that

h(η, u) := A
−1
2 (
∫ 0

−r
λu(θ)dθ), (46)
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where λ > 0. We have

||A
1
2 h(η, u1)− A

1
2 h(η, u2)||E ≤ λ ||

∫ 0

−r
(u1(θ)− u2(θ))dθ||

≤ λ
∫ 0

−r
||u1(θ)− u2(θ)||dθ

≤ λ||u1 − u2||Θ,

and

||Aγh(η, u)|| ≤ λ ||
∫ 0

−r
(u(θ)dθ|| ≤ λ||u||Θ.

Then, (10) and (11) are satisfied with d1 = d2 = λ.
Let Λ be a convex compact subset in E, sup{||z|| : z ∈ Z} = $ and κ > 0. Define

F : J ×Θ→ 2L2[0,π] by

F(η, u) :=
e−κη ||u||

$
Λ. (47)

We have

||F(η, u)|| = sup{|| e
κη ||u||

$
z : z ∈ Λ} ≤ eκη ; η ∈ J.

Moreover, for any bounded subset D ⊂ Θ, we have F(η, D) ⊆ ς eκη

$ Λ, where ς =

sup{||u|| : u ∈ D} and, hence, χE(F(η, D)) = 0. Then, F satisfies (HF1), (HF2)∗and
(HF3) with ξ(η) = e−κη , β(η) = 0; η ∈ J.

Next, let
I : E→ E, Ii(x) := σ projΛx, (48)

where σ is a positive number. Obviously, I verifies (HI) with ςi = 0 ; i = 1, 2, . . . .
Therefore, by applying Theorems 1 and 4, the set of solutions for the following frac-

tional neutral impulsive semilinear differential inclusions with delay:
cD α

0,η [x(η)− h(η,κ(η)x)]

∈ − ∂2

∂ω2 x(η, ω) + F(η,κ(η)x), a.e. η ∈ [0, 1]− { 1
2 , 1},

Iix(η−i , ω) = x(η−i , ω)− x(η+
i , ω), i = 1, 2, ω ∈ [0, π],

x(η, ω) = ψ(η, ω), η ∈ [−r, 0], η ∈ [0, 1]− { 1
2 , 1},

(49)

is a not empty, compact and an Rδ-set provided that

λ(1 +
C1−γΓ( 3

2 )

Γ(1 + α
2 )

) < 1, (50)

and
λ

2
+ 2λ

C1−γΓ( 3
2 )

Γ(1 + α
2 )

+
1

2Γ((α)
(

P− 1
αP− 1

)
P−1

P ‖ξ‖LP
(J,,R+)

+ σ < 1, (51)

where F, h I are given by (45)–(47). By choosing λ and σ small enough and κ large enough,
we arrive to (50) and (51).

Example 2. Let J, E, A, r, η0, η1, η2 Λ, and $ be as in Example (1) and θ ∈ [−r, 0] be a fixed
element.

Let h : J ×Θ→ E be such that

h((η,κ(η)x)(ω) := λ
∫ π

0
U(ω, y)x(θ + η)(ω)dy; ω ∈ [0, π]; η ∈ [0, 1], (52)
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where λ > 0, U : [0, π]× [0, π] → R is measurable,
∫ π

0

∫ π
0 U(ω, y)dydω < ∞, ∂U(ω,η)

∂ω is

measurable, U(0, y) = U(π, y) = 0, ∀y ∈ [0, π] and (
∫ π

0

∫ π
0 ( ∂U(ω,η)

∂ω )2dydω)
1
2 < ∞.

Next, let F : J ×Θ → 2L2[0,π], F((η,κ(η)x)(ω) = γG(η,x(θ+η)(ω))|
$ Λ, where γ > 0, G :

J ×R → R is a continuous function. Then, by choosing λ and σ small enough, one can
show that h and F satisfy all assumptions of Theorems 2 (see [15,43]) and, hence, the set of
mild solutions for the partial differential inclusions of impulsive neutral type with delay:

cD α
0,η [x(η, ω)−

∫ π
0 U(ω, y)x(θ + η)(ω)dy, ]

∈ − ∂2

∂ω2 x(η, ω) + G(η,x(θ+η)(ω))|
$ Λ, a.e. η ∈ [0, 1]− { 1

2 , 1},
Iix(η−i , ω) = x(η−i , ω)− x(η+

i , ω), i = 1, 2, ω ∈ [0, π],
x(η, ω) = ψ(η, ω), η ∈ [−r, 0], η ∈ [0, 1]− { 1

2 , 1},

(53)

is an Rδ-set.

6. Discussion

The neutral differential equations and inclusions appear in many applied mathematical
sciences such as viscoelasticity, and the equations describe the distribution of heat. Since
the set of mild solutions for a differential inclusion having the same initial point may
not be a singleton, many authors are interested to investigate the structure of this set in
a topological point of view. An important aspect of such structure is the Rδ- property,
which means that the homology group of the set of mild solutions is the same as a one-
point space. In the literature, there are many results on this subject but no result about
the topological properties of the set of mild solutions for a fractional neutral differential
inclusion generated by a non-compact semigroup in the presence of impulses and delay.
As cited in the introduction, when the problem involves delay and impulses, we cannot
consider the space PC([−r, b], E] as the space of solutions. To overcome these difficulties,
a complete metric space H is introduced as the space of mild solutions. In addition,
the function η → κ(η)x; x ∈ H is not necessarily measurable, therefore, a norm different
from the uniform convergence norm is introduced on Θ (see Equation (2)).

7. Conclusions

During the past two decades, fractional differential equations and fractional differen-
tial inclusions have gained considerable importance due to their applications in various
fields, such as physics, mechanics and engineering. For some of these applications, one can
see [28] and the references therein. In this paper, we have given an affirmative answer for a
basic question, which is whether there exists a solution set carrying an Rδ-structure when
there are impulsive effects and delay on the system, the operator families generated by the
linear part lack compactness and the order is fractional. More specifically,

1. By utilizing the properties of both multivalued functions, fraction powers of operators,
measures of non-compactness and analytic semi-groups, we showed that the mild
solutions set for a fractional impulsive neutral semilinear differential inclusions with
delay and generated by a non-compact semi-group is not empty, compact and an
Rδ-set. This means that, from an algebraic topological perspective, it is equivalent to
a point.

2. Our work generalizes the obtained results in [19], where Problem 1 is investigated
without delay and h ≡ 0.

3. Our work generalizes the obtained results in [15] to the case when there are impulsive
effects on the system.

4. Our technique can be used to prove that the solutions set is an Rδ-set for problems
considered in [13–23,30] when it is generated by a non-compact semi-group, the order
is fractional and there are impulsive effects and delay.

5. As a future work, we suggest to extend the work conducted in [24–26] to find the
sufficient conditions that guarantee that the solution set is an Rδ-set.



Fractal Fract. 2022, 6, 188 25 of 26

Author Contributions: Funding acquisition, Z.A. and A.G.I.; investigation, Z.A. and A.G.I.; method-
ology, Z.A., A.G.I. and A.A.; writing—original draft, Z.A. and A.G.I.; writing—-review and editing,
Z.A., A.G.I. and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: This research has been funded by the Scientific Research Deanship at University
of Ha’il—Saudi Arabia through project number RG-21 101.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aissani, K.; Benchohra, M. Impulsive fractional differential inclusions with state-dependent delay. Math. Moravica 2019, 23,

97–113. [CrossRef]
2. Chen, Y.; Wang, J.R. Continuous dependence of solutions of integer and fractional order non-instantaneous impulsive equations

with random impulsive and junction points. Mathematics 2019, 7, 331. [CrossRef]
3. Ibrahim, A.G. Differential Equations and inclusions of fractional order with impulse effect in Banach spaces. Bull. Malays. Math.

Sci. Soc. 2020, 43, 69–109. [CrossRef]
4. Liu, S.; Wang, J.R.; Shen,D.; O’Regan, D. Iterative learning control for differential inclusions of parabolic type with non-

instantaneous impulses. Appl. Math. Comput. 2019, 350, 48–59. [CrossRef]
5. Wang, J.R.; Li, M.; O’Regan, D. Robustness for linear evolution equation with non-instantaneous impulsive effects. Bull. Sci. Math.

2020, 150, 102827. [CrossRef]
6. Wang, J.R.; Ibrahim, A.G.; O’Regan, D. Nonempties and compactness of the solution set for fractional evolution inclusions with

of non-instantaneous impulses. Electron. J. Differ. Equ. 2019, 37, 1–17.
7. Wang, J.R.; Ibrahim, A.G.; O’Regan, D. Global attracting solutions to Hilfer fractional differential inclusions of Sobolev type with

non-instantaneous impulses and nonlocal conditions. Nonlinear Anal. Model. Control 2019, 24, 775–803.
8. Wang, J.R.; Ibrahim, A.G.; O’Regan, D. Controllability of Hilfer Fractional Noninstantaneous Impulsive Semilinear Differential

Inclusions with Nonlocal Conditions. Nonlinear Anal. Model. Control 2019, 24, 958–984. [CrossRef]
9. Zhou, Y.; Vijayakumar, V.; Ravichandran, C.; Murugesu, R. Controllability results for fractional order neutral functional differential

inclusions with infinite delay. Fixed Point Theory 2017, 18, 773–798. [CrossRef]
10. Yang, M.; Wang, Q. Approximate controllability of Caputo fractional neutral stochastic differential inclusions with state dependent

delay. IMA J. Math. Control Inf. 2018, 35, 1061–1085. [CrossRef]
11. Yan, Z.; Jia, X. Approximate controllability of fractional impulsive partial neutral integro-differential inclusions with infinite

delay in Hilbert spaces. Adv. Differ. Equ. 2015, 1–31. [CrossRef]
12. Chalishajar, D.; Anguraj, A.; Malar, K.; Karthikeyan, K. Study of controllability of impulsive neutral evolution integro-differential

equations with state-dependent delay in Banach Spaces. Mathematics 2016, 4, 1–16. [CrossRef]
13. Gabor, G.; Grudzka, A. Structure of the solution set to impulsive functional differential inclusions on the half-line. Nonlinear

Differ. Equ. Appl. 2012, 19, 609–627. [CrossRef]
14. Djebali, S.; Gorniewicz, L.; Ouahab, A. Topological structure of solution sets for impulsive differential inclusions in Fré chet

spaces. Nonlinear Anal. 2011, 74, 2141–2169. [CrossRef]
15. Zhou, Y.; Peng, L. Topological properties of solution sets for partial functional evolution inclusions. C. R. Math. 2017, 1, 45–64.

[CrossRef]
16. Zhou, Y.; Peng, L.; Ahmed, B.; Alsaedi, A. Topological properties of solution sets of fractional stochastic evolution inclusions. Adv.

Differ. Equ. 2017, 90, 1–20. [CrossRef]
17. Zhao, Z.H.; Chang, Y.-k. Topological properties of solution sets for Sobolev type fractional stochastic differential inclusions with

Poisson jumps. Appl. Anal. 2020, 99, 1373–1401. [CrossRef]
18. Beddani, M.; Hedia, B. Solution sets for fractional differential inclusions. J. Fract. Calc. Appl. 2019, 10, 273–289.
19. Wang, J.R.; Ibrahim, A.G.; O’Regan, D. Topological structure of the solution set for fractional non-instantaneous impulsive

evolution inclusions. J. Fixed Point Theory Appl. 2018, 20, 20–59. [CrossRef]
20. Ouahab, A.; Seghiri, S. Nonlocal fractional differential inclusions with impulses at variable times. Surv. Math. Its Appl. 2019, 14,

307–325.
21. Ziane, M. On the Solution Set for Weighted Fractional Differential Equations in Banach Spaces. Differ Equ. Dyn. Syst. 2020, 28,

419–430. [CrossRef]
22. Zhang, L.; Zhou, Y.; Ahmad, B. Topological properties of C0-solution set for impulsive evolution inclusions. Bound. Value Probl.

2018, 2018, 182. [CrossRef]
23. Wang, R.N.; Ma, Z.X.; Miranville, A. Topological Structure of the Solution Sets for a Nonlinear Delay. Int. Math. Res. Not. 2021,

2022, 4801–4889. [CrossRef]
24. Castaing, C.; Godet-Thobie, C.; Phung, P.D.; Truong, L.X. On fractional differential inclusions with Nonlocal boundary conditions.

Fract. Calc. Appl. Anal. 2019, 22, 444–478. [CrossRef]

http://doi.org/10.5937/MatMor1902097A
http://dx.doi.org/10.3390/math7040331
http://dx.doi.org/10.1007/s40840-018-0665-2
http://dx.doi.org/10.1007/s40314-019-0803-y
http://dx.doi.org/10.1016/j.bulsci.2019.102827
http://dx.doi.org/10.15388/NA.2019.6.7
http://dx.doi.org/10.24193/fpt-ro.2017.2.62
http://dx.doi.org/10.1093/imamci/dnx014
http://dx.doi.org/10.1186/s13662-015-0471-1
http://dx.doi.org/10.3390/math4040060
http://dx.doi.org/10.1007/s00030-011-0144-z
http://dx.doi.org/10.1016/j.na.2010.11.020
http://dx.doi.org/10.1016/j.crma.2016.11.011
http://dx.doi.org/10.1186/s13662-017-1142-1
http://dx.doi.org/10.1080/00036811.2018.1530764
http://dx.doi.org/10.1007/s11784-018-0534-5
http://dx.doi.org/10.1007/s12591-016-0338-2
http://dx.doi.org/10.1186/s13661-018-1099-3
http://dx.doi.org/10.1093/imrn/rnab176
http://dx.doi.org/10.1515/fca-2019-0027


Fractal Fract. 2022, 6, 188 26 of 26

25. Xiang, O.; Zhu, P. Some New Results for the Sobolev-Type Fractional Order Delay Systems with Noncompact Semigroup. J. Funct.
Spaces 2020, 2020. [CrossRef]

26. Zhu, P.; Xiang, Q. Topological structure of solution sets for fractional evolution inclusions of Sobolev type. Bound. Value Probl.
2018, 2018, 1–3. [CrossRef]

27. Zhou, Y.; Wang, R-N.; Peng, L. Topological Structure of the Solution Set for Evolution Inclusions, Developments in Mathematics; Springer:
Singapore, 2017.

28. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North Holland Mathematics
Studies; Elsevier Science: Amsterdam, The Netherlands, 2006.

29. Burqan, A.; Saadeh, R.; Qazza, A.A. Novel numerical approach in solving fractional neutral pantograph equations via the ARA
integral transform. Symmetry 2022, 14, 50. [CrossRef]

30. Ma, Y.K.; Kavitha, K.; Albalawi, W.; Shukla, A.; Nisar, K.S.; Vijayakumar, V. An analysis on the approximate controllability of
Hilfer fractional neutral differential systems in Hilbert spaces. Alex. Eng. J. 2022, in press. [CrossRef]

31. Etemad, S.; Souid, M.S.; Telli, B.; Kaabar, M.; Rezapour, S. Investigation of the neutral fractional differential inclusions of
Katugampola-type involving both retarded and advanced arguments via Kuratowski MNC technique. Adv. Differ. Equ. 2021,
2021, 214. [CrossRef]

32. Sindhu, T.N.; Atangana, A. Reliability analysis incorporating exponentiated inverse Weibull distribution and inverse power law.
Qual. Reliab. Eng. Int. 2021, 37, 2399–2422. [CrossRef]

33. Rahman, A.; Sindhu, T.N.; Lone, S.A.; Kamal, M. Statistical inference for Burr Type X distribution using geometric process in
accelerated life testing design for time censored data. Pak. J. Stat. Oper. Res. 2020, 16, 577–586. [CrossRef]

34. Shafiq, A.; Sindhu, T.N.; Al-Mdallal, Q.M. A sensitivity study on carbon nanotubes significance in Darcy–Forchheimer flow
towards a rotating disk by response surface methodology. Sci. Rep. 2021, 11, 1–26. [CrossRef] [PubMed]

35. Wang, J.R.; Zhou, Y. Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real
World Appl. 2011, 12, 3642–3653. [CrossRef]

36. Guedda, L. Some remarks in the study of impulsive differential equations and inclusions with delay. Fixed Point Theory 2011, 12,
349–354.

37. Pazy, A. Semigroup of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983.
38. Kamenskii, M.; Obukhowskii, V.; Zecca, P. Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces; De

Gruyter Series in Nonlinear Analysis and Applications; De Gruyter: Berlin, NY, USA, 2001; Volume 7.
39. Bothe, D. Multivalued perturbation of m-accerative differential inclusions. Israel J. Math. 1998, 108, 109–138. [CrossRef]
40. Bader, K.M.; Obukhowskii, V. On some class of operator inclusions with lower semicontinuous nonlinearity: Nonlinear Analysis.

J. Jul. Schauder Cent. 2001, 17, 143–156.
41. Hyman, D.H. On decreasing sequence of compact absolute Retract. Fund. Math. 1969, 64, 91–97. [CrossRef]
42. Ye, H.; Gao, J.; Ding, J.Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal.

Appl. 2007, 328, 1075–1081. [CrossRef]
43. Zhou, Y.; Jiao, F. Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 2010, 59, 1063–1077.

[CrossRef]

http://dx.doi.org/10.1155/2020/1260813
http://dx.doi.org/10.1186/s13661-018-1094-8
http://dx.doi.org/10.3390/sym14010050
http://dx.doi.org/10.1016/j.aej.2021.12.067
http://dx.doi.org/10.1186/s13662-021-03377-x
http://dx.doi.org/10.1002/qre.2864
http://dx.doi.org/10.18187/pjsor.v16i3.2252
http://dx.doi.org/10.1038/s41598-021-87956-8
http://www.ncbi.nlm.nih.gov/pubmed/33893354
http://dx.doi.org/10.1016/j.nonrwa.2011.06.021
http://dx.doi.org/10.1007/BF02783044
http://dx.doi.org/10.4064/fm-64-1-91-97
http://dx.doi.org/10.1016/j.jmaa.2006.05.061
http://dx.doi.org/10.1016/j.camwa.2009.06.026

	Introduction
	Preliminaries and Notation
	The Compactness of F[-r,b]
	The Structure Topological of F[-r,b] 
	Example
	Discussion
	Conclusions
	References

