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Abstract: The main purpose of this paper is to investigate the existence and Ulam-Hyers stability
(U-Hs) of solutions of a nonlinear neutral stochastic fractional differential system. We prove the
existence and uniqueness of solutions to the proposed system by using fixed point theorems and the
Banach contraction principle. Also, by using fundamental schemes of fractional calculus, we study
the (U-Hs) to the solutions of our suggested system. Besides, we study an example, best describing
our main result.
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1. Introduction

As we know, modeling natural phenomena is one of the ways to understand and
interpret them. Therefore, the discovery of new modeling tools has always been of interest
to researchers. Fractional calculus is one of these useful and new tools. Fractional differ-
ential equations have been used in different fields, such as control theory, biomath [1,2],
thermodynamics, signal processing, and so on [3,4]. The application of fractional calculus
by new researchers has been developed in the field of time-dependent damping behavior
in the viscoelastic behavior sciences. Furthermore, fractional differential equations (FDEs)
also have great applications in the nonlinear oscillation of earthquakes, with several phys-
ical phenomena such as fluid dynamics, traffic models, seepage flow in porous media,
etc. [5–23]. Disavowing FDEs is like saying that irrational numbers do not exist. In addition,
boundary value problems play a special role in solving and interpreting real-world prob-
lems, for example, population dynamics, thermoplasticity, chemical engineering, blood
flow, underground water flow, etc. [24].

The concept of stability is one of the qualitative aspects of dynamic systems. Stability
theory is very significant, as each practicable control system is structured to be stable.
Additionally, in physical use, the stability of solutions is very beneficial because variations
in mathematical models undoubtedly stem from measurement errors. A stable solution
may become variable through such variations. The analysis of the stability properties
of solutions has captivated a lot of research workers through its promising applications.
Specifically, the Ulam–Hyers stability analysis and its uses have been studied by legion
researchers. The definition of (U-Hs) has applicable significance; it means if someone is
capitalizing upon the (U-Hs), then one does not necessarily need to approach the exact
solution. It testifies that there is a consistently exact solution to each of the approximate
solutions. This is advantageous in all fields, including economics, numerical analysis,

Fractal Fract. 2022, 6, 203. https://doi.org/10.3390/fractalfract6040203 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6040203
https://doi.org/10.3390/fractalfract6040203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-2556-2806
https://orcid.org/0000-0001-9130-6942
https://orcid.org/0000-0003-2314-0412
https://orcid.org/0000-0003-3463-2607
https://doi.org/10.3390/fractalfract6040203
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6040203?type=check_update&version=2


Fractal Fract. 2022, 6, 203 2 of 16

optimizations theory, biology, etc., where finding the exact solution is quite tiring or time-
consuming; see [25–30].

On the other hand, physical models often fluctuate due to stochastic noise or perturba-
tion, so it makes sense to include stochastic effects into the fractional differential equation
to investigate this type of modeling. This leads us to focus on this type of equation in this
study. One can find many published works in this area; see, for example, refs. [31–34].

According to the lack of investigations on the existence and the (U-Hs) of the solutions
of a nonlinear neutral stochastic fractional differential system, it is of great interest to
perform some investigations in this area. Dai et al. [35] investigated the following fractional
differential equation for existence and Ulam–Hyers type stability

υ′(t) + cD℘
0+υ(t) = υ(t, υ(t)), t ∈ [0, 1],

υ(1) = I}0+υ(β) =
1

Γ(})

∫ β

0
(β− s)}−1υ(s)ds,

where cD℘
0+(·) and I}0+ represents the fractional Caputo derivative of order ℘ ∈ (0, 1) and

the fractional Riemann–Liouville integral such that } > 0, respectively. The function
υ : [0, 1]×R→ R is continuous and υ ∈ C1[0, 1], while β ∈ (0, 1] is a fixed number.

Y. Guo et al. [36], investigated the impulsive neutral functional stochastic differential
equation for existence and UH stability as follows:

Dα
0+ [υ(t)− l(t, υt)] = κ(t, υt) + ϑ(t, υt)

dω(t)
dt

, t ∈ [0, b], t 6= tk,

∆I2−α
0+ (υ(tk)) = Ik(υ(t−k )), ∆I1−α

0+ (υ(tk)) = Jk(υ(t−k )),

I2−α
0+ (υ(0)− l(0, υ0)) = φ1 ∈ By, I1−α

0+ (υ(0)− l(0, υ0)) = φ2 ∈ By,

where D(.)
0+ represents the Riemann–Liouville fractional derivative of order α ∈ (1, 2], and

k = 1, 2, . . . , m. We also have 0 = t0 < t1 < t2 < · · · < tm < tm+1 = b. The functions
κ, l, ϑ : (0, b] × By are continuous and ω(t) (t ∈ (0, b]), is the Wiener process, while By

is a phase space. The notations Ik, Jk represent appropriate functions, and I1−α
0+ , I2−α

0+ are
Riemann–Liouville fractional integrals with orders 1− α and 2− α, respectively. The ∆I1−α

0+ ,
∆I2−α

0+ are defined by

∆I1−α
0+ (υ(tk)) = I1−α

0+ (υ(t+k ))− I1−α
0+ (υ(t−k )),

∆I2−α
0+ (υ(tk)) = I2−α

0+ (υ(t+k ))− I2−α
0+ (υ(t−k )).

Here, the maps (υt : (−∞, b]→ R) ∈ By have been defined by υt(υ) = υ(t + υ), υ ≤ 0.
Sathiyaraj et al. [37] studied (U-Hs) results of the solutions of the following fractional

stochastic differential system involving the Hilfer fractional derivative HDα,β
0+ of order

α ∈ [0, 1] and type β ∈ (0, 1) for t ∈ [0, T], (T > 0)
HDα,β

0+ (u(t)) = Au(t) + ϑ(t, u(t), HDα,β
0+ (u(t))) +

∫ t

0
η(s, u(s), HDα,β

0+ (u(s)))dω(s),

I1−γ
0+ (u(t)) = u0, γ = α + β− αβ,

where u ∈ Rn and A are a matrix of dimension n× n. The functions ϑ, η : (0, T]×Rn ×
Rn → Rn and η : (0, T]×Rn ×Rn → Rn ×Rn are nonlinear and continuous.

There exists extensive prose about the existence and uniqueness (EU) of solutions
related to FDEs involving ordinary and fractional derivatives, etc., while in the setting of a
nonlinear neutral stochastic FDEs system involving ordinary derivative, as far as we know,
existence, uniqueness, and stability have not been discussed.
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Motivated by the above content, in this article we study the EU and (U-Hs) of the
following nonlinear stochastic fractional differential system:cD℘

0+ [υ(t)− κ(t, υ(t))] = Aυ(t) + l(t, υ(t), υ′(t))
dW(t)

dt
, t ∈ J := [0, b],

υ(0) = B,
(1)

where A represents the diagonal matrix of dimensions n× n, with the Caputo fractional def-
erential operators cD℘

0+(·) = (cD℘1 0+ , cD℘2 0+ , . . . , cD℘n
0+)

T , each of order ℘i1≤i≤n ∈ (0, 1).
(W(t))t≥0 is a standard Brownian motion on the complete probability space (Ω, Fb, P),
b > 0 along with some filtration Fb = {Ft}t∈J satisfy some conditions, while F0 consists of P-
null sets. Additionally, l := (l1, l2, . . . , ln)T , l1≤i≤n : J× Rn × Rn → Rn and κ : J×Rn → Rn

are n-dimensional locally integrable measurable bounded vector functions on 0 < t ≤ b and
its entries admit the Laplace transformation. Furthermore, υ(t) = (υ1(t), υ2(t), . . . , υn(t))T

is an unknown vector function, and B is F0 measurable H-valued random vector.
The remainder of the article is arranged as follows: In the Section 2, we evoke a few

useful definitions and results akin to fractional integrals and fractional derivatives. The EU
of solutions to the suggested system (1) and Ulam–Hyres stability results are investigated
in Section 3. A precise example is discussed in Section 4.

2. Preliminaries

This portion is dedicated to introducing a few conceptions and recalling helpful
definitions and preliminary results employed in the whole article.

Let Rn be endowed with standard Euclidean norm and H2(J,Rn) denotes the space of
all Fb measurable processes l, satisfying

‖l‖2
H2 = sup

t∈J
E‖l(t)‖2 < ∞.

It is known that (H2(J,Rn), ‖ · ‖H2) is a Banach space and κ : J×Rn → Rn, l : J×Rn ×
Rn → Rn are measurable and bounded functions satisfying the following hypothesis:

(A1) There exist positive constants Lκ ,Ll such that for all υ, £, ῡ, £̄ ∈ (H2(J,Rn) and t ∈ J,∥∥κ(t, υ)− κ(t, £)
∥∥ ≤Lκ

∥∥υ− £
∥∥,∥∥l(t, υ, ῡ)− l(t, £, £̄)

∥∥ ≤Ll
[∥∥υ− £

∥∥+ ∥∥ ∫ t

0
ῡ(s)ds−

∫ t

0
£̄(s)ds

∥∥].
(A2) Assume that supt∈J ‖κ(t, 0)‖ < ∞ and supt∈J ‖l(t, 0, 0)‖ < ∞. Note that the condition

supt∈J ‖κ(t, 0)‖ < ∞ implies
∫ b

0 ‖κ(t, 0)‖2dt < ∞.

The next condition is a consequence of (A1), but we list it here because of our easy ac-
cess.

(A3) Let Ll , Lκ be the same constants in (A1) and there exist real numbers c1 ∈ (0, 1),
c2 > 0 such that for all t ∈ J and υ, £ ∈ H2(J,Rn),∥∥κ(t, υ)

∥∥ ≤Lκ

[
1 +

∥∥υ
∥∥],∥∥l(t, υ, £)

∥∥ ≤Ll
[
c1‖υ‖+ c2

∥∥ ∫ t

0
£(s)ds

∥∥].
Definition 1 ([6]). Assume that f : (0, ∞+) → R is a real-valued integrable function and Γ
denotes the Gamma function. The fractional Riemann–Liouville integral of order ℘, for which
0 < ℘ < 1, is defined by

I℘0+ f (t) =
1

Γ(℘)

∫ t

0
(t− v)℘−1 f (v)dv, t > 0.
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Definition 2 ([6]). Let f (t) be an absolutely continuous function; then, the fractional derivative
in the Caputo sense, of order ℘, 0 < ℘ < 1, is defined as:

cD℘
0+ f (t) =

1
Γ(1− ℘)

∫ t

0
(t− s)−℘ f (s)ds.

Definition 3 ([6]). The 2-parametric Mittag–Leffler matrix function is defined as:

E℘,ν(t℘A) =
∞

∑
k=0

Ak tk℘

Γ(℘k + ν)
, ℘, ν, t ∈ C, and <(℘),<(ν) > 0.

Particularly, E℘,1(t℘A) = E℘(t℘A) has the following property

cD℘
0+E℘,1(t℘A) = AE℘,1(t℘A), t > 0.

We further suppose that there exist constantsM0 and N0, where

max
t∈J
‖E℘,1(t℘A)‖2 =M0 and max

t∈J
‖E℘,℘(t℘A)‖2 = N0.

The last two estimates will be used in the coming results.

Furthermore, let cD℘
0+ f (t) be the Caputo fractional derivative of f (t); then, its Laplace

transform, where 0 < ℘ < 1, is

L{cD℘
0+ f (t)}(s) = s℘L{ f (t)}(s)− s℘−1 f (0).

Lemma 1. For any t > 0, Υ > 0 and 1
2 < ℘ < 1, the following integral inequality

Υ
Γ(2℘− 1)

∫ t

0
(t− s)2℘−2E2℘−1,1(s2℘−1Υ)ds ≤ E2℘−1,1(t2℘−1Υ)

holds.

Proof. Consider

Υ
Γ(2℘− 1)

∫ t

0
(t− s)2℘−2E2℘−1,1(s2℘−1Υ)ds

=
Υ

Γ(2℘− 1)

∞

∑
j=0

Υj

Γ(j(2℘− 1) + 1)

∫ t

0
(t− s)2℘−2sj(2℘−1)ds

=
∞

∑
j=0

Υj+1t(j+1)(2℘−1)

Γ(2℘− 1)Γ(j(2℘− 1) + 1)
B(2℘− 1, j(2℘− 1) + 1)

=
∞

∑
j=0

Υj+1t(j+1)(2℘−1)

Γ((j + 1)(2℘− 1) + 1)

=
∞

∑
j=1

Υjtj(2℘−1)

Γ(j(2℘− 1) + 1)

= E2℘−1,1(t2℘−1Υ)− 1 ≤ E2℘−1,1(t2℘−1Υ).

The following integral inequality has a vital role in obtaining certain estimates in our
main theory throughout the paper.
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For any b > 0, and ℘ > 1
2 , assume that Ψ(t) is an H-valued process satisfying

E
∫ b

0 ‖Ψ(t)‖2dt < ∞. Then, we can find a constant Cb = b2℘−1

2℘−1 , where

sup
t∈J

E
(∥∥ ∫ t

0
(t− τ)℘−1Ψ(τ)dW(τ)

∥∥2
)
≤ CbE

∫ b

0
‖Ψ(τ)‖2dτ. (2)

Definition 4 ([38]). A function l is said to be of exponential order }, if ∃M} > 0, where for some
t0 > 0, we have

|l(t)| ≤ M}e}t, for t ≥ t0.

Lemma 2 ([38]). The Laplace transform for a function g, which is piecewise continuous on [0, ∞)
and exponential order }, exists for <(s) > } and converges absolutely.

Theorem 1 ([39] (Krasnoselskii fixed-point theorem)). Let S 6= ∅ be a closed and convex
subset of Banach space B. Consider two operators P1,P2 such that

1 P1u + P2v ∈ S , where u, v ∈ S .
2 P1 is compact and continuous operator.
3 P2 is contraction operator.

Then ∃v ∈ S such that x = P1v + P2v.

3. Main Results
3.1. Existence and Uniqueness

Before studying the qualitative behavior of solutions to system (1), we considercD℘
0+ [υ(t)− κ(t, υ(t))] = Aυ(t) + l(t, υ(t), υ′(t))

dW(t)
dt

, t ∈ J := [0, b],

υ(0) = B,

where cD℘
0+(.) represents the fractional Caputo derivative of order ℘ (0 < ℘ < 1) and A is

an n× n matrix.

Definition 5. A stochastic process {υ(t), t ∈ J}t≥0 is said to be a mild solution of the system (1),
if

(i) υ(t) is adapted to {Ft}υ≥0 with
∫ b

0 ‖υ(t)‖
2
H2 dt < ∞, a.e.;

(ii) υ(t) ∈ H2(J,Rn) has a continuous path on t ∈ J a.e. and for all t ∈ J, υ(t) satisfies the
following integral equation

υ(t) = E℘,1(t℘A)[B− κ(0, B)] + κ(t, υ(t))

+
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, υ(s))ds

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, υ(s), υ′(s))dW(s).

Theorem 2. Let υ ∈ C1(J,Rn), 0 < ℘ ≤ 1, then any mild solution ofcD℘
0+ [υ(t)− κ(t, υ(t))] = Aυ(t) + l(t, υ(t), υ′(t))

dW(t)
dt

, t ∈ J := [0, b],

υ(0) = B,

is formulated by

υ(t) = E℘,1(t℘A)[B− κ(0, B)] + κ(t, υ(t))

+
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, υ(s))ds
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+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, υ(s), υ′(s))dW(s).

Proof. Since υ ∈ C1(J,Rn), both υ and cD℘
0+υ are bounded. Then, ∀t ∈ J, υ and cD℘

0+υ are
of exponential order. Thus, the Laplace transform of υ and cD℘

0+y exist for υ ∈ C1(J,Rn).
Consider

cD℘
0+ [υ(t)− κ(t, υ(t))] = Aυ(t) + l(t, υ(t), υ′(t))

dW(t)
dt

, t ∈ J. (3)

By applying the Laplace transform L, on both sides of (3), we find

s℘L{υ(t)− κ(t, υ(t))}(s)− s℘−1[υ(0)− κ(0, υ(0))]

= L{Aυ(t)}(s) + L{l(t, υ(t), υ′(t))
dW(t)

dt
}(s), (4)

where <(s) > 0. In the matrix form, for (4) we obtain

KL{υ(t)− κ(t, υ(t))}(s)− s−1K[B− κ(0, B)]

= L{Aυ(t)}(s) + L{l(t, υ(t), υ′(t))
dW(t)

dt
}(s), (5)

where the diagonal matrix K =diag(s℘1 , s℘2 , . . . , s℘n). We can rewrite (5) in the form

(K−A)L{υ(t)− κ(t, υ(t))}(s) = s−1K[B− κ(0, B)]

+ KL{κ(t, υ(t))}(s) + L{l(t, υ(t), υ′(t))
dW(t)

dt
}(s). (6)

By multiplying the inverse matrix K−1 =diag(s−℘1 , s−℘2 , . . . , s−℘n), we find

(I−K−1A)L{υ(t)− κ(t, υ(t))}(s) = s−1[B− κ(0, B)] + L{κ(t, υ(t))}(s)

+ K−1L{l(t, υ(t), υ′(t))
dW(t)

dt
}(s), (7)

where I is n-th order identity matrix. Clearly, the matrix (I−K−1A) is invertible. We solve
Equation (7) for L{υ(t)}(s) as

L{υ(t)}(s) = s−1(I−K−1A)−1[B− κ(0, B)]

+ L{κ(t, υ(t))}(s) + (I−K−1A)−1L{κ(t, υ(t))}(s)

+ K−1(I−K−1A)−1L{l(t, υ(t), υ′(t))
dW(t)

dt
}(s). (8)

By applying the inverse Laplace transform to Equation (8) yields

υ(t) = X(t)[B− κ(0, B)] + κ(t, υ(t))

+ Z(t) ∗ κ(t, υ(t)) + Q(t) ∗ l(t, υ(t), υ′(t))
dW(t)

dt
, (9)

where the matrix functions X(t), Z(t) and Q(t) are given by

X(t) =L−1[s−1(I−K−1A)−1],

Z(t) =L−1[(I−K−1A)−1],

Q(t) =L−1[K−1(I−K−1A)−1],

while the convolution products ∗ are defined by

Z(t) ∗ κ(t, υ(t)) =
∫ t

0
Z(t− s)κ(s, υ(s))ds,
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and

Q(t) ∗ l(t, υ(t), υ′(t)) =
∫ t

0
Q(t− s)l(s, υ(s), υ′(s))ds.

If ℘1 = ℘2 = · · · = ℘n = ℘, then we have

X(t) = E℘,1(t℘A),

Z(t) = Aυ℘−1E℘,℘(t℘A),

and
Q(t) = υ℘−1E℘,℘(t℘A).

Thus, Equation (9) becomes

υ(t) = E℘,1(t℘A)[B− κ(0, B)] + g(t, u(t)) +
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, υ(s))ds

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, υ(s), υ′(s))dW(s).

Next, on the basis of Theorem 2, we presume the solution of system (1).

Theorem 3. Let the assumptions A1 and A2 hold. Then, there exists a continuously differentiable
unique mild solution £(t) with the same initial condition of system (1) expressed by:

£(t) = E℘,1(t℘A)[B− κ(0, B)] + κ(t, £(t))

+
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, £(s))ds

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, £(s), £′(s))dW(s).

Proof. Let H2
B(J,Rn) = {ξ ∈ H2(J,Rn), ξ(0) = ξ}. One can easily check that H2

B(J,Rn) is
a closed subspace of the Banach space H2(J,Rn). Define an operator P on H2

B(J,Rn) by

(P£)(t) = E℘,1(t℘A)[B− κ(0, B)] + κ(t, £(t))

+
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, £(s))ds

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, £(s), £′(s))dW(s) (t ∈ J).

Obviously, the operator P is well-defined. Let H2
B(J,Rn) be endowed with the maxi-

mum norm ‖ · ‖B, defined as

‖ξ‖2
B = sup

t∈J

E‖ξ(t)‖2

E2℘−1,1(Υu℘−1)
, Υ > 0, ξ ∈ H2

B(J,Rn).

Since H2
B(J,Rn) is a closed subspace of the Banach space H2(J,Rn), (H2

B(J,Rn), ‖ · ‖B)
is also a Banach space. Thus, we can find N0 > 0 and choose a fixed positive number Υ

such that 3N 2
0 Γ(2℘−1)(b‖A‖2L2

κ+2L2
l )

Υ(1−3L2
κ)

< 1, 0 < L2
κ < 1

3 .

On the basis of assumption A1 with the use of Itô′s isometry and Cauchy–Schwartz
inequality, we have

E
∥∥(Pυ)(t)− (P£)(t)

∥∥2 ≤ 3E
∥∥κ(t,Pυ(t))− κ(t,P£(t))

∥∥2

+ 3E
∥∥ ∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)[κ(s, υ(s))− κ(s, £(s))]ds

∥∥2
+ 3E
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×
∥∥ ∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)[l(s, υ(s), υ′(s))− l(s, £(s), £′(s))]dW(s)

∥∥2

≤ 3L2
κE
∥∥Pυ(t)−P£(t)‖2 + 3b‖A‖2N 2

0L2
κ

∫ t

0
(t− s)2℘−2E‖υ− £‖2ds

+ 6N 2
0L2

l

∫ t

0
(t− s)2℘−2E‖υ− £‖2ds

= 3L2
κE
∥∥Pυ(t)−P£(t)

∥∥2

+ 3N 2
0 (b‖A‖2L2

κ + 2L2
l )
∫ t

0
(t− s)2℘−2E‖υ− £‖2ds.

Thus, by Lemma 1 and the definition of Υ, we obtain

E
∥∥(Py)(t)− (Px)(t)

∥∥2

E2℘−1,1(Υt2℘−1)
≤

3L2
κE
∥∥Pυ(t)−P£(t)‖2

E2℘−1,1(Υt2℘−1)
+

3N 2
0 (b‖A‖2L2

κ + 2L2
l )

E2℘−1,1(Υt2℘−1)

×
∫ t

0
(t− s)2℘−2 E2℘−1,1(Υs2℘−1)

E2℘−1,1(Υs2℘−1)
E‖υ− £‖2ds.

Therefore,

∥∥Pυ−P£
∥∥2

Υ ≤
3N 2

0 Γ(2℘− 1)(b‖A‖2L2
κ + 2L2

l )

Υ(1− 3L2
κ)

∥∥υ− £
∥∥2

Υ.

Since by the assumption 3N 2
0 Γ(2℘−1)(b‖A‖2L2

κ+2L2
l )

Υ(1−3L2
κ)

< 1, then the operator P is a con-

traction on H2
B(J,Rn). Hence, due to the contraction mapping principle, the operator P

possesses a unique fixed point, which is the unique solution of system (1).

Theorem 4. Let the assumptions A1 to A3 be satisfied ∀t ∈ J and υ, £, ῡ, £̄ ∈ (H2
BJ,Rn). Then,

the problem (1) has at least one mild solution, provided that 0 < Lκ < 1
2
√

2
.

Proof. To discuss the solvability of system (1), we transform the considered system (1) into
an equivalent fixed point problem. Consider a closed ball

Wε = {υ ∈ H2
B(J,Rn) : E‖υ‖2

Υ ≤ ε},

where

0 <
8M2

0
[
E
∥∥B
∥∥2

+ L2
κ(1 + E

∥∥B
∥∥2
)
]
+ 8

Qlκ(1− 8L2
κ)

≤ ε,

with

Qlκ = 1−
8b2℘−1Γ(2℘− 1)

[
b‖A‖2L2

κM2
0 +N 2

0L2
l (c

2
1 + c2

2)
]

Υ(1− 8L2
κ)

,

and define two operators P1 and P2 onWε by

(P1υ)(t) = E℘,1(t℘A)[B− κ(0, B)] + κ(t, υ(t)),

(P2υ)(t) =
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, υ(s))ds

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, υ(s), υ′(s))dW(s), t ∈ J.

For any υ ∈ Wr, we conclude that

E
∥∥(P1υ)(t) + (P2υ)(t)

∥∥2
= 4E

∥∥E℘,1(t℘A)[B− κ(0, B)]
∥∥2

+ 4E
∥∥κ(t,Pυ(t))

∥∥2

+ 4E‖
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, υ(s))ds

∥∥2
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+ 4E
∥∥ ∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, υ(s), υ′(s))dW(s)

∥∥2

≤ 8M2
0
[
E
∥∥B
∥∥2

+ L2
κ(1 + E

∥∥B
∥∥2
)
]
+ 8L2

κ

[
1 + E

∥∥Pυ(t)
∥∥2]

+ 8bM2
0
∥∥A
∥∥2L2

κ

[
1 + E

∥∥υ(t)
∥∥2] ∫ t

0
(t− s)2℘−2ds

+ 8N 2
0L2

l [c
2
1 + c2

2]E
∥∥y
∥∥2
∫ t

0
(t− s)2℘−2ds.

Therefore,

∥∥(P1υ) + (P2υ)
∥∥2

Υ ≤
8M2

0
[
E
∥∥B
∥∥2

+ L2
κ(1 + E

∥∥B
∥∥2
)
]

(1− 8L2
κ)

+ 8M2
0
∥∥A
∥∥2L2

κ

[
1 + ε

] b2℘Γ(2℘− 1)
Υ(1− 8L2

κ)

+
8N 2

0 b2℘−1Γ(2℘− 1)L2
l [c

2
1 + c2

2]

Υ(1− 8L2
κ)

ε +
8

(1− 8L2
κ)

≤ ε.

Thus, P1υ + P2υ ∈ Wε. In view of Theorem 3, we conclude that P1 is a contraction
mapping if

3N 2
0 Γ(2℘− 1)(b‖A‖2L2

κ + 2L2
l )

Υ(1− 3L2
κ)

< 1.

It follows directly from the proof of the Theorem 3.
Next, we show that the operator P2 is continuous as well as compact. First, we show

that P2 is continuous. For this, we construct a differentiable uniformly convergent sequence
{υn}n∈N inWε such that υn → υ as n→ ∞.

∀t ∈ [0, b], we have

E
∥∥(P2υn)(t)− (P2υ)(t)

∥∥2

≤ 2E
∥∥ ∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)[κ(s, υn(s))− κ(s, υ(s))]ds

∥∥2
+ 2E

×
∥∥ ∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)[l(s, υn(s), υ′n(s))− l(s, υ(s), υ′(s))]dW(s)

∥∥2

≤ 2bL2
κ‖A‖2M2

0

∫ t

0
(t− s)2℘−2E‖υn − υ‖2ds + 4N 2

0 L2
l

∫ t

0
(t− s)2℘−2E‖υn − υ‖2ds

so

E
∥∥(P2υn)(t)− (P2y)(t)

∥∥2

E2℘−1,1(υt2℘−1)
≤

2b‖A‖2L2
κM2

0
E2℘−1,1(Υt2℘−1)

∫ t

0
(t− s)2℘−2E2℘−1,1(Υs2℘−1)

E‖υn − υ‖2

E2℘−1,1(Υs2℘−1)
ds

+
4N 2

0L2
l

E2℘−1,1(Υt2℘−1)

∫ t

0
(t− s)2℘−2E2℘−1,1(Υs2℘−1)

E‖υn − υ‖2

E2℘−1,1(Υs2℘ − 1)
ds.

Using the weighted maximum norm, we obtain

E
∥∥P2υn −P2υ

∥∥2
Υ ≤

2Γ(2℘− 1)
Υ

[
bL2

κ

∥∥A
∥∥2M2

0 + 2N 2
0L2

l

]∥∥υn − υ
∥∥

Υ → 0, as n→ ∞.

The last inequality implies the operator P2 is continuous. Moreover, the operator P2
is uniformly bounded, which follows from the start of the proof.

Finally, we show that P2 is equi-continuous. Let t1, t2 ∈ J with t1 < t2. For any υ ∈ Wε,
we have

E
∥∥(P2υ)(t2)− (P2υ)(t1)

∥∥2
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≤ 4E
∥∥ ∫ t1

0
A
[
(t2 − s)℘−1E℘,℘((t2 − s)℘A)− (t1 − s)℘−1E℘,℘((t1 − s)℘A)

]
× κ(s, υ(s))ds

∥∥2

+ 4E
∥∥ ∫ t2

t1

A(t2 − s)℘−1E℘,℘((t2 − s)℘A)κ(s, υ(s))ds
∥∥2

+ 4E
∥∥ ∫ t1

0

[
(t2 − s)℘−1E℘,℘((t2 − s)℘A)− (t1 − s)℘−1E℘,℘((t1 − s)℘A)

]
× l(s, υ(s), υ′(s))dW(s)

∥∥2

+ 4E
∥∥ ∫ t2

t1

(t2 − s)℘−1E℘,℘((t2 − s)℘A)l(s, υ(s), υ′(s))ds
∥∥2

≤ 4L2
κM2

0

∫ t1

0

[
(t2 − s)2℘−2 − (t1 − s)2℘−2][1 + E‖υ‖2]ds

×+4M2
0L2

2‖A‖2b‖A‖2
∫ t2

t1

(t2 − s)2℘−2(1 + E‖υ‖2)ds

+ 4N 2
0L2

l )
∫ t1

0

[
(t2 − s)2℘−2 − (t1 − s)2℘−2][(c1 + c2)E‖υ‖2ds + 4N 2

0L2
l

×
∫ t2

t1

[
(t2 − s)2℘−2][(c1 + c2)]E‖υ‖2ds→ 0, as t1 → t2.

which further implies that
∥∥P2υ(t2) − P2υ(t1)

∥∥2
Υ → 0 as t1 → t2. This shows that the

operator P2 is compact. Therefore, in view of the Arzela–Ascoli theorem, P2 is compact.
Hence, the problem (1) has at least one solution on J, thanks to Theorem 1.

3.2. The Ulam–Hyres Stability Results

Now, in the following, we want to examine the (U-Hs) result about the system (1) in
H2(J,Rn) on the interval J = [0, b].

Definition 6. We say that (1) is Ulam–Hyers stable, if for any solution £(t) ∈ H2(J,Rn) of (1),
which satisfies the following inequality

sup
t∈[0,b]

E
∥∥cD℘

0+ [£(t)− κ(t, £(t))]−Av(t)− l(t, £(t), £′(t))
W(t)

dt
∥∥2 ≤ ε, ε > 0, (10)

then, there exists a solution υ(t) of (1), where

sup
t∈[0,b]

E‖£(t)− υ(t)‖2 ≤ Cε,

such that C is a constant that is independent of £(t) and υ(t).

Definition 7. We say that the system (1) posses Ulam–Hyers–Rassias stability, if for any solution
£(t) ∈ H2(J,Rn) of (1), which satisfies the following inequality

sup
t∈[0,b]

E
∥∥cD℘

0+ [£(t)− κ(t, £(t))]−A£(t)− l(t, £(t), £′(t))
W(t)

dt
∥∥2 ≤ ϕ(t), (11)

such that ϕ : J→ [0, ∞) is a continuous function, then there exists a solution υ(t) of (1), where

sup
t∈[0,b]

E‖£(t)− υ(t)‖2 ≤ Cϕ(t),

and C is a constant, that is independent of £(t) and υ(t).
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Remark 1. A function £(t) ∈ H2(J,Rn) is said to be the solution of the inequality (10) if, and
only if, we can find a function h̄(t) ∈ H2(J,Rn) such that

(1) E‖h̄(t)‖2 ≤ ε, t ∈ J;

(2)

£(t) = E℘,1(t℘A)[B− κ(0, B)] + κ(t, £(t))

+
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, £(s))ds

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, £(s), £′(s))dW(s)

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)h̄(s)ds.

Note: A similar remark can be obtained on considering inequality (11).

Lemma 3. A function £(t) ∈ H2(J,Rn) satisfying (10) also satisfies the following integral in-
equality

E
∥∥£(t)− E℘,1(t℘A)[B− κ(0, B)] + κ(t, £(t))

−
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, £(s))ds

−
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, £(s), £′(s))dW(s)

∥∥2 ≤ b2℘−1

2℘− 1
N0ε.

Proof. According to Remark 1 (2), we can write

£(t) = E℘,1(t℘A)[B− κ(0, B)] + κ(t, £(t))

+
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, £(s))ds

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, £(s), £′(s))dW(s)

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)h̄(s)ds.

By applying expectation and Cauchy–Schwartz inequality, we obtain

E
∥∥£(t)− E℘,1(t℘A)[B− κ(0, B)] + κ(t, £(t))

−
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)κ(s, £(s))ds

−
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)l(s, £(s), £′(s))dW(s)

∥∥2

= E
∥∥ ∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)h̄(s)ds

∥∥2

≤
∫ t

0
(t− s)2℘−2E

∥∥E℘,℘((t− s)℘A)
∥∥2E

∥∥h̄(s)
∥∥2ds

≤ N0ε
∫ t

0
(t− s)2℘−2ds

≤ b2℘−1

2℘− 1
N0ε.
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Theorem 5. If the assumptions A1 and A2 are true, then the system (1) is (U-H) stable, provided
that

6L2
κ +

6N 2
0 (b‖A‖2L2

κ + 2L2
l )Γ(2℘− 1)

Υ
< 1,

Proof. Suppose that ε > 0 and £(t) ∈ H2(J,Rn) be a continuously differentiable function
satisfying (10) and υ(t) ∈ H2(J,Rn) are the unique solution of system (1). By applying the
Ito’s isometry along with the following inequality, we find

∥∥ n

∑
j=1

υj
∥∥2 ≤ n

n

∑
j=1

∥∥υj
∥∥2

and so

E
∥∥υ(t)− £(t)

∥∥2 ≤ 2E
∥∥κ(t, υ(t))− κ(t, £(t))

+
∫ t

0
A(t− s)℘−1E℘,℘((t− s)℘A)[κ(s, υ(s))− κ(s, £(s))]ds

+
∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)[l(s, υ(s), υ′(s))− l(s, £(s), £′(s))]dW(s)

∥∥2

+ 2E
∥∥ ∫ t

0
(t− s)℘−1E℘,℘((t− s)℘A)h̄(s)ds

∥∥2

≤ 6L2
gE
∥∥υ(t)− £(t)‖2 + 6b‖A‖2N 2

0L2
κ

∫ t

0
(t− s)2℘−2E‖υ− £‖2ds

+ 12N 2
0L2

l

∫ t

0
(t− s)2℘−2E‖υ− £‖2ds +

2b2℘−1

2℘− 1
N0ε

= 6L2
κE
∥∥Pυ(t)−P£(t)‖2 + 6N 2

0 (b‖A‖2L2
κ

+ 2L2
l )
∫ t

0
(t− s)2℘−2E‖υ− £‖2ds +

2b2℘−1

2℘− 1
N0ε.

Thus, by using Lemma 1 and the definition of Υ, we obtain

E
∥∥υ(t)− £(t)

∥∥2

E2℘−1(Υt2℘−1,1)
≤

6L2
κE
∥∥υ(t)− £(t)‖2

E2℘−1,1(Υt2℘−1)
+

6N 2
0 (b‖A‖2L2

κ + 2L2
l )

E2℘−1,1(Υt2℘−1)

×
∫ t

0
(t− s)2℘−2E2℘−1(Υs2℘−1)

‖υ− £‖2
Υ

E2℘−1,1(Υs2℘−1)
ds

+
2

E2℘−1(Υt2℘−1,1)

b2℘−1

2℘− 1
N0ε

≤
(

6L2
κ +

6N 2
0 (b‖A‖2L2

κ + 2L2
l )Γ(2℘− 1)

Υ

)
‖υ− £‖2

Υ +
2b2℘−1

2℘− 1
N0ε.

By taking maximum over J, and considering the assumption

6L2
κ +

6N 2
0 (b‖A‖2L2

κ + 2L2
l )Γ(2℘− 1)

Υ
< 1,

we obtain

‖υ− £‖2
Υ ≤

2b2℘−1

2℘−1 N0

1− 6L2
κ −

6N 2
0 (b‖A‖2L2

κ+2L2
l )Γ(2℘−1)

Υ

ε = Cε,
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where

C =
2b2℘−1

2℘−1 N0

1− 6L2
κ −

6N 2
0 (b‖A‖2L2

κ+2L2
l )Γ(2℘−1)

Υ

.

By Definition 6, the system (1) is (U-H) stable.

Remark 2. The Ulam–Hyers–Rasssias stability can be discussed in the same manner.

4. Example

We now present an example to defend our pivotal results of the theory attained above.

Example 1. Consider the Cauchy neutral fractional stochastic differential equation system

cD
4
7
0+

[
υ(t) +

t
5

 υ1(t) + 1
cos2 υ2(t)

1 + cos2 υ2(t)

] = ( 0 4
3 2

)
υ(t)

+

(
t
4

(
|υ1(t)|+ cos2 υ1(t)

υ2(t) + 2

)
+

1
4

υ′(t)

)
dW(t)

dt
, (t ∈ (0, 1])

υ(0) =
(

4
7

)
,

where A =

(
0 4
3 2

)
, υ(t) = (υ1(t), υ2(t))T , and W(t) is the standard Brownian motion while

the measurable functions are given by

κ(t, υ(t)) =
t
5

 υ1(t) + 1
cos2 υ2(t)

1 + cos2 υ2(t)

,

and

l(t, υ(t), υ′(t)) =

(
t
4

(
|υ1(t)|+ cos2 υ1(t)

υ2(t) + 2

)
+

1
4

υ′(t)

)
.

Comparing with our considered problem (1), we have
℘ = 4

7 ,
Lκ = 1

5 ,
Ll =

1
2 ,

b = 1.

By taking N0 = 1
8 , Υ = 1,M0 = 1, we obtain

3N 2
0 Γ(2℘− 1)(b‖A‖2L2

κ + 2L2
l )

Υ(1− 3L2
κ)

=
3Γ( 5

2 )[
16
25 + 1

4 ]

64(1− 3
25 )

= 0.0628 < 1.

Therefore, in view of Theorem 3, Equation (1) has a unique solution.
Furthermore,

1− 6L2
κ −

6M2
0(b‖A‖2L2

κ + 2L2
l )Γ(2℘− 1)

Υ
= 0.6740 6= 0,

Thus, by Theorem 5, system (1) is Ulam–Hyers stable. To better understand this example,
graphs of some functions are provided in Figures 1 and 2.
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Figure 1. The graph of t(|υ1(t)|+ cos2 υ1(t)).

Figure 2. The graph of
t cos2 υ2(t)

1 + cos2 υ2(t)
.

5. Conclusions

The fractional stochastic neutral differential system has many applications in various
fields, such as viscoelasticity, automatic control, electrochemistry, etc. Based on some well-
known fixed-point theorems of fractional calculus and the technique of stochastic analysis,
the existence of results for the considered system has been obtained. Likewise, under
specific assumptions and conditions, we have found the (U-Hs) result for the solution of
system (1). We also provided an example and some figures to show the performance of the
results that we proved.
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