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Abstract: The dynamics and synchronization of fractional-order (FO) chaotic systems have received
much attention in recent years. However, the research are focused mostly on FO commensurate
systems. This paper addresses the synchronization of incommensurate FO (IFO) chaotic systems. By
employing the comparison principle for FO systems with multi-order and the linear feedback control
method, a sufficient condition for ensuring the synchronization of IFO chaotic systems is developed
in terms of linear matrix inequalities (LMIs). Such synchronization condition relies just on the system
parameters, and is easily verify and implemented. Two typical FO chaotic systems, named the IFO
Genesio-Tesi system and Hopfied neural networks are selected to demonstrate the effectiveness and
feasibility of the proposed method.

Keywords: fractional-order systems; chaos; synchronization; state feedback control

1. Introduction

Fractional calculus and FO systems theory are rapid developing topics in today science
and engineering. It has been proven that the integer-order modeling techniques may not
yield accurate descriptions for the dynamics of some systems [1,2], especially when memory
effects are present. Fractional calculus provides new insights into systems’ modeling,
and successful cases of its use can be found in control theory, mathematics, economics,
mechanics, biology, chemistry, and signal and image processing [3–6].

With the introduction of fractional derivatives, the FO nonlinear systems have revealed
their complex dynamic behavior, such as chaos, bifurcations, attractors and multi-stability
states [7–9]. Due to their potential applications in many fields, the FO chaotic systems have
been extensively studied [10,11]. As a collective behavior, chaos synchronization is one
of the most important branches of chaos, and has extensive application in a number of
areas, namely secure communication, signal encryption and fault diagnosis [12,13]. Re-
cently, synchronization of FO chaotic systems has attracted great attention, with various
control methods being proposed to achieve synchronization, such as active [14], impul-
sive [15], adaptive [16], fuzzy [17], passive [18], sliding mode [19], and feedback [20] control,
among others. Meanwhile, many different types of synchronization of FO chaotic system
have been introduced. We can mention complete [21], projective [17,22], and lag [23,24]
synchronization, to cite a few.

It should be noted that most of the research efforts mentioned above have focused on
commensurate FO chaotic systems, meaning that the fractional derivatives of the states
are of identical order. The Matignon’s stability theorem and its generalization, and the FO
Lyapunov method are two of the most used tools to design synchronization controllers
for commensurate FO systems [25,26]. Chaotic behavior not only exists in commensurate
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FO systems, but can also be verified in IFO systems. Indeed, we mention, the coexistence
of multiple attractors in IFO systems was addressed in [27,28]. Bifurcations in a delayed
fractional predator-prey system with incommensurate orders were discussed in [29]. Chaos
and coexisting attractors in a glucose-insulin regulatory IFO system were considered in [30].
Compared with commensurate FO chaotic systems, IFO chaotic systems have multiple
different orders and unveil more complex dynamics. Therefore, the synchronization of IFO
systems has received increasing attention in the last few years. For example, the problem
of generalized function projective synchronization of nonlinear uncertain time-delay IFO
chaotic systems with input nonlinearities was studied in [31]. A fuzzy adaptive controller
for achieving an appropriate generalized projective synchronization of two IFO chaotic sys-
tems was proposed in [32]. An observer model free type for synchronization of IFO systems
was presented in [33]. A composite learning fuzzy control to synchronize two different un-
certain IFO time-varying delayed chaotic systems with unknown external disturbances and
mismatched parametric uncertainties via the Takagi-Sugeno fuzzy method was proposed
in [34]. Nevertheless, due to the lack of stability of IFO systems, the synchronization of IFO
chaotic systems is still in an early stage and has not been fully explored.

In this paper the synchronization of IFO chaotic systems based on linear feedback
control is addressed. The main result is the derivation of a simple and economical method
for assuring synchronization. To the best of authors knowledge, this control method has not
been applied to the problem at hand. The main contributions are: (1) synchronization of IFO
chaotic systems, including the irrational-order case is considered; (2) linear state feedback
control is used to achieve synchronization; (3) synchronization condition is established in
terms of linear matrix inequalities (LMIs).

The paper is organized as follows. Section 2 describes the problem and some lemmas
necessary for the method developed. Section 3 presents the main results and discusses the
most relevant details. Section 4 demonstrates the effectiveness of the novel control scheme
with two numerical examples. Finally, Section 5 outlines the main conclusions.

The following standard notations are used. The symbol I represents the identity
matrix with appropriate dimension, the superscript T stands for matrix transpose, the
function diag(·) corresponds to a diagonal matrix, the inequality X > 0 (<0) refers to
symmetric positive definite (negative definite) matrix, the symbol ⊗ is the Kronecker
product, the condition sym{X} = X + XT , Rp×q represents the real p × q matrix set,
expression Hp×q

+ denotes the real symmetric positive definite p× q matrix set, and⊕k
i=1xi =

diag{x1, x2, · · · xn}.

2. System Description and Preliminaries

In this section we introduce the problem and some necessary lemmas of fractional
calculus or FO systems.

We consider the following IFO chaotic system described by

Dᾱx = Ax + f (x), (1)

where Dᾱx := Dᾱx(t) = [Dα1 x1(t), Dα2 x2(t), · · · , Dαn xn(t)]T , αi being positive real non-
integer numbers. The Caputo derivative of order α of a function xi(t) is Dαxi(t) =

1
Γ(n−α)

∫ t
t0
(t− τ)n−α−1x(n)i (τ)dτ, where k− 1 < α < k ∈ Z+, Γ(·) denotes the Gamma func-

tion, Γ(s) =
∫ ∞

0 ts−1e−tdt, xi(t) ∈ R, x(t) = (x1, x2, · · · , xn)T ∈ Rn is the n-dimensional
state vector, A ∈ Rn×n stands for the linear part of the system, f : Rn → Rn represents
the nonlinear part, satisfying | fi(x)− fi(y)| ≤ ∑n

j=1 Lij|xj − yj|, i = 1, 2, · · · , n, Lij > 0. The
system (1) is considered as a drive system. The slave system is given by

Dᾱy = Ay + f (y) + u(t), (2)

where y(t) ∈ Rn is the slave state vector, while u(t) is the controller to be designed later.
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The synchronization error is defined as the difference between the states of the master
and the slave systems

e = y− x. (3)

It follows from (1)–(3) that the error dynamics can be written in the following form

Dᾱe = Ae + f (y)− f (x) + u(t). (4)

Our aim is to design a suitable feedback control

u(t) = Ke, (5)

where K = diag(k1, k2, · · · , kn), such that the following error dynamical system

Dᾱe = (A + K)e + f (y)− f (x), (6)

or

Dαi ei =
n

∑
j=1

aijej + kiei + fi(y)− fi(x), i = 1, 2, · · · , n (7)

is asymptotically stable, which implies that the trajectory of the slave IFO chaotic system (2),
with initial condition y(0), can asymptotically approach the drive system (1), with initial
condition x(0)

lim
t→∞
‖e‖ = lim

t→∞
‖x− y‖ = 0. (8)

To this end, the following lemmas and assumption need to be introduced.
Define V(t, x(t)) = ∑n

i=1 Vi(t, xi(t)), W(t, x(t)) = ∑n
i=1 Wi(t, xi(t)). Consider the

following a set of FO inequalities and equations:

Dαi Vi(t, xi(t)) ≤ g(V1(t, x1(t)), · · · , Vn(t, xn(t))), (9)

where g(·) ∈ R and Vi(t, xi(t)) : [0, ∞)× R→ [0, ∞) are continuously differentiable functions

Dαi Wi(t, xi(t)) = g(t, W1(x1(t)), · · · , Wn(t, xn(t))), (10)

where Wi(t, xi(t)) : [0, ∞)× R→ [0, ∞) is assumed to be continuously differentiable functions.
We call Expressions (9) and (10) as the compared and the comparison systems, respec-

tively. Therefore, by employing the following comparison principle, we can discuss the
asymptotic stability of V(t, x(t)) using the asymptotic behavior of W(t, x(t)).

Lemma 1 ([35]). Consider the following FO differential inequalities with initial conditions 0 ≤
Vi(0, xi(0)) ≤Wi(0, yi(0)), i = 1, 2, · · · , n

Dα1 V1(t, x1(t)) ≤ Dα1W1(t, y1(t)),

Dα2 V2(t, x2(t)) ≤ Dα2W2(t, y2(t)),
...

Dαn Vn(t, xn(t)) ≤ Dαn Wn(t, yn(t)).

If previous inequalities hold, then the following inequalities hold:

Vi(t, xi(t)) ≤ Wi(t, yi(t)), ∀t > 0, i = 1, 2, · · · , n,

V(t, x(t)) ≤ W(t, y(t)), ∀t > 0,

where V and W : [0, ∞)× Rn → [0, ∞) are continuously differentiable functions.
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Remark 1 ([35]). The proof of Lemma 3.1 can also be obtained by the approach of the proof
of fractional comparison principle [26]. When Vi(t, xi(t)) = V(t), Wi(t, xi(t)) = W(t) and
V(0) = W(0), then Lemma 3.1 reduces to the fractional comparison principle [26].

Lemma 2 ([36]). The FO multi-order system Dᾱx(t) = A0x(t) is stable if there exist symmetric
positive definite matrices Pi ∈ Hti×ti

+ , i = 1, 2, · · · , k and a matrix H ∈ Rn×n, such that:

M + sym
{([

In
−A0

]
⊗ I2

)
(H ⊗ I2)(

[
In In

]
⊗ I2)

}
< 0,

where

M =

[
02n×2n ⊕k

i=1(Pi ⊗ Rαi )
⊕k

i=1(Pi ⊗ Rαi ) 02n×2n

]
Rα =

[
sin( απ

2 ) cos( απ
2 )

− cos( απ
2 ) sin( απ

2 )

]
.

Lemma 3 ([36]). The FO multi-order system Dᾱx(t) = A0x(t) + B0u(t) is stabilizable under
the state feedback controller u(t) = Kx(t) if there exist symmetric positive definite matrices
Pi ∈ Hti×ti

+ , i = 1, 2, · · · , k, the matrices H ∈ Rn×n and Q ∈ Rp×n such that:

M + sym
{([

In
−A0

]
⊗ I2

)
(H ⊗ I2)(

[
In In

]
⊗ I2)

}
+ sym

{([
0n×p
−B0

]
⊗ I2

)
(Q⊗ I2)(

[
In In

]
⊗ I2)

}
< 0.

Moreover, the controller feedback gain is given by K = QH−1.

Lemma 4 ([37]). Let x(t) ∈ Rn be a differentiable vector-value function. Then, for any time
instant t ≥ t0

Dα(xT(t)Px(t)) ≤ (xT(t)P)Dαx(t) + (Dαx(t))T Px(t),

where P > 0 and α ∈ (0, 1).

3. Main Results

Theorem 1. If there exist matrices Pi ∈ Hti×ti
+ , i = 1, 2, · · · , k, and diagonal matrices H ∈ Hn×n

and Q ∈ Hn×n such that

M+ sym
{([

In
−Ã

]
⊗ I2

)
(H ⊗ I2)(

[
In In

]
⊗ I2)

}
+ sym

{([
0n×n
−B

]
⊗ I2

)
(Q⊗ I2)(

[
In In

]
⊗ I2)

}
< 0, (11)

where Ã = (ãij)n×n, ãii = 2aii + 2Lii + ∑n
j=1,i 6=j(|aij| + Lij), ãij = ∑n

j=1(|aij| + Lij)(i =

1, 2, · · · , n, i 6= j), and B = 2I, then the drive system (1) synchronizes the corresponding response
system (2). Moreover, the controller feedback gain is given by K = QH−1.

Proof. Select the auxiliary function:

V(t) =
n

∑
i=1

Vi(t) =
n

∑
i=1

e2
i (t).

Using Lemma 4 and calculating the αi-order derivative on Vi, we obtain
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Dα1 V1(t) ≤ 2e1(t)Dα1 e1(t)

= 2e1(t)
( n

∑
j=1

a1jej + k1e1 + f1(y)− f1(x)
)

≤
(
2a11 + 2L11 +

n

∑
j=2

(|a1j|+ L1j) + 2k1
)
e2

1

+
n

∑
j=2

(|a1j|+ L1j
)
e2

j

=
(
2a11 + 2L11 +

n

∑
j=2

(|a1j|+ L1j) + 2k1
)
V1(t)

+
n

∑
j=2

(|a1j|+ L1j)Vj(t),

Dα2 V2(t) ≤ 2e2(t)Dα2 e2(t)

= 2e2(t)
( n

∑
j=1

a2jej + k2e2 + f2(y)− f2(x)
)

≤
(
2a22 + 2L22 +

n

∑
j=1,j 6=2

(|a2j|+ L2j) + 2k2
)
e2

2

+
n

∑
j=1,j 6=2

(|a2j|+ L2j)e2
j

=
(
2a22 + 2L22 +

n

∑
j=1,j 6=2

(|a2j|+ L2j) + 2k2
)
V2(t)

+
n

∑
j=1,j 6=2

(|a2j|+ L2j)Vj(t),

...

Dαn Vn(t) ≤ 2en(t)Dαn en(t)

= 2en(t)
( n

∑
j=1

anjej + knen + fn(y)− fn(x)
)

≤
(
2ann + 2Lnn +

n−1

∑
j=1

(|anj|+ Lnj) + 2kn
)
e2

n

+
n−1

∑
j=1

(|anj|+ Lnj)e2
j

=
(
2ann + 2Lnn +

n−1

∑
j=1

(|anj|+ Lnj + 2kn)
)
Vn(t)

+
n−1

∑
j=1

(|anj|+ Lnj)Vj(t). (12)

From (12), we can construct the corresponding comparative system,
Dα1W1(t)
Dα2W2(t)

...
Dαn Wn(t)

 =


ā11 ā12 · · · ā1n
ā21 ā22 · · · ā2n
...

...
. . .

...
ān1 ān1 · · · ā3n




W1(t)
W2(t)

...
Wn(t)

, (13)
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where

āii = 2aii + 2Lii +
n

∑
j=1,i 6=j

(|aij|+ Lij) + 2ki,

āij =
n

∑
j=1

(|aij|+ Lij)(i = 1, 2, · · · , n, i 6= j).

System (13) can be rewritten as

DαW(t) = ÃW(t) + BK̄W(t) = ÃW(t) + Bu(t), (14)

where W(t) = (W1(t), W2(t), · · · , Wn(t))T , Ã = (ãij)n×n, ãii = āii − 2ki, and ãij = āij(i =
1, 2, · · · , n, i 6= j). Compared (14) with Dᾱx(t) = A0x(t) + B0u(t), let us denote Ã as A0,
and B = diag(2, 2, · · · , 2) as B0 in Lemma 3. It follows from Lemma 3 that the controlled
system (14) with u = QH−1W(t) is asymptotically stable if the appropriate condition is
satisfied, meaning W(t)→ 0. Based on the comparison principle of FO systems with multi-
order, we have V(t) ≤W(t) and V(t)→ 0. In view of V(t) = ∑n

i=1 Vi(t) = ∑n
i=1 e2

i (t), one
has ei(t)→ 0. Therefore, the synchronization error system (8) is also stable. This is ending
the proof.

Remark 2. Compared to existing results [12–24], herein the fractional derivative orders of every
state are assumed non-identical, which makes the synchronization control design more challenging.
To cope with non-identical fractional derivative orders, the comparison principle of fractional systems
with multi-order is used adopted.

Remark 3. Our controller is very simple and easy to implement. Moreover, the proposed method is
still valid for the synchronization of IFO systems with irrational order, which a very limited number
of papers have been concern on.

4. Applications

Two illustrative examples are presented. The synchronization of the IFO Genesio-Tesi
system and the IFO Hopfield neural chaotic network, to demonstrate the effectiveness of
the proposed control scheme.

Example 1. The IFO Genesio-Tesi chaotic system is described by
Dα1 x1 = x2,
Dα2 x2 = x3,
Dα3 x3 = −ax1 − bx2 − cx3 + mx2

1,
(15)

where a = 6, b = 2.92, c = 1.2, m = 1, α1 = 0.93, α2 = 0.94 and α3 = 0.95. A chaotic attractor
is observed as shown in Figure 1. Based on the boundedness of chaotic systems and the phase space
diagram, one can observe L31 = 6. Let the system (15) be the master, and the slave system be
given by 

Dα1 y1 = y2 + u1,
Dα2 y2 = y3 + u2,
Dα3 y3 = −ay1 − by2 − cy3 + my2

1 + u3.
(16)

Let the state errors be e1 = y1 − x1; e2 = y2 − x2; e3 = y3 − x3, and design ui = kiei,
i = 1, 2, 3. Then the error dynamics is

Dα1 e1 = e2 + k1e1,
Dα2 e2 = e3 + k2e2,
Dα3 e3 = −ae1 − be2 − ce3 + my2

1 −mx2
1 + k3e3.
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By a calculation, one can get

Ã =

 1 0 0
0 1 0

11 2.92 12.52

.

Using the LMI toolbox provided by Matlab, a feasible solution of a LMI condition (11) is
obtained as follows:

H =

−0.0264 0 0
0 −0.3269 0
0 0 −0.3284

, Q =

0.4241 0 0
0 1.1348 0
0 0 1.1326


Synchronization state-feedback gain is given by

K = HQ−1 =

−37.4819 0 0
0 −3.3553 0
0 0 −6.6823

.

In this simulation, the initial states of the drive and response systems are x(0) = (0.1, 0.2, 0.3)T

and y(0) = (0.4, 0.5, 0.6)T . The drive and response systems (15) and (16) are asymptotically syn-
chronized as shown in Figure 2, synchronization error is depicted in Figure 3.

(a)
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Figure 1. Phase portraits of: (a) Chaotic attractors on x1 − x2 − x3; (b) Projection of chaotic attractors
on x1 − x3.
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Figure 2. State trajectories of drive and slave systems in Example 1: (a) x1 v.s. y1, (b) x2 v.s. y2, (c) x3

v.s. y3.
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Figure 3. Synchronization error of drive and slave systems in Example 1: (a) x1 − y1, (b) x2 − y2,
(c) x3 − y3.

Example 2. The drive system is the IFO Hopfield neural chaotic network with there neurons [38]:
Dα1 x1(t) = −x1(t) + 2 tanh(x1(t))− 1.2 tanh(x2(t)),
Dα2 x2(t) = −x2(t) + 2 tanh(x1(t)) + 1.71 tanh(x2(t)) + 1.15 tanh(x3(t)),
Dα3 x3(t) = −x3(t)− 4.75 tanh(x1(t)) + 1.1 tanh(x3(t)).

(17)

The slave system is:
Dα1 x1(t) = −x1(t) + 2 tanh(x1(t))− 1.2 tanh(x2(t)) + u1,
Dα2 x2(t) = −x2(t) + 2 tanh(x1(t)) + 1.71 tanh(x2(t)) + 1.15 tanh(x3(t)) + u2,
Dα3 x3(t) = −x3(t)− 4.75 tanh(x1(t)) + 1.1 tanh(x3(t)) + u3.

(18)

From (17), one can obtain L11 = L21 = 2, L12 = 1.2, L13 = 0, L22 = 1.71, L23 =
1.15, L31 = 4.75, L32 = 0 and L33 = 1.1. As shown in Figure 4, the IFO Hopfield neural
network (18) possesses chaotic behavior when α1 = 0.96, α2 = 0.97, and α3 = 0.98. It
follows from (17) and (18) that one can obtain
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Ã =

 3.2 1.2 0
2.1 4.57 1.15
4.75 0 4.95

.

Using the Matlab LMI toolbox, it is straightforward to find that the linear matrix
inequality (11) in Theorem 1 is feasible, which implies that the error system is asymptotically
stable, and a feasible solution of an LMI condition (11) is described as:

H =

−0.0259 0 0
0 −0.3364 0
0 0 −1.3999

, Q =

0.9706 0 0
0 1.1286 0
0 0 9.3542

,

with the synchronization state-feedback gain given by

K = HQ−1 =

−16.0568 0 0
0 −3.4715 0
0 0 −3.4483

.

According to Theorem 1, the synchronization between (17) and (18) can be achieved.
In the numerical simulations, the initial states of the drive and response systems are taken
as x(0) = (3, 1, 2)T and y(0) = (4, 2, 3)T , respectively. Figure 5 shows the state synchroniza-
tion trajectory of the drive and response systems. Figure 6 depicts the synchronization error.
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Figure 4. Phase portraits of: (a) Projection of chaotic attractors on x1 − x2; (b) Chaotic attractors on
x1 − x2 − x3.
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Figure 5. State trajectories of the drive and slave systems in Example 2: (a) x1 v.s. y1, (b) x2 v.s. y2,
(c) x3 v.s. y3.
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Figure 6. Synchronization error of the drive and slave systems in Example 2: (a) x1 − y1, (b) x2 − y2,
(c) x3 − y3.

5. Conclusions

This paper investigated the synchronization of IFO chaotic systems. Based on the
LMI approach and comparison principle of fractional systems with multi-order, a linear
feedback control design method was proposed. The method tends to be simple, economical
and easy to realize, and being also valid for IFO chaotic systems with irrational order.
The feasibility and effectiveness of the approach was verified by means of two numerical
examples. The synchronization of fractional variable order systems will become a relevant
topic in the near future, since it was shown that chaotic behavior can also exist in such kind
of systems. This will be addressed in our further research.
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