Stability Analysis of the Nabla Distributed-Order Nonlinear Systems
Abstract
:1. Introduction
2. Preliminaries
3. Stability Analysis
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations: An introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Toledo-Hernandez, R.; Rico-Ramirez, V.; Iglesias-Silva, G.A.; Diwekar, U.M. A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions. Chem. Eng. Sci. 2014, 117, 217–228. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Shi, G.D. Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 2011, 62, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Gritsenko, D.; Paoli, R. Theoretical analysis of fractional viscoelastic flow in circular pipes: General solutions. Appl. Sci. 2020, 10, 9093. [Google Scholar] [CrossRef]
- Drapaca, C.S.; Sivaloganathan, S. A fractional model of continuum mechanics. J. Elast. 2012, 107, 105–123. [Google Scholar] [CrossRef]
- Sumelka, W. Thermoelasticity in the framework of the fractional continuum mechanics. J. Therm. Stresses. 2014, 37, 678–706. [Google Scholar] [CrossRef]
- Saad, K.M.; Gómez-Aguilar, J.F. Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel. Physica A. 2018, 509, 703–716. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Zhang, X.F.; Chen, Y.Q. Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: The 0<α<1 case. ISA Trans. 2018, 82, 42–50. [Google Scholar]
- Li, R.C.; Zhang, X.F. Adaptive sliding mode observer design for a class of T-S fuzzy descriptor fractional order systems. IEEE Trans. Fuzzy Syst. 2020, 28, 1951–1959. [Google Scholar] [CrossRef]
- Zhang, X.F.; Lin, C.; Chen, Y.Q.; Boutat, D. A unified framework of stability theorems for LTI fractional order systems with 0<α<2. IEEE Trans. Circuit Syst. II-Express 2020, 67, 3237–3241. [Google Scholar]
- Zhang, X.F.; Huang, W.K. Adaptive neural network sliding mode control for nonlinear singular fractional order systems with mismatched uncertainties. Fractal Fract. 2020, 4, 50. [Google Scholar] [CrossRef]
- Wu, G.C.; Deng, Z.G.; Baleanu, D.; Zeng, D.Q. New variable-order fractional chaotic systems for fast image encryption. Chaos 2019, 29, 083103. [Google Scholar] [CrossRef]
- Padron, J.P.; Perez, J.P.; Pérez Díaz, J.J.; Martinez Huerta, A. Time-delay synchronization and anti-synchronization of variable-order fractional discrete-time Chen–Rossler chaotic systems using variable-order fractional discrete-time PID control. Mathematics 2021, 9, 2149. [Google Scholar] [CrossRef]
- Caputo, M. Elasticitá e Dissipazione; Zanichelli: Bologna, Italy, 1969. [Google Scholar]
- Caputo, M. Mean fractional-order-derivatives differential equations and filters. Ann. Univ. Ferrara 1995, 41, 73–84. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. The kernel of the distributed order fractional derivatives with an application to complex materials. Fractal Fract. 2017, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G. Towards multifractional calculus. Front. Phys. 2018, 6, 58. [Google Scholar] [CrossRef]
- Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29, 57–98. [Google Scholar] [CrossRef]
- Ding, W.; Patnaik, S.; Sidhardh, S.; Semperlotti, F. Applications of distributed-order fractional operators: A review. Entropy 2021, 23, 110. [Google Scholar] [CrossRef]
- Hartley, T.T.; Lorenzo, C.F. Fractional-order system identification based on continuous order-distributions. Signal Process. 2003, 83, 2287–2300. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Budincevic, M.; Pilipovic, S. On a fractional distributed-order oscillator. J. Phys. A Math. Gen. 2005, 38, 6703. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Gonchar, V.Y.; Gorenflo, R.; Korabel, N.; Sokolov, I.M. Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Phys. Rev. E. 2008, 78, 021111. [Google Scholar] [CrossRef]
- Chechkin, A.; Sokolov, I.M.; Klafter, J. Natural and Modified Forms of Distributed-Order Fractional Diffusion Equations. In Fractional Dynamics: Recent Advances; World Scientific Publishing Co., Ltd.: Singapore, 2012; pp. 107–127. [Google Scholar]
- Al-Refai, M.; Luchko, Y. Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications. Analysis 2016, 36, 123–133. [Google Scholar] [CrossRef]
- Fernández-Anaya, G.; Flores-Godoy, J.J.; Lugo-Peñaloza, A.F.; Muñoz-Vega, R. Stabilization and passification of distributed-order fractional linear systems using methods of preservation. J. Frankl. Inst. 2013, 350, 2881–2900. [Google Scholar] [CrossRef]
- Mahmoud, G.M.; Farghaly, A.A.; Abed-Elhameed, T.M.; Aly, S.A.; Arafa, A.A. Dynamics of distributed-order hyperchaotic complex van der Pol oscillators and their synchronization and control. Eur. Phys. J. Plus. 2020, 135, 1–16. [Google Scholar] [CrossRef]
- Al Themairi, A.; Farghaly, A. The dynamics behavior of coupled generalized van der pol oscillator with distributed order. Math. Probl. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Abdelkawy, M.A.; Lopes, A.M.; Zaky, M. Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction–diffusion equations. Comput. Appl. Math. 2019, 38, 1–21. [Google Scholar] [CrossRef]
- Abdeljawad, T. On delta and nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Wei, Y.H.; Gao, Q.; Cheng, S.S.; Wong, Y. Time-domain response of nabla discrete fractional order systems. arXiv 2018, arXiv:1812.11370. [Google Scholar]
- Wei, Y.H.; Chen, Y.Q.; Wang, J.C.; Wang, Y. Analysis and description of the infinite-dimensional nature for nabla discrete fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2019, 72, 472–492. [Google Scholar] [CrossRef]
- Cabada, A.; Dimitrov, N.D.; Jonnalagadda, J.M. Non-trivial solutions of non-autonomous nabla fractional difference boundary value problems. Symmetry 2021, 13, 1101. [Google Scholar] [CrossRef]
- Wei, Y.H.; Chen, Y.Q.; Liu, T.Y.; Wang, Y. Lyapunov functions for nabla discrete fractional order systems. ISA Trans. 2019, 88, 82–90. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.Q.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.D.; Wei, Y.H.; Chen, Y.Q.; Wang, Y. Mittag–Leffler stability of nabla discrete fractional-order dynamic systems. Nonlinear Dyn. 2020, 101, 407–417. [Google Scholar] [CrossRef]
- Fernández-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E.G. Asymptotic stability of distributed order nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 541–549. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhu, T.; Chen, Y. Stability Analysis of the Nabla Distributed-Order Nonlinear Systems. Fractal Fract. 2022, 6, 228. https://doi.org/10.3390/fractalfract6050228
Wang C, Zhu T, Chen Y. Stability Analysis of the Nabla Distributed-Order Nonlinear Systems. Fractal and Fractional. 2022; 6(5):228. https://doi.org/10.3390/fractalfract6050228
Chicago/Turabian StyleWang, Cuihong, Tianfen Zhu, and Yangquan Chen. 2022. "Stability Analysis of the Nabla Distributed-Order Nonlinear Systems" Fractal and Fractional 6, no. 5: 228. https://doi.org/10.3390/fractalfract6050228
APA StyleWang, C., Zhu, T., & Chen, Y. (2022). Stability Analysis of the Nabla Distributed-Order Nonlinear Systems. Fractal and Fractional, 6(5), 228. https://doi.org/10.3390/fractalfract6050228