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1. Introduction

Fractional calculus [1] is a generalization of integer-order calculus, which includes inte-
gration and differentiation of non-integer order. It is well known that the dynamic properties
of more and more real systems can be characterized by fractional differential equations,
which is due to the memory and hereditary properties of fractional calculus. Therefore, frac-
tional calculus has been widely used in biology [2], economy [3], physics [4–7] and other
fields [8–12].

At first, the study of fractional calculus mainly focused on the fractional operator with
a constant and single-valued order. Although a constant value fractional order system
can better and more accurately describe the actual physical system than an integer-order
system, the constant and single-valued nature of the order still limits its ability to accurately
capture certain complex phenomena whose underlying physics could either evolve in time
or emerge as the result of the interplay of multiple orders. In relatively recent years, many
scholars began to pay attention to the variable-order fractional operators [13,14] and the
distribution-order operators [15,16]. The variable-order means that the derivative order
can be a function of either dependent (e.g., state variables of the system) or independent
(e.g., space or time) variables and can change value following the evolution of the system.
The distributed-order definition of the operator allows considering an accumulation of
orders and accounting for, as an example, physical phenomena such as memory effects in
composite materials [17] or multi-scale effects [18]. A typical example that illustrates the
capabilities of this class of operators is the mechanical behavior of viscoelastic materials
having spatially varying properties [19,20]. Therefore distributed-order fractional calculus
is a natural generalization of fractional calculus, which provides a tool to model more
complex systems since it both retains the non-local and memory properties of the constant
and single-valued order fractional calculus, and allows the case with multiple coexisting
orders. Therefore, distributed-order systems can be applied in viscoelasticity, transportation
process, robots and so on [21–29].
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Discrete fractional calculus has also attracted great interest of researchers since most
practical work in terms of discrete time series. There are many kinds of definitions for
discrete fractional calculus, such as delta operator [30], nabla operator [31], etc. Among
them, nabla discrete fractional calculus is especially noteworthy. The time–domain re-
sponse and the infinite-dimensional nature of nabla discrete fractional-order systems are
investigated in [32] and in [33,34], respectively. Some Lyapunov inequalities about nabla
discrete fractional difference are presented in [35]. However, to our best knowledge, there
are few results related to discrete distributed-order systems.

Stability analysis of dynamic systems is the most important and basic problem. The
Lyapunov direct method is a powerful tool for analyzing the stability of a system since it
does not need to solve explicit solutions of differential systems. Since then, many scholars
have continuously improved and promoted the Lyapunov direct method. Li et al. [36]
propose the fractional Lyapunov direct method to study the Mittag–Leffler stability of
fractional-order nonlinear systems. Analogously, the definition of discrete Mittag–Leffler
stability is given and the Lyapunov direct method is extended to study nabla discrete
fractional-order systems in [37]. Recently, Fernández-Anaya et al. [38] generalize some
properties of the Caputo fractional derivative to distributed-order cases and establish
some stability conditions for such systems based on the distributed-order Lyapunov direct
method. It may be noted that there are few references about the stability analysis of nabla
discrete distributed-order nonlinear systems.

Motivated by the previous discussions, this paper mainly investigates the stability
of the nabla discrete distributed-order nonlinear dynamic systems. We will establish
a stability condition for the nabla discrete distributed-order nonlinear systems based
on Lyapunov direct method and comparison principle. Additionally, in virtue of some
important inequalities, we will propose a simpler stability criterion.

The rest of the paper is organized as follows. In Section 2, some basic definitions and
preliminary knowledge are introduced. In Section 3, we propose some stability criteria for
the nabla discrete distributed-order nonlinear systems. Moreover, some properties of the
nabla distributed-order operators are derived. In Section 4, we illustrate the effectiveness
of the results proposed in this paper via two examples. Finally, the main conclusions are
drawn in Section 5.

Notations: R denotes the set of real numbers, Rn denotes the n-dimensional Euclidean
space and Z+ denotes the set of positive integers. Given a real number a, we define set
Na+1 as Na+1 := {a + 1, a + 2, a + 3, ...}. Function Γ(z) =

∫ +∞
0 e−ttz−1dt is the Gamma

function.

2. Preliminaries

In this section, we firstly introduce some definitions, corresponding properties and
lemmas on nabla fractional calculus.

Definition 1 ([31]). The n-th order nabla backward difference of a function f : Na+1−n → R is
defined by

∇n f (k) =
n

∑
j=0

(−1)j
(

n
j

)
f (k− j),

where n ∈ Z+, k ∈ Na+1, a ∈ R and (n
j) =

Γ(n+1)
Γ(j+1)Γ(n−j+1) .

Definition 2 ([31]). The α-th order nabla fractional sum of a function f : Na+1 → R is defined by

a∇−α
k f (k) =

k−a−1

∑
j=0

(−1)j
(
−α

j

)
f (k− j),

where k ∈ Na+1, a ∈ R and α ∈ (n− 1, n), n ∈ Z+, and (−α
j ) = (−1)j Γ(α+j)

Γ(j+1)Γ(α) .
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Definition 3 ([31]). The nabla Caputo and Riemann–Liouville fractional differences of a function
f : Na+1−n → R are defined, respectively, by

C
a∇α

k f (k) = a∇−(n−α)
k ∇n f (k) = a∇α−n

k ∇n f (k),

and

RL
a ∇α

k f (k) = ∇n
a∇−(n−α)

k f (k) = ∇n
a∇α−n

k f (k),

where k ∈ Na+1, a ∈ R and α ∈ (n− 1, n), n ∈ Z+.

In this paper, we mainly adopt the Caputo definition method.

Definition 4. The nabla distributed-order difference of a function f : Na+1−n → R is defined by

C
a∇

c(α)
k f (k) =

∫ n

n−1
c(α)C

a∇α
k f (k)dα,

where c(α) denotes the weight function, c(α) ≥ 0 and α ∈ (n− 1, n), n ∈ Z+.

Based on Definition 4, the nabla distributed-order difference of a constant function
can be easily obtained as follows.

Property 1. For 0 < α < 1, the nabla distributed-order difference of a constant function f (k) =
d (k ∈ Na+1−n) is

C
a∇

c(α)
k d = 0.

Proof. Using the definition of the nabla Caputo fractional difference and since d is a
constant, one has

C
a∇α

k d = a∇−(1−α)
k ∇1d = a∇−(1−α)

k 0.

Then, according to Definition 4, it is easily known that the nabla distributed-order
difference of a constant function is also 0.

Like Laplace transform in the standard calculus, the N -transform is a powerful tool to
analyze properties of the nabla fractional calculus, so the definition and key properties on
N -transform of a function are given as follows.

Definition 5 ([31]). The N -transform of a function f : Na+1 → R is defined by

Na{ f }(s) =
+∞

∑
k=1

(1− s)k−1 f (k + a).

Lemma 1 ([33]). Let α ∈ (n− 1, n) and n ∈ Z+. If theN -transform of a function f : Na+1−n →
R converges for |s− 1| < ρ for some ρ > 0, then

Na

{
C
a∇α

k f
}
(s) = sαNa{ f }(s)−

n−1

∑
i=0

sα−i−1∇i f (k)|k=a,

for |s− 1| < ρ.
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Based on the definition of the nabla distributed-order difference and Lemma 1, we can
deduce that

Na

{
C
a∇

c(α)
k f

}
(s) =

∫ n

n−1
c(α)[sαNa{ f }(s)−

n−1

∑
i=0

sα−i−1∇i f (k)|k=a]dα

=
∫ n

n−1
c(α)sαNa{ f }(s)dα−

∫ n

n−1
c(α)[

n−1

∑
i=0

sα−i−1∇i f (k)|k=a]dα

= C(s)F(s)−
n−1

∑
i=0

1
si+1 C(s)∇i f (k)|k=a],

where C(s) =
∫ n

n−1 c(α)sα dα and F(s) = Na{ f }(s).

Lemma 2 ([32]). For the discrete Mittag–Leffler function defined by Fα,β(λ, k, a) =
+∞
∑

j=0

λj

Γ(jα+β)

(k− a)jα+β−1, its N -transform is

Na{Fα,β(λ, k, a)}(s) = sα−β

sα − λ
,

for |s− 1| < 1 and |sα| > |λ|, where (k− a)jα+β−1 = Γ(k−a+jα+β−1)
Γ(k−a) .

The Convolution Theorem builds the bridge between the time domain and the fre-
quency domain, In the following, we will give the Convolution Theorem on nabla frac-
tional calculus.

Lemma 3 ([31]). (Convolution Theorem) Let functions f , g : Na+1 → R. Then Na{ f ∗
g}(s) = Na{ f }(s)Na{g}(s), where ∗ denotes the convolution operation, i.e.,

f ∗ g =
k

∑
j=a+1

f (k− j + a + 1)g(j).

Next, we provide the Final Value Theorem on theN -transform, which plays a key role
in the stability analysis.

Lemma 4 ([32]). (Final Value Theorem) Let a function f : Na+1 → R and a ∈ R. If F(s) =
Na{ f }(s) and the poles of sF(s) satisfy |s− 1| > 1, then

lim
k→+∞

f (k) = lim
s→0

sF(s).

3. Stability Analysis

Consider the following nabla discrete distributed-order nonlinear systems

C
a∇

c(α)
k x(k) = f (x(k), k), (1)

where α ∈ (0, 1), k ∈ Na+1, x(k) ∈ Ω, where Ω ⊂ Rn is a domain containing the origin,
f : Ω×Na+1 → Rn and x(a) is initial condition.

Throughout this paper, we assumed that
∫ 1

0 c(α)sα dα 6= 0 and the solution of sys-
tem (1) is existent and unique. Accordingly, the form of the unique solution of system (1) is
given as follows.
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Theorem 1. Consider the nabla discrete distributed-order nonlinear system (1), its unique solution
has the following form:

x(k) = x(a) + f ∗ N−1
a

{
1∫ 1

0 c(α)sα dα

}
.

Proof. Taking the N -transform on both sides of Equation (1) yields

C(s)X(s)− 1
s

C(s)x(a) = F(s),

then we have

X(s) =
1
s

x(a) +
F(s)
C(s)

. (2)

Taking the inverse N -transform to Equation (2) yields

x(k) = u(k− a− 1)x(a) + f ∗ N−1
a

{
1

C(s)

}
.

Due to the discrete-time unit, step function is

u(n) =
{

1 n ≥ 0,
0 n < 0,

and k ∈ Na+1, then u(k− a− 1) = 1.
Therefore,

x(k) = x(a) + f ∗ N−1
a

{
1∫ 1

0 c(α)sα dα

}
.

Before discussing the stability problem, we need to present the definition of the
equilibrium point of the nabla discrete distributed-order nonlinear system.

Definition 6. For the nabla discrete distributed-order nonlinear system (1), the constant vector x̄
is called its equilibrium point if f (x̄, k) = 0.

Remark 1. For convenience, we often assume that the equilibrium point is at the origin, i.e., x̄ = 0.
This is no loss of generality, since if the equilibrium point is x̄ 6= 0, we can take the change of
variable y(k) = x(k)− x̄, then

C
a∇

c(α)
k y(k) = C

a∇
c(α)
k (x(k)− x̄) = f (x(k), k) = f (y(k) + x̄, k) = g(y(k), k),

where g(0, k) = 0 and the equilibrium point of the system about the new variable y(k) is at the
origin.

In the following, we will investigate the stability of the nabla discrete distributed-order
nonlinear system (1), the relevant stability definitions are firstly introduced.

Definition 7. Let x̄ = 0 is an equilibrium point of the nabla discrete distributed-order nonlinear
system (1) and k = a is the initial time, the equilibrium point x̄ is stable if for every ε > 0, there
exists δ > 0 such that ‖x(k)‖ < ε holds for all k ≥ a (k ∈ Na+1), when ‖x(a)‖ < δ.

Definition 8. The equilibrium point x̄ = 0 of the nabla discrete distributed-order nonlinear
system (1) is asymptotically stable if it is stable and δ can be chosen such that if ‖x(a)‖ < δ, then

lim
k→+∞

‖x(k)‖ = 0.
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Remark 2. The system stability we stated in the following refers to the stability of system at the
equilibrium point x̄ = 0.

The following Lemma extends the comparison principle for the nabla fractional differ-
ence in [37] to the nabla distributed-order case.

Lemma 5. (Nabla Distributed-order Comparison Principle) Let two functions x, y : Na →

R. If C
a∇

c(α)
k x(k) ≥ C

a∇
c(α)
k y(k), where 0 < α < 1, N−1

a

{
1

C(s)

}
≥ 0 (∀k ∈ Na+1), C(s) =∫ 1

0 c(α)sα dα and x(a) = y(a), then for any k ∈ Na+1, one has x(k) ≥ y(k).

Proof. Since C
a∇

c(α)
k x(k) ≥ C

a∇
c(α)
k y(k) (k ∈ Na+1), then there is a non-negative function

z(k) satisfying
C
a∇

c(α)
k x(k) = C

a∇
c(α)
k y(k) + z(k). (3)

Taking the N -transform on the both sides of Equation (3), then

C(s)X(s)− 1
s

C(s)x(a) = C(s)Y(s)− 1
s

C(s)y(a) + Z(s).

Since x(a) = y(a), then

X(s) = Y(s) +
Z(s)
C(s)

. (4)

Applying the inverse N -transform on both side of Equation (4) and using Lemma 3,
then we have

x(k) = y(k) + z ∗ N−1
a

{
1

C(s)

}
= y(k) + z ∗ g

= y(k) +
k

∑
j=a+1

z(k− j + a + 1)g(j),

where g , N−1
a

{
1

C(s)

}
.

For all k ∈ Na+1, since g(k) ≥ 0 and z(k) ≥ 0, then x(k) ≥ y(k).

Remark 3. It is worth nothing that if we choose a Dirac function as the distribution function, the
comparison principle on the nabla fractional difference can be obtained (see Lemma 3 in [37]).

It is well known that Lyapunov direct method is the most effective tool for analyzing
the stability of nonlinear systems. Therefore, in the following we will generalize Lyapunov
direct method to establish the stability conditions for the nabla discrete distributed-order
nonlinear system.

Theorem 2. Consider the nabla discrete distributed-order nonlinear system (1), suppose there
exists a Lyapunov function V(x(k), k): Ω×Na+1 → R such that

γ1‖x(k)‖b ≤ V(x(k), k) ≤ γ2‖x(k)‖bc, (5)

and

C
a∇

c(α)
k V(x(k), k) ≤ −γ3‖x(k)‖bc, (6)
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where α ∈ (0, 1), k ∈ Na+1 and b, c, γi > 0 (i = 1, 2, 3). If the roots of C(s) + γ3
γ2

=

0 satisfy |s − 1| > 1, N−1
a

{
1

(C(s) + γ3
γ2
)

}
≥ 0, C(s) =

∫ 1
0 c(α)sα dα, then this system is

asymptotically stable.

Proof. Given ε > 0, there must exist δ > 0 such that γ2δbc < γ1εb.
Based on the inequality (6), one has

C
a∇

c(α)
k V(x(k), k) ≤ 0.

Applying Property 1 and Lemma 5, we can obtain

V(x(k), k) ≤ V(x(a), a).

Therefore, when ‖x(a)‖ < δ, we get

γ1‖x(k)‖b ≤ V(x(k), k) ≤ V(x(a), a) ≤ γ2‖x(a)‖bc ≤ γ2δbc ≤ γ1εb,

and thus ‖x(k)‖ < ε, which implies the stability of system (1).
Based on inequalities (5) and (6), we have

C
a∇

c(α)
k V(x(k), k) ≤ −γ3

γ2
V(x(k), k),

then there exists a non-negative function z(k) such that

C
a∇

c(α)
k V(x(k), k) + z(k) = −γ3

γ2
V(x(k), k). (7)

Taking the N -transform on both sides of Equation (7) results in

C(s)V(s)− C(s)
s

V(a) + Z(s) = −γ3

γ2
V(s),

then, we can find that

V(s) =

{
C(s)V(a)

s(C(s) + γ3
γ2
)

}
−
{

Z(s)
(C(s) + γ3

γ2
)

}
. (8)

Applying the inverse N -transform to (8) gives

V(x(k), k) = N−1
a

{
C(s)V(a)

s(C(s) + γ3
γ2
)

}
−N−1

a

{
Z(s)

(C(s) + γ3
γ2
)

}
. (9)

The last term of Equation (9) can be rewritten as

N−1
a

{
Z(s)

(C(s) + γ3
γ2
)

}
= z ∗ N−1

a

{
1

(C(s) + γ3
γ2
)

}
= z ∗ g

=
k

∑
j=a+1

z(k− j + a + 1)g(j),

where g , N−1
a

{
1

(C(s) + γ3
γ2
)

}
.
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Considering that g ≥ 0 and z(k) ≥ 0, then

N−1
a

{
Z(s)

(C(s) + γ3
γ2
)

}
≥ 0.

Therefore, from Equation (9), we have

V(x(k), k) ≤ N−1
a

{
C(s)V(a)

s(C(s) + γ3
γ2
)

}
. (10)

Since we assume that the roots of C(s) + γ3
γ2

= 0 satisfy |s− 1| > 1, and according to
Lemma 4, we can deduce that

lim
k→+∞

N−1
a

{
C(s)V(a)

s(C(s) + γ3
γ2
)

}
= lim

s→0

{
C(s)V(a)
(C(s) + γ3

γ2
)

}
= 0.

Combining (10), we get

lim
k→+∞

V(x(k), k) ≤ lim
k→+∞

N−1
a

{
C(s)V(a)

s(C(s) + γ3
γ2
)

}
= 0.

It follows from (5) that
lim

k→+∞
γ1‖x(k)‖b ≤ 0

Since b > 0 and γ1 > 0, then lim
k→+∞

‖x(k)‖ = 0, which indicates that system (1) is

asymptotically stable.

Remark 4. Note that if we choose an appropriate Dirac function as the distribution function, then
we can get the asymptotic stability conditions of the nabla discrete fractional-order nonlinear systems
(see Theorem 2 in [37]).

An important inequality for stability analysis based on the Lyapunov method is stated
in following lemma, which will be generalized to the nabla distributed-order case.

Lemma 6 ([35]). The following inequality holds

C
a∇α

k x2(k) ≤ 2x(k)C
a∇α

k x(k),

for α ∈ (0, 1), k ∈ Na+1, x(k) ∈ R and a ∈ R.

Lemma 7. Let x : Na+1 → R. Then, the following inequality holds

C
a∇

c(α)
k x2(k) ≤ 2x(k)C

a∇
c(α)
k x(k),

where α ∈ (0, 1), k ∈ Na+1 and a ∈ R.

Proof. Based on Lemma 6, one obtains

C
a∇α

k x2(k) ≤ 2x(k)C
a∇α

k x(k).

Due to c(α) ≥ 0, then we have

c(α)C
a∇α

k x2(k) ≤ 2c(α)x(k)C
a∇α

k x(k). (11)
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Integrating both sides of the inequality (11) with respect to α from 0 to 1, we have∫ 1

0
c(α)C

a∇α
k x2(k)dα ≤ 2

∫ 1

0
c(α)x(k)C

a∇α
k x(k)dα.

This completes the proof.

Lemma 8. For x : Na+1 → Rn, Lemma 7 still holds, that is,

C
a∇

c(α)
k xT(k)x(k) ≤ 2xT(k)C

a∇
c(α)
k x(k), (12)

where α ∈ (0, 1).

Proof. By decomposing the inequality (12) into the sum of scalar products and applying
Lemma 7, the result is obvious.

Based on Lemmas 5 and 8 and Property 1, we will provide a simpler method to analyze
the stability of the nabla discrete distributed-order nonlinear system (1).

Theorem 3. Consider the nabla discrete distributed-order nonlinear system (1).

(i) If xT(k) f (x(k), k) ≤ 0 and N−1
a

{
1

C(s)

}
≥ 0, where C(s) =

∫ 1
0 c(α)sα dα, then system (1)

is stable.

(ii) Let ξ > 0, if xT(k) f (x(k), k) ≤ −ξ‖x(k)‖2, the roots of C(s) + ξ = 0 satisfy |s− 1| > 1,

N−1
a

{
1

(C(s) + ξ

}
≥ 0, then system (1) is asymptotically stable.

Proof. Choose the Lyapunov function

V(x(k), k) =
1
2

xT(k)x(k). (13)

(i) Using Lemma 8 to Equation (13) yields that

C
a∇

c(α)
k V(x(k), k) ≤ xT(k)C

a∇
c(α)
k x(k). (14)

Since xT(k) f (x(k), k) ≤ 0 and note that C
a∇

c(α)
k x(k) = f (x(k), k), then

C
a∇

c(α)
k V(x(k), k) ≤ xT(k) f (x(k), k) ≤ 0.

Based on Property 1 and Lemma 5, one has

V(x(k), k) ≤ V(x(a), a).

In terms of the definition of the function V(x(k), k), we obtain

xT(k)x(k) ≤ xT(a)x(a).

Given ε > 0 and choose δ = ε, then when ‖x(a)‖ < δ, we can deduce that ‖x(k)‖ < δ
for all k ∈ Na+1, which indicates ‖x(k)‖ < ε for all k ∈ Na+1, this means that system (1) is
stable.

(ii) If xT(k) f (x(k), k) ≤ −ξ‖x(k)‖2, then from the inequality (14), we have

C
a∇

c(α)
k V(x(k), k) ≤ −ξ‖x(k)‖2.
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Since the Lyapunov function

V(x(k), k) =
1
2

xT(k)x(k) =
1
2
‖x(k)‖2,

then
1
2
‖x(k)‖2 ≤ V(x(k), k) ≤ ‖x(k)‖2.

According to Theorem 2, the asymptotic stability of system (1) can be obtained.

4. Numerical Examples

Example 1. Consider the following nabla discrete distributed-order nonlinear system{
C
a∇

c(α)
k x1(k) = −x1(k)−x1(k)x2

2(k),
C
a∇

c(α)
k x2(k) = −x2(k)+x2

1(k)x2(k),
(15)

where α ∈ (0, 1) and c(α) = δ(α− 1
3 ).

Choosing the Lyapunov function V(x(k), k) = 1
2 (x2

1(k) + x2
2(k)), then we have

C
a∇

c(α)
k V(x(k), k) =

1
2

C
a∇

c(α)
k (x2

1(k) + x2
2(k))

≤ x1(k)C
a∇

c(α)
k x1(k) + x2(k)C

a∇
c(α)
k x2(k)

= −(x2
1(k) + x2

2(k))

= −‖x(k)‖2.

Due to 1
2‖x(k)‖2 ≤ V(x(k), k) ≤ ‖x(k)‖2, then one has γ1 = 1

2 , γ2 = 1, γ3 = 1. The
root of

C(s) +
γ3

γ2
= s

1
3 + 1 = 0

is s = −1, which satisfies |s− 1| > 1. It follows from Lemma 2 that

N−1
a

{
1

(C(s) + γ3
γ2
)

}
= N−1

a

{
1

s
1
3 + 1

}
= F 1

3 , 1
3
(−1, k, a).

Since F 1
3 , 1

3
(−1, k, a) ≥ 0, then N−1

a

{
1

(C(s) + γ3
γ2
)

}
≥ 0. From Theorem 2, we con-

clude that system (15) is asymptotically stable.

Example 2. Consider the following nabla discrete distributed-order nonlinear system{
C
a∇

c(α)
k x1(k) = −4(x1(k) + x2(k)h(x1(k), x2(k), k)),

C
a∇

c(α)
k x2(k) = −4(x2(k)− x1(k)h(x1(k), x2(k), k)),

(16)

where α ∈ (0, 1), c(α) = δ(α− 2
3 ) + 4δ(α− 1

3 ), and h(x1(k), x2(k), k) is a differentiable function.

Since

xT(k) f (x(k), k)

=
[
x1(k) x2(k)

][−4(x1(k) + x2(k)h(x1(k), x2(k), k))
−4(x2(k)− x1(k)h(x1(k), x2(k), k))

]
=− 4(x2

1(k) + x2
2(k)) = −4‖x(k)‖2,
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we can let ξ = 4 in Theorem 3.
Now, the distribution function c(α) = δ(α− 2

3 )+ 4δ(α− 1
3 ), then C(s) =

∫ 1
0 c(α)sα dα =

s
2
3 + 4s

1
3 , the roots of

C(s) + ξ = C(s) + 4 = s
2
3 + 4s

1
3 + 4 = (s

1
3 + 2)2 = 0

are s1 = −8, s2 = −8, which satisfies that |s− 1| > 1.
It follows from Lemma 2 that

N−1
a

{
1

s
1
3 + 2

}
= F 1

3 , 1
3
(−2, k, a) ≥ 0.

According to Lemma 3, we can obtain that

N−1
a

{
1

C(s) + ξ

}
= N−1

a

{
1

C(s) + 4

}
= N−1

a

{
1

s
1
3 + 2

}
∗ N−1

a

{
1

s
1
3 + 2

}
≥ 0.

Therefore, system (16) is asymptotically stable based on Theorem 3.

5. Conclusions

In this paper, the stability of the nabla discrete distributed-order nonlinear systems
have been studied. The nabla distributed-order comparison principle is introduced. We
generalize the Lyapunov direct method to establish the stability condition for the nabla
discrete distributed-order systems. In addition, combined with some important inequalities,
a simpler stability analysis method is provided. Finally, two examples are given to illustrate
the validity of the obtained results. Based on the stability results established in this paper,
one can investigate the controller design problem or the performance analysis problem of
the the nabla distributed-order nonlinear systems.
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