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Abstract: The instability of the underwater environment and underwater communication brings
great challenges to the coordination and cooperation of the multi-Autonomous Underwater Vehicle
(AUV). In this paper, a multi-AUV dynamic maneuver countermeasure algorithm is proposed based
on the interval information game theory and fractional-order Differential Evolution (DE), in order to
highlight the features of the underwater countermeasure. Firstly, an advantage function comprising
the situation and energy efficiency advantages is proposed on account of the multi-AUV maneuver
strategies. Then, the payoff matrix with interval information is established and the payment interval
ranking is achieved based on relative entropy. Subsequently, the maneuver countermeasure model is
presented along with the Nash equilibrium condition satisfying the interval information game. The
fractional-order DE algorithm is applied for solving the established problem to determine the optimal
strategy. Finally, the superiority of the proposed multi-AUV maneuver countermeasure algorithm is
verified through an example.

Keywords: multi-AUV; fractional calculus; countermeasure; game theory

1. Introduction

Autonomous underwater vehicles (AUVs) are being widely used for ocean observa-
tion, sea rescue, minefield search, enemy reconnaissance, and in other related fields [1,2].
Compared to manned equipment, AUVs present the advantages of low cost, zero casualty
count, good concealment, strong mobility, low energy consumption, recyclability, etc. [3–5].
However, in the face of high efficiency and large-scale task requirements, a single AUV
hardly fulfills all these demands. A multi-AUV system is a new alternative for complex
ocean tasks due to its high efficiency and reliability, achieved through its time-space distri-
bution and redundant configuration. In recent years, studies of multi-AUV cooperative
formation and navigation research has made significant headway [6–8], but the multi-AUV
cooperative counter-games are still limited. The multi-AUV cooperative countermeasure
can be used in marine research and military tasks, including underwater multi-target
tracking, monitoring, and detection, which effectively expands the underwater combat
radius and reduces underwater equipment loss and casualties.

The maneuver countermeasure is a special case of maneuver decision-making, which
can be roughly divided into two categories. One is the ‘one-sided’ optimization algorithm,
which only considers one’s self strategy optimization. The other is the ‘two-sided’ game
algorithm, which fully analyzes the influence of both sides and emphasizes the conflict and
confrontation of the situation. The one-sided optimization algorithm always includes an
intelligent algorithm, guidance law algorithm, and expert system [9]. The expert system-
based maneuver decision-making algorithm presented in Ref. [10] is one of the earliest
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works. However, this method relies heavily on experience, the chosen strategy is not
guaranteed to be optimal, and adaptability is not reliable. An air combat maneuver decision-
making algorithm based on heuristic reinforcement learning is proposed in Ref. [11],
which realizes the online task allocation of actual confrontation. In Ref. [12], a machine
learning algorithm is used to train a large-scale cluster UAV, showcasing its high intelligence
decision-making ability. This kind of one-sided optimization algorithm may achieve the
desired results to a certain extent, but the optimization process is not completely objective
because the influence of the opponent strategy is not considered, and the interaction and
conflict of the game are ignored.

The matrix game and differential game are the most widely studied aspects regarding
the two-sided counter-game algorithm [13]. In Ref. [14], the matrix game is first used to
study the two UAVs counter-game, but its model and strategy are relatively simple and
cannot be applied to actual confrontation. The integration of a game strategy solution to
this model, based on intelligent algorithms, is proposed in Ref. [15], which improves the
applicability of the former model. Ref. [16] discusses the maneuver counter-game of UAV
clusters based on the intuitionistic fuzzy game, mapping the uncertainty of information
such as a game environment to fuzzy membership, which is more aligned with the reality
of a counter-game scenario. Furthermore, Ref. [17] examines the problem of an active
defense cooperative differential game with three players, and Ref. [18] discusses the prob-
lem of a qualitative differential game in which multiple pursuers hunt for an advantage
runner. Overall, the two-sided game algorithm could highlight the complex conflict of an
unmanned system cluster countermeasure, which may realize the maneuver strategy in a
more scientific and accurate way. However, owing to the complex marine environment [19],
it is necessary to further explore the multi-stage dynamic countermeasure algorithm of
multi-AUV systems with regard to underwater characteristics.

Classical game theory only discusses games with clear payment information [20].
However, most of the information in the marine environment is uncertain, which is the main
problem in the counter-game process. If the uncertain information is directly converted
to a certain value, the maneuver countermeasure algorithm may lose its credibility in
the strategy selection. In this paper, this problem is solved by introducing the interval
information into the cooperative dynamic maneuver countermeasure algorithm of the multi-
AUV. The uncertainty in the multi-AUV counter-game, confrontation effectiveness, and the
marine environment is regarded as an interval information series. Meanwhile, an interval
payment multi-attribute evaluation of the multi-AUV maneuver strategy is carried out,
and the interval payment matrix is obtained. Therefore, the uncertain information is well
considered and settled in the proposed counter-game algorithm, which make this algorithm
suitable to application in a marine environment. Moreover, the Nash equilibrium condition
satisfying the interval payment is then proposed, and the countermeasure model of a Nash
equilibrium strategy in a dynamic marine environment is established. To determine the
optimal strategy, an improved fractional-order Differential Evolution (DE) algorithm is
presented by a combination of DE algorithm and fractional calculus, which could lead to
a raise of the convergence rate in the optimization process. Fractional calculus owns a
long-memory ability and does not rely on current gradients [21]. Thus, the fractional-order
DE contains great potential in avoiding slow convergence and local extremum.

Overall, the main contributions of the proposed dynamic maneuver countermeasure
algorithm for multi-AUV can be summarized as follows. Firstly, the underwater envi-
ronment and communication condition have been well presented in the countermeasure
process using the interval information game; thus, the modeling of the dynamic maneuver
counter-game of the multi-AUV is more accurate. Then, an improved fractional-order
DE algorithm is proposed to improve the efficiency of achieving the optimal strategy of
a real-time underwater countermeasure. The order of a fractional-order DE can affect
the convergence rate and optimization error, which can also be tuned to satisfy different
underwater requirements. But it should be noted that the standard of determining the
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optimal fractional order is not analytic or unified. The determining process needs more
computation at the beginning of the proposed algorithm.

The remainder of this paper is organized as follows: Section 2 presents the preliminary
of the fractional derivatives and DE algorithm; Section 3 presents the maneuver attributes,
the advantage function, and the payoff matrix; Section 4 presents the payment ranking
based on the four-parameter interval set, relative entropy, and the Nash equilibrium optimal
solution; the fractional-order DE algorithm is presented in Section 5; Section 6 demonstrates
the example of the multi-AUV counter-game; finally, the conclusions are stated in Section 7.

2. Preliminary
2.1. Fractional Derivatives

Fractional calculus is a generalization of the classical integer-order derivatives and
integrals. The common definitions of fractional calculus are included in Riemann–Liouville
(R-L) [22], Grunwald–Letnikov (G-L), and Caputo definitions [23,24], which have been
applied in different fields, such as mathematics, engineering, computer science, etc. [25,26].
These definitions are introduced in the following:

Definition 1 ([22]). The R-L fractional derivative of a continuous function f : (0, + ∞) −→ R
with order q > 0 is defined as:

R
0 Dq

t f (t) =
1

Γ(k− q)
dk

dtk

∫ t

0

f (s)

(t− s)q−k+1 ds, (1)

where k is a positive integer and k− 1 ≤ q ≤ k, and Γ(·) is the gamma function, i.e.,

Γ(x) =
∫ +∞

0
tx−1e−tdt.

Definition 2 ([27]). The Caputo fractional derivative of a continuous function f : (0, +∞) −→ R
with order q > 0 is defined as:

C
0 Dq

t f (t) =
1

Γ(k− q)

∫ t

0

f (k)(s)

(t− s)q−k+1 ds, (2)

where k is an positive integer and k− 1 ≤ q ≤ k.
The G-L definition is a discretization definition, which is equivalent to the discretized R-L

definition. When 0 < q < 1 (k = 1), the G-L definition or discretized R-L definition can be
described by

G,R
0 Dq

t f (t) =
1
hq

(
f (sn+1) +

n+1

∑
i=1

(−1)i
(

q
i

)
f (sn+1−i)

)
, h→ 0+. (3)

The Caputo definition owns the practical physical meaning in initial values and has more
advantages than the R-L or G-L definition. The discretized Caputo definition is different from R-L
and G-L ones, and satisfies the following relationship, i.e.,

C
0 Dq

t f (t) = G,R
0 Dq

t f (t)− t−q

Γ(1− q)
f0, 0 < q < 1. (4)

2.2. Differential Evolution Algorithm

The differential evolution (DE) algorithm is a kind of intelligent optimization method
based on population difference inspiration. DE uses the difference between population
individuals to produce a disturbance to individual evolution, and it also uses the greedy
rule to search the whole optimization space to find the optimal solution. In other words, the
population individuals are greedy for a better fitness, and will update to a solution with a
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better fitness, as shown in the following Equation (7). The update process of the population
includes mutation, crossover, and selection, and finally finds the optimal solution. DE
demonstrates the characteristics of a simple operation, high robustness, strong optimization
ability, etc. [16]. The main population update algorithm in DE are introduced as follows:

(1) Mutation.
Mutation is the first step of the population update in DE. According to the DE/current-

to-best strategy [28], the variation vector can be obtained as follows:

wi,g = vi,g + Fi(vbest,g − vi,g) + Fi(vr1,g − vr2,g), (5)

where wi,g is the variation vector, Fi is the scaling factor of the individual, vi,g represents the
current individual vector, and vbest,g represents the optimal individual of the population.
r1 and r2 are two different integers, which are randomly selected from 1, 2, · · · , NP; NP is
the population. vr1,g and vr2,g represent the r1th and r2th individual vectors, respectively.

(2) Crossover.
Crossover is an exchange of each dimension vector between the mutated individual

and the original individual. The crossover operation can be expressed as follows:

uij,g =

{
vij,g, i f rand[0, 1] < CRi or j = jrand
wij,g, Otherwise

, (6)

where uij,g is the jth components of the test vector ui,g, CRi is the crossover rate, jrand is a
random integer smaller than individual dimension D, and rand[0, 1] is a random number
between 0 and 1.

(3) Selection.
Selection operation is for choosing a better fitness between the newly generated test

vector and the original target vector to become a member of the next population generation.
It is a greedy selection operation. The selection operation can be described as follows:

vi,g+1 =

{
vi,g, f (ui,g) < f (vi,g)
ui,g, Otherwise

, (7)

where vi,g+1 is the next generation individual.

3. Multi-AUV Maneuver Countermeasure Model
3.1. Maneuver Strategies

In order to establish the interval information payoff matrix, the evaluation of multi-
AUV maneuver attributes is presented according to the situation information of different
confronting sides. The counter-game trajectory of the multi-AUV is treated as a combination
of each maneuver actions. The enemy multi-AUV and our multi-AUV systems are regarded
as two players in the game.

The game model of multi-AUV systems based on uncertain information can be ex-
pressed as:

G=
{

N, S,
∼
U
}

, (8)

where N = {N1, N2} are two players in the game, terminal 1 represents our multi-AUV
system with a AUVs, and terminal 2 represents the enemy multi-AUV system with d AUVs;
S =

{
sk

1i, sk
2j

}
are the strategy spaces of game players, sk

1i represents that we choose the i-th

maneuver strategy, and sk
2j represents the enemy choosing the j-th maneuver strategy at the

k-th stage;
∼
U =

{∼
u1(sk,i),

∼
u2(sk,j)

}
are the benefit intervals corresponding to each strategy

that may be selected by the multi-AUV system participating in this game. The action of
the multi-AUV system at the k-th stage game can be represented by an information set;
thus, the maneuver strategy is actually the action rules of the multi-AUV system in each
information set.
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3.2. Advantage Function

The main difference between the multi-AUV counter-game and other autonomous
robots’ counter-game is the information transmission. Due to the marine environment,
information in the multi-AUV game process is mainly received through an underwater
acoustic. The shallow water acoustic channel is a channel with time-space-frequency
variation [19]. It has strong multi-path interference, high environmental noise, large
transmission loss, and a serious Doppler shift effect [19]. Therefore, the information
provided in the multi-AUV confrontation process has strong uncertainties. It is difficult to
quantify the threat degree of each side accurately during the countermeasure process [29].
Hence, in this paper, each attribute is represented by an interval information set in the
countermeasure process. The advantage evaluation function that can evaluate the payment
of each AUV consists of two parts, including the situation advantage and energy efficiency
advantage.

3.2.1. Situation Advantage Function

In order to attack the enemy multi-AUV system, it is necessary to occupy a favorable
attack position and minimize the attack risk of our multi-AUV system. The situation advan-
tage function consists of angle advantage, speed advantage, and distance advantage [30].

The angle advantage function Aag can be expressed as:

Aag =

{
1− |AA|/180◦ + |ATA|/180◦

2

}
, (9)

where |AA| < 180◦ is the eye angle of both game players and |ATA| < 180◦ is the target
entry angle.

The speed advantage function As is achieved as:

As =


0.1, vn1i ≤ 0.6vn2j

0.5 +
vn1i
vn2j

, 0.6vn2j < vn1i < 1.5vn2j

1, vn1i ≥ 1.5vn2j

, (10)

where vn1i , vn2j are the speed vectors of n1i and n2j in the game. The above Equation (10)
indicates that a higher attack speed will lead to a greater attack advantage. According
to Ref. [30], when the speed ratio

vn1i
vn2j

is larger than 1.5, n1i owns an absolute speed

advantage. In addition, when the speed ratio
vn1i
vn2j

is less than 0.6, the speed advantage of

n1i is negligible.
Then, the distance advantage Adis can be obtained as:

Adis = e−((Dij−R0)/(Rmax−Rmin))
2
, (11)

where Dij is the distance between different AUVs; R0 = (Rmax + Rmin)/2, Rmax is the
maximum attack distance and Rmin is the minimum attack distance. When Dij > Rmax, the
distance advantage is considered to be zero; with the decrease in distance, the distance ad-
vantage increases gradually; when Dij = R0, the distance advantage reaches the maximum
value; with the further reduction in distance, the distance advantage gradually decreases.

Hence, the overall situation advantage function WA can be achieved by:

WA = k1 Aag + k2 As + k3 Adis, (12)

where k1, k2, k3 are weighting coefficients, and k1 + k2 + k3 = 1.
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3.2.2. Energy Efficiency Advantage Function

The energy efficiency advantage C is mainly measured by seven factors, including
maneuverability B, firepower P, target detection capability T, manipulating ability ε1,
viability ε2, voyage ε3, and confrontation ability ε4 [30]:

C =
[
ln B + ln

(
∑ P + 1

)
+ ln

(
∑ T + 1

)]
ε1ε2ε3ε4. (13)

The energy efficiency advantage function in Equation (13) is quite different from the
situation advantage function. In order to simplify the total advantage function, the energy
efficiency advantage function is transformed into the following form according to the
actual situation:

WC =


0, CN1a /CN2d < 0.3
0.25, 0.3 ≤ CN1a /CN2d < 1
0.5, CN1a /CN2d = 1
0.75, 1 ≤ CN1a /CN2d < 1.5
1, CN1a /CN2d ≥ 1.5

, (14)

where CN1a , CN2d are the energy efficiency of AUVs from different sides. According to
Ref. [30], the energy efficiency advantage function owns five steps depended on by the
energy efficiency ratio CN1a /CN2d shown in Equation (14), which indicates that a higher
energy efficiency could provide a greater advantage.

3.3. Payoff Matrix Based on Interval Information

Payment in the game refers to the final gain or loss of players in the strategic choice.
In the multi-AUV counter-game, the income of our AUV must be the loss of the enemy’s
AUV. Therefore, the game in this paper belongs to the category of the two-person-zero-sum
game.

Due to the abovementioned various underwater interference factors, the multi-AUV
system is often unable to obtain all kinds of information accurately in an actual underwater
maneuver countermeasure. After a reasonable analysis of the counter-game situation, each
interference factor often changes within a certain interval. Therefore, the payoff matrix of
each multi-AUV system is established based on interval information.

According to the situation and energy efficiency advantage functions proposed in the
last section, the overall advantage function of our multi-AUV system, including situation
advantage and energy efficiency advantage, can be obtained as:

∼
W1 = δ1

∼
WA + δ2

∼
WC, (15)

where δ1, δ2 are weighting coefficients, and δ1 + δ2 = 1;
∼
W =

[
WL, WR], ∼

WA =[
WA

L, WA
R
]
,
∼
WC =

[
WC

L, WC
R
]

represent the advantage functions with upper and
lower boundaries.

In the same way, the overall advantage function
∼
W2 of the enemy side in the game can

be achieved by exchanging the situation information parameters of both sides.
The payment function of the multi-AUV game under uncertain information is estab-

lished as:

∼
f =

m

∑
i=1

xij
∼

W1 −
n

∑
j=1

yji
∼

W2, (16)

where xij, yji are binary decision variables, xij = 1 represents our ith AUV attacks the jth
AUV of the enemy, and xij = 0 means our ith AUV does not attack the jth AUV of the
enemy; in the same way, yji represents whether the jth AUV of the enemy attacks our ith
AUV or not.
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Then, the payment matrix under uncertain information is obtained as:

∼
F =

a1
a2
...

am

d1 d2 · · · dn
∼
f11

∼
f12 · · ·

∼
f1n

∼
f21

∼
f22 · · ·

∼
f2n

...
...

. . .
...

∼
fm1

∼
fm2 · · ·

∼
fmn

 =


[

f L
11, f R

11
] [

f L
12, f R

12
]
· · ·

[
f L
1n, f R

1n
][

f L
21, f R

21
] [

f L
22, f R

22
]
· · ·

[
f L
2n, f R

2n
]

...
...

. . .
...[

f L
m1, f R

m1
] [

f L
m2, f R

m2
]
· · ·

[
f L
mn, f R

mn
]
, (17)

where a1, a2, . . . , am are the maneuvering strategies of our multi-AUV system; d1, d2, . . . , dn

are the maneuver strategies of the enemy multi-AUV system;
∼

umn represents the gain when
our multi-AUV system uses the m-th strategy, and the enemy multi-UUV system uses the
n-th strategy.

4. Optimal Solution of Multi-AUV Dynamic Maneuver Countermeasure
4.1. Payment Interval Ranking Based on Relative Entropy

For the comparison of interval information sets, one cannot compare the size from the
perspective of quantity, such as real numbers. The sorting method based on the possibility
degree has the possibility of failure and that based on geometric distance may cause serious
information loss [31]. In order to avoid these shortcomings, a method combining the four
parameter interval set and relative entropy is proposed in this paper.

According to the interval information given in the last subsection, the payment interval[
f L
mn, f R

mn
]

is obtained from the comprehensive information of both sides in the game.
However, the payments do not consider the distribution of points in the interval. In fact,
the interior point of payment interval set cannot be simply regarded as uniform distribution.
It should change according to the change of the underwater game situation. For one strategy
xi, when the confrontation situation is favorable to the attacker, the payment of the attacker
tends to f R inevitably; if not, it will tend to f L. In order to fully explore the information of
the advantage matrix, the payment interval is transformed into four-parameter interval
sets in this subsection.

The four-parameter interval set is similar to the trapezoid fuzzy set [32]. Com-
bined with the advantage function in the last section, the payment interval

[
f L
mn, f R

mn
]

is transformed into a four-parameter interval set
[

f L
mn, f ML

mn , f MR
mn , f R

mn
]
, where f ML

mn =
f L
mn + WR

mn( f R
mn − f L

mn), f MR
mn = f L

mn + WL
mn( f R

mn − f L
mn), and Wmn is the normalized ad-

vantage function with 0 < WL
mn < WR

mn < 1.
The basic idea of this ranking method is using information entropy to measure the

difference between AUV’s own revenue and the maximum revenue (minimum revenue)
under different strategies, and to choose the strategy with the smallest difference between
AUV’s own revenue and the maximum revenue (or the strategy with the largest difference
between AUV’s own revenue and minimum revenue). In fact, the highest return indicates
that the AUV has completed the scheduled task without casualties; the lowest return
indicates that the AUV has failed to complete the scheduled task with the largest casualties.

First, the Kullback–Leibler distance concept is introduced. For two systems P and Q,
the relative information entropy for them in state Pi and Qi can be expressed as [33]:

Mi = Pi logPi/Qi
2 +(1− Pi) log(1−Pi)/(1−Qi)

2 , (18)

where the unit of Mi is the bit.
In order to overcome the meaninglessness of Equation (18) when Qi = 0 or Qi = 1 ,

the relative information entropy is improved as [33]:

Hi = Pi logPi/[1/2(Pi+Qi)]
2 +(1− Pi) log(1−Pi)/[1−1/2(Pi+Qi)]

2 , (19)
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in which the smaller Hi means the smaller difference between Pi and Qi. Equation (18)
measures the relative information entropy of the two systems under the specific attribute;
when the information entropy is zero, it means that the two systems are identical under the
evaluation criteria of specific attributes.

Definition 3. For two four-parameter interval sets
∼
p =

[
pL, pML, pMR, pR] and

∼
q =[

qL, qML, qMR, qR], the relative information entropy of
∼
p and

∼
q is defined as:

E(
∼
p,
∼
q) = ∑

i=L,ML,MR,R
ωi(pi logpi/[1/2(pi+qi)]

2 + (1− pi) log(1−pi)/[1−1/2(pi+qi)]
2 ), (20)

where ωi is the weighting coefficient. Equation (20) is asymmetrical to
∼
p and

∼
q, which is not

corresponding to the actual submarine counter-game. Therefore, the definition of the relative
information entropy is improved in the following:

IE(
∼
p,
∼
q) = E(

∼
p,
∼
q) + E(

∼
q ,
∼
p), (21)

where IE(
∼
p,
∼
q) presents the improved relative information entropy between two four-parameter

interval sets,
∼
p and

∼
q.

Property 1. IE(
∼
p,
∼
q) ≥ 0, if and only if when

∼
p =

∼
q, the equal sign holds.

Property 2. IE(
∼
p,
∼
q) = IE(

∼
q ,
∼
p).

Here, we give the proof of the tenable condition of Property 1.

Proof. For any i ∈ {L, ML, MR, R}, define the corresponding component of relative infor-
mation entropy IEi as

IEi = pi logpi/[1/2(pi+qi)]
2 +(1− pi) log(1−pi)/[1−1/2(pi+qi)]

2

= −pi log[1/2(pi+qi)/pi ]
2 −(1− pi) log[1−1/2(pi+qi)]/(1−pi)

2

.

Because f (x) = logx
2 is a convex function, thus it is yielded from Jensen inequality

that:

IEi ≥ − log

{
pi

1/2(pi+qi)
pi

+(1−pi)
1−1/2(pi+qi)

1−pi

}
2 = log1

2 = 0

if and only if when pi = qi, the equality holds, thus IEi(
∼
p,
∼
q) = 0. In the same way, it can

be proven that IEi(
∼
q ,
∼
p) = 0 when pi = qi. This completes the proof of Property 1.

If the relative information entropy between the payment of strategy i and the maximum
payment is di

max, that between the payment of strategy i and the minimum payment is di
min,

which can be achieved from Equation (21). Therefore, the relative closeness of the payment
of strategy i can be expressed as:

Ci =
di

min

di
max + di

min
. (22)

The multi-AUV system maneuver strategies can be sorted according to Ci in the last
equation. In the countermeasure process, the strategy with the largest C value gets the
highest priority; when the C values of different strategies are the same, the strategy with a
smaller dmax gets the higher priority.
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4.2. State Transition of Payment Functions

When one multi-AUV system completes the k− 1-th game stage and reaches the k-th
stage, the multi-AUV strategy is i = F(h), which means the i-th strategy is used in this

stage. At this moment, the game situation of the last stage is
∼
S

k−1
, and the estimated

confrontation situation after the current stage sk is
∼
S

k
. Over time, when the multi-AUV

system completes the maneuver strategy sk, the situation state of the k-th stage transfers to:

∼
WA(sk) =

∼
WA(sk−1) + ∆

∼
WA(sk

i )∼
WC(sk) =

∼
WC(sk−1) + ∆

∼
WC(sk

j )
, (23)

where
∼
WA(sk) is the situation advantage state interval of the current strategy. ∆

∼
WA(sk

i )

represents the variation of the state intervals of
∼
WA(sk) and

∼
WA(sk−1). ∆

∼
WA(sk

i ) could

be determined easily by the k − 1-th state
∼
WA(sk−1) and the definition of i-th strategy.

For example, if the i-th strategy is to keep the current speed, ∆
∼
WA(sk

i ) is the product of

the speed vector in
∼
WA(sk−1) and the stage interval time.

∼
WC(sk) is the energy situation

advantage state interval of the current strategy within the j-th strategy.

4.3. Nash Equilibrium Optimal Solution

The payment of the complete information zero-sum-game is replaced by the interval
information set in this paper; thus, the payment of the interval information zero-sum-game
discussed here is similar to that of the complete information zero-sum-game. For the multi-
AUV attack and defense game, there is no guaranteed saddle point in the pure strategy
game; thus, the countermeasure algorithm of the attacker and the defender can only choose
the strategy randomly with a certain probability in the strategy set. Therefore, the Nash
equilibrium for the mixed strategy is discussed here.

Definition 4. For game G=
{

N, S,
∼
U
}

, define xi, yj as the probabilities when players N1, N2

choose strategies sk
1i, sk

2j at the k-th stage of the game from strategy sets S1, S2. The mixed strategies
of the players in this game can be expressed as follows.

x = (x1, x2, · · · , xm),
m
∑

i=1
xi = 1, xi ≥ 0.

y = (y1, y2, · · · , yn),
n
∑

j=1
yj = 1, yj ≥ 0.

(24)

Definition 5. max
x∈Sm

min
y∈Sn

IE(x, y) = min
y∈Sn

max
x∈Sm

IE(x, y) = IE(x∗, y∗) = v, so x∗, y∗ are the

optimal mixed strategies of players N1, N2 at this stage of the game, (x∗, y∗) is the optimal mixed
situation, and v is the expected benefit to the players.

According to the interval information game proposed, IE(x, y) in this paper is an interval
information set. Assume fu =

[
f L
u , f R

u
]
, u = 1, 2, . . . mn is the interval payment when our multi-

AUV system chooses maneuver strategy xm and the enemy multi-AUV system chooses maneuver
strategy yn at this stage of the game.

According to Definition 3 and Definition 4, the Nash equilibrium [34] of our multi-AUV
system under the mixed strategy x = (x1, x2, · · · , xm) can be achieved as follows:

∼
v = max

x
min

1≤j≤n

m

∑
i=1

∼
Fij xi. (25)

On considering the actual submarine environment constraints, Equation (25) can be trans-
formed into an optimization problem with interval uncertain parameters, as follows:
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∼
v = max

x

∼
vR(x)

s.t.


m
∑

i=1

∼
Fij xi ≥

∼
vR(x)

m
∑

i=1
xi = 1

xi ≥ 0

,
i = 1, 2, . . . , m
j = 1, 2, . . . , n

.
(26)

Therefore, the optimal mixed strategy of the multi-AUV maneuver counter-game can be
obtained by solving this optimization problem.

5. Fractional-Order Differential Evolution Algorithm

DE algorithm owns the characteristics of simple operation, high robustness, strong
optimization ability, etc. [16]. However, slow convergence and falling into a local extremum
may occur when the DE algorithm is applied in the optimization process, which makes sat-
isfying the real-time counter-game requirements difficult. Aiming to address this problem,
a fractional-order differential evolution (FDE) algorithm is presented in this section.

(1) Fitness function.
Normally, the optimal strategy of game player N1 is to maximize payoff benefit under

the constraint conditions, while the other game player N2 is the opposite. Therefore, the
fitness function here could be the optimization objective function presented in Equation (26).

(2) Mutation.
According to Equations (3)–(5), the variation vector of FDE mutation is proposed

within the Caputo definition:

wi,g = hq
[
vi,g + Fi(vbest,g − vi,g) + Fi(vr1,g − vr2,g)

]
+

(g + 1)−qvi,0

Γ(1− q)
−

g+1

∑
k=1

skvi,g+1−k, (27)

where

s0 = 1, sk =

(
1− q + 1

k

)
sk−1,

h is the iteration step of vi,g, and the other parameters are same with the definition in
Equation (5).

In particular, the variation vector (27) with h = 1 becomes

wi,g = vi,g + Fi(vbest,g − vi,g) + Fi(vr1,g − vr2,g) +
(g + 1)−qvi,0

Γ(1− q)
−

g+1

∑
k=1

skvi,g+1−k. (28)

Remark 1. The variation vector (27) of the FDE mutation is derived by the combination of
Equation (5) and Caputo fractional derivatives. In fact, Equation (5) is a special case with h = 1 of
the following discrete iteration:

wi,g − vi,g

h
= Fi(vbest,g − vi,g) + Fi(vr1,g − vr2,g).

The first-order difference
wi,g−vi,g

h is replaced by the Caputo fractional one (4), i.e.,

1
hq

(
wi,g +

g+1

∑
i=1

(−1)i
(

q
i

)
vi,g+1−k

)
− [(g + 1)h]−q

Γ(1− q)
vi,0

= Fi(vbest,g − vi,g) + Fi(vr1,g − vr2,g).

In addition, denote

sk = (−1)k
(

q
k

)
, k = 1, 2, . . . , g + 1,



Fractal Fract. 2022, 6, 235 11 of 18

where sk can be calculated through a recursive scheme, as follows

s0 = 1, sk =

(
1− q + 1

k

)
sk−1.

Then, the variation vector (27) of the FDE mutation can be obviously deduced.

Note that in Equation (27), the scaling factor Fi is for scaling each base vector and
generating a new variation vector. A larger Fi can search for a potentially optimal solution
in a larger range. On the contrary, a smaller one can speed up convergence and improve
accuracy. Meanwhile, when the fitness of each individual is relatively superior, it is
preferable for Fi to be small to reduce the disturbance of the better individuals; on the
contrary, when the fitness of each individual is relatively poor, it is preferred to expand the
search range of the solution; thus, a larger Fi may be applied. Combined with the game
algorithm proposed in this paper, the scaling faction Fi here is determined according to the
evolution time and the difference between the best and worst individuals, as follows:

Fi = (Fmax − Fmin)×
| fbest − fi |
| fbest − fworst |

× ∆g + Fmin, (29)

where ∆g = (G− g)/G, G is the maximum number of iterations, g is the current number of
iterations; fbest is the best fitness, fworst is the worst fitness, and fi is the current individual
fitness. Fmax and Fmin are the maximum and minimum values of F, respectively. If the
fitness difference between the current individual and the optimal individual is large, it
means that the individual is far away from the optimal individual in space. A larger value
of Fi signifies that the disturbance to the individual is larger, which in turn implies that the
search scope of the algorithm is expanded, and the global search ability is enhanced. If
the fitness difference is small, Fi may acquire a smaller value, and the disturbance to the
individual is also small, which means that the search is only carried out in the small area
near the individual, so as to enhance the ability of the algorithm development. Moreover,
at a later stage in the evolution, the value of ∆g prefers to be relatively small, which can
make the search in the neighborhood of the current individual and ensure the accuracy of
the algorithm.

(3) Crossover.
As shown in Equation (6), the crossover operation is described by

uij,g =

{
vij,g, i f rand[0, 1] < CRi or j = jrand
wij,g, Otherwise

.

Note that CRi is the crossover rate that determines the crossover probability of the
mutated individual and the original individual on each dimension vector. The larger CRi of
the individual with poor adaptability can accelerate the change of the individual structure.
Therefore, it is preferred that a smaller CRi be used in the late evolution stage to reduce
the disturbance of the target individual to the experimental individual and ensure the
convergence speed of the algorithm. The designed crossover rate is as follows:

CRi =

 CRmin,
−
f > f (vi,g)

CRmin + (CRmax − CRmin)× ∆g,
−
f ≤ f (vi,g)

, (30)

where f− is the average fitness of the current population, CRi is the current crossover
rate, and CRmax and CRmin are the maximum and minimum values of CR, respectively.
Equation (30) shows that when the fitness of the target individual vi,g is smaller than the
average fitness, the target individual is relatively superior. A smaller CRi should be chosen,
and more information of the test vector is obtained from the target vector vi,g. Otherwise,
more information of the test vector ui,g is obtained from the variation vector wi,g, which
improves the diversity of population. ∆g could ensure a large CRi at an early stage of
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evolution, increase population diversity, and speed up convergence. In addition, a small
CRi in the late evolution stage is conducive to finding the optimal solution.

(4) Selection.
According to Equation (7), the selection operation is re-mentioned.

vi,g+1 =

{
vi,g, f (ui,g) < f (vi,g)
ui,g, Otherwise

,

where vi,g+1 is the next generation individual.

6. Example

In this section, a multi-AUV countermeasure example is given to verify the effective-
ness of the proposed algorithm. In the initialization process of the proposed algorithm,
several parameters need to be determined as the following guideline.

• The initial states of game players
∼
WA(s1) and

∼
WC(s1), such as the initial positions,

velocity, deflection angle, and pitch angle, as well as the time interval of the game
steps and the weighting coefficients k1, k2, k3 in Equation (12).

• The strategy spaces of both sides S =
{

sk
1i, sk

2j

}
, such as keep the current speed, turn

left, turn right, pitch up, pitch down, etc.
• The maximum number of iterations G in the fractional-order DE, as well as the

population NP, iteration step h, and fractional order q.

Suppose ‘A’ and ‘D’ are engaged in a two-vs.-two AUVs underwater counter-game.
The initial positions of ‘A1’ and ‘A2’ are (0 m, 100 m, and 200 m) and (0 m, −100 m, and
200 m), and ‘D1’ and ‘D2’ are (800 m, 100 m, and 200 m) and (800 m, −100 m, and 200 m),
respectively. The velocity, deflection angle, and pitch angle of ‘A1’ and ‘A2’ are 23 m/s,
−60◦, 5◦, 23 m/s, and 60◦, −5◦, respectively. The velocity, deflection angle, and pitch angle
of ‘D1’ and ‘D2’ are 25 m/s, 120◦, 3◦, 25 m/s, and −120◦, −3◦, respectively. Both sides
have the same control ability, and the time interval of the game steps is 5 s. The weighting
coefficients are denoted as k1 = 0.2, k2 = 0.4, k3 = 0.4 referring to [30]. The strategy spaces
of ‘A’ and ‘D’ are both supposed as keep the current speed, speed up, speed down, turn
left, turn right, pitch up, and pitch down for each AUV. In addition, the maximum number
of iterations is set as G = 500, as well as the population NP = 100, iteration step h = 1,
and fractional order 0 < q ≤ 1. Within all the above initial conditions, the multi-AUV
maneuver countermeasure model is constructed according to Sections 3 and 4, and the
fractional-order differential evolution in Section 5 is employed in strategy optimization. For
a different fractional order q, the optimization errors of the first game step are calculated
and shown in Figure 1. When the optimization errors are close to 0, the convergence rates
are not clearly visible in Figure 1. Thus, the base-10 logarithms (log10 ) of the optimization
errors of different fractional orders q are exhibited in Figure 2.

According to Figures 1 and 2, the optimization error of q = 0.2 is better than the
others when the iteration is 300. However, the optimization error of q = 0.8 is the most
superior one when the iteration is 500. Thus, smaller order q brings faster optimization rate
when the iteration number is not enough. When the iterations are raising, the optimization
effects of the larger order visibly increase. Thus, according to the iteration number, the
fractional-order DE algorithm could adjust the fractional order q to achieve the optimal
strategy calculation.
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Figure 1. Optimization errors of different fractional orders q.
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Figure 2. Base−10 logarithm (log10) of optimization errors of different fractional orders q.

It is obvious that ’D’ possesses some advantage in the beginning. It should also be
noted that the maximum maneuver steps should be determined according to the effec-
tiveness of the AUVs used in the confrontation. There are 50 steps in the game process,
whose expected benefits are shown in Figure 3. According to the last section, the obtained
expected benefits demonstrate that the Nash equilibrium of the interval information game
is satisfied.

In order to compare the game performance, ‘A’ uses the cooperative dynamic ma-
neuver countermeasure algorithm proposed in this paper, and ‘D’ uses the max-min
countermeasure algorithm during the multi-AUV confrontation process [34]. The three-
dimensional counter-game process with five main stages are shown in Figures 4–8. The
red-dotted line represents the path of ‘A1’, the red solid line represents ‘A2’, and the
blue-dotted and solid lines represent ‘D1’ and ‘D2’, respectively. The ‘∗’ shows the initial
position and ‘4’ shows the current position. The confrontation ends when one side’s
expected benefit reaches the absolute advantage. For stage 1 in Figure 4, ‘A’ possesses the
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dominant position and decides to attack ‘D’ actively, in which ‘A1’ tries to attack ‘D2’, and
‘A2’ is moving towards ‘D1’. For stage 2 in Figure 5, ‘A1’ misses the attack on ‘D2’, and
tries to attack ‘D1’ with ‘A2’. ‘D2’ escapes the attack of ‘A1’, and tries to outflank ‘A2’. The
situation changes when ‘D’ possesses the dominating position in stage 3. This can also be
validated in Figure 3, in which the expected benefits change from positive to negative. In
Figure 6, ‘D1’ and ‘D2’ try to achieve a converging attack to ‘A2’; ‘A1’ tries to attack ‘D1’
and supports ‘A2’. Then, in stage 4, the situation changes again, in which ‘A’ possesses the
dominating position and the expected benefits change from negative to positive. ‘A2’ turns
continuously and drives ‘D1’ away successfully, then ‘A1’ and ‘A2’ tries to attack ‘D2’, but
‘D1’ and ‘D2’ escape in two different directions. In the end, both ‘A1’ and ‘A2’ possess
the dominating positions, thus ‘A’ achieves the absolute advantage and ends the game,
which is illustrated in Figure 8. This example validates the effectiveness of the proposed
multi-AUV dynamic maneuver countermeasure algorithm.
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Figure 3. Expected benefit IE(x∗, y∗) referring to the Definition 5.
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Figure 4. Multi−AUV dynamic maneuver countermeasure: Stage 1. (‘∗’ initial position; ‘4’ cur-
rent position).
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Figure 5. Multi−AUV dynamic maneuver countermeasure: Stage 2. (‘∗’ initial position; ‘4’ current
position).
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Figure 6. Multi−AUV dynamic maneuver countermeasure: Stage 3. (‘∗’ initial position; ‘4’ current
position).
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Figure 7. Multi−AUV dynamic maneuver countermeasure: Stage 4. (‘∗’ initial position; ‘4’ current
position).
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Figure 8. Multi−AUV dynamic maneuver countermeasure: Stage 5. (‘∗’ initial position; ‘4’ current
position).

7. Conclusions

In this paper, the interval information set is introduced into game theory to study the
dynamic maneuver countermeasure algorithm for multi-AUV systems. Marine environ-
ment characteristics, including different kinds of uncertainties, are expressed by the interval
information sets. The maneuver countermeasure model of the multi-AUV system is estab-
lished based on the forehead interval information sets, and the payment interval ranking is
achieved based on the four-parameter interval set and relative entropy. Combined with
the background and model characteristics, the optimal maneuver strategy satisfying the
Nash equilibrium condition is obtained using the fractional-order DE algorithm in each
step of the dynamic counter-game process. A multi-AUV dynamic counter-game exam-
ple with several maneuver countermeasure steps is provided to illustrate the superiority
and effectiveness of the proposed algorithm. Our future work shall focus on considering
different communication conditions in underwater environments, which may bring about
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more constraints and computation burden in the countermeasure process. Moreover, some
intelligent algorithms including the learning mechanism may be explored to obtain the
optimal strategy of the multi-AUV game.
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