Understanding Dynamics and Bifurcation Control Mechanism for a Fractional-Order Delayed Duopoly Game Model in Insurance Market
Abstract
:1. Introduction
2. Prerequisite Knowledge
3. Dynamics Investigation on the Solution
4. Bifurcation Study
5. Global Asymptotic Stability Exploration
6. Hybrid Control Technique for Bifurcation Control
7. Software Simulations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elabbsy, E.M.; Agiza, H.N.; Elsadany, A.A. Analysis of nonlinear triopoly game with heterogeneous players. Comput. Math. Appl. 2009, 57, 488–499. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Yu, W.S. The stability and duality of dynamic Cournot and Bertrand duopoly model with comprehensive preference. Appl. Math. Comput. 2021, 395, 125852. [Google Scholar] [CrossRef]
- Tu, H.L.; Wang, X.Y. Complex dynamics and control of a dynamic R&D Bertrand triopoly game model with bounded rational rule. Nonlinear Dyn. 2017, 88, 703–714. [Google Scholar]
- Ma, J.H.; Wang, H.W. Complex dynamic analysis for a Cournot-Bertrand mixed game model with delayed bounded rationality. Abstr. Appl. Anal. 2013, 2013, 251702. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.L.; Zhan, X.L.; Mao, X.B. Complex dynamics and chaos control on a kind of Bertrand duopoly game model considing R&D activities. Discret. Dyn. Nat. Soc. 2017, 2017, 7384150. [Google Scholar]
- Zhang, J.X.; Da, Q.L.; Wang, Y.H. The dynamics of Bertrand model with bounded rationality. Chaos Solitons Fractals 2009, 39, 2048–2055. [Google Scholar] [CrossRef]
- Ma, J.H.; Li, Q.X. The complex dynamic of Bertrand-Stackelberg pricing models in a risk-averse supply chain. Discret. Dyn. Nat. Soc. 2014, 2014, 749769. [Google Scholar] [CrossRef]
- Cao, Y.X.; Zhou, W.; Chu, T.; Chang, Y.X. Global dynamics and synchronization in a duopoly game with bounded rationality and consumer surplus. Int. J. Bifurc. Chaos 2019, 29, 1930031. [Google Scholar] [CrossRef]
- Cavalli, F.; Naimzada, A.; Tramontana, F. Nonlinear dynamics and global analysis of a heterogeneous Cournot duopoly with a local monopolistic approach versus a gradient rule with endogenous reactivity. Commun. Nonlinear Sci. Numer. Simul. 2015, 23, 245–262. [Google Scholar] [CrossRef] [Green Version]
- Elsadany, A.A. Dynamics of a Cournot duopoly game with bounded rationality based on relative profit maximization. Appl. Math. Comput. 2017, 294, 253–263. [Google Scholar] [CrossRef]
- Ma, J.H.; Sun, L.; Hou, S.Q.; Zhan, X.L. Complexity study on the Cournot-Bertrand mixed duopoly game model with market. Chaos 2018, 28, 023101. [Google Scholar] [CrossRef] [PubMed]
- Pecora, N.; Sodini, M. A heterogenous Cournot duopoly with delay dynamics: Hopf bifurcations and stability switching curves. Commun. Nonlinear Sci. Numer. Simul. 2018, 58, 36–46. [Google Scholar] [CrossRef]
- Baiardi, L.C.; Naimzada, A.K. An oligopoly model with best response and imitation rules. Appl. Math. Comput. 2018, 36, 193–205. [Google Scholar]
- Baiardi, L.C.; Naimzada, A.K. An oligopoly model with rational and imitation rules. Math. Comput. Simul. 2019, 156, 254–278. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, J.; Li, Y. Pricing decisions for complementary products with firms, differentmarket powers. Eur. J. Oper. Res. 2013, 224, 507–519. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.K.; Yue, X.H.; Zhu, X.W. A Stackelberg model of pricing of complementary goods under information asymmetry. Int. J. Prod. Econ. 2011, 134, 424–433. [Google Scholar] [CrossRef]
- Ma, J.H.; Sun, Z.H. The research on price game model and its complex characteristics of triopoly in different decision-making rule. Nonlinear Dyn. 2013, 71, 35–53. [Google Scholar] [CrossRef]
- Xu, W.; Ma, J.H. Study on the dynamic model of a duopoly game with delay in insurance merket. Wseas Trans. Math. 2012, 11, 599–608. [Google Scholar]
- Zhang, J.L.; Ma, J.H. Research on delayed complexity based on nonlinear price game of insurance market. Wseas Trans. Math. 2011, 10, 368–376. [Google Scholar]
- Udhayakumar, K.; Rihan, F.A.; Rakkiyappan, R.; Cao, J.D. Fractional-order discontinuous systems with indefinite LKFs: An application to fractional-order neural networks with time delays. Neural Netw. 2022, 145, 319–330. [Google Scholar] [CrossRef]
- Xu, C.J.; Liu, Z.X.; Yao, L.Y.; Aouiti, C. Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays. Appl. Math. Comput. 2021, 410, 126458. [Google Scholar] [CrossRef]
- Xu, C.J.; Zhang, W.; Aouiti, C.; Liu, Z.X.; Liao, M.X.; Li, P.L. Further investigation on bifurcation and their control of fractional-order BAM neural networks involving four neurons and multiple delays. Math. Methods Appl. Sci. 2021, 75. [Google Scholar] [CrossRef]
- Xu, C.J.; Liao, M.X.; Li, P.L.; Yuan, S. Impact of leakage delay on bifurcation in fractional-order complex-valued neural networks. Chaos Solitons Fractals 2021, 142, 110535. [Google Scholar] [CrossRef]
- Huang, C.D.; Liu, H.; Chen, X.P.; Zhang, M.S.; Ding, L.; Cao, J.D.; Alsaedi, A. Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator-prey model. Phys. A Stat. Mech. Its Appl. 2020, 554, 124136. [Google Scholar] [CrossRef]
- Xiao, M.; Zheng, W.X.; Jiang, G.P.; Cao, J.D. Qualitative analysis and bifurcation in a nneuron system with memristor characteristics and time delay. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1974–1988. [Google Scholar] [CrossRef]
- Xiao, M.; Zheng, W.X.; Jiang, G.P. Bifurcation and oscillatory dynamics of delayed cyclic gene networks includingsmall RNAs. IEEE Trans. Cybern. 2019, 49, 883–896. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, M.; Wan, Y.H.; Huang, C.D.; Xu, F.Y. Dynamical bifurcation for a class of large-scale fractional delayed neural networks with complex ring-hub structure and hybrid coupling. IEEE Trans. Neural Netw. Learn. Syst. 2021. [Google Scholar] [CrossRef]
- Alidousti, J. Stability and bifurcation analysis for a fractional prey-predator scavenger model. Appl. Math. Model. 2020, 81, 342–355. [Google Scholar] [CrossRef]
- Xu, C.J.; Liu, Z.X.; Liao, M.X.; Li, P.L.; Xiao, Q.M.; Yuan, S. Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation. Math. Comput. Simul. 2021, 182, 471–494. [Google Scholar] [CrossRef]
- Eshaghi, S.; Khoshsiar, R.; Ansari, G.A. Hopf bifurcation, chaos control and synchronization of a chaotic fractional-order system with chaos entanglement function. Math. Comput. Simul. 2020, 172, 321–340. [Google Scholar] [CrossRef]
- Zhou, W.G.; Huang, C.D.; Xiao, M.; Cao, J.D. Hybrid tactics for bifurcation control in a fractional-order delayed predator-prey model. Phys. A Stat. Mech. Its Appl. 2019, 515, 183–191. [Google Scholar] [CrossRef]
- Xu, C.J.; Liao, M.X.; Li, P.L.; Guo, Y.; Liu, Z.X. Bifurcation properties for fractional order delayed BAM neural networks. Cogn. Comput. 2021, 13, 322–356. [Google Scholar] [CrossRef]
- Xu, C.J.; Aouiti, C.; Liu, Z.X. A further study on bifurcation for fractional order BAM neural networks with multiple delays. Neurocomputing 2020, 417, 501–515. [Google Scholar] [CrossRef]
- Xu, C.J.; Liao, M.X.; Li, P.L.; Guo, Y.; Xiao, Q.M.; Yuan, S. Influence of multiple time delays on bifurcation of fractional-order neural networks. Appl. Math. Comput. 2019, 361, 565–582. [Google Scholar] [CrossRef]
- Djilali, S.; Ghanbari, B.; Bentout, S.; Mezouaghi, A. Turing-Hopf bifurcation in a diffusive mussel-algae model with time-fractional-order derivative. Chaos Solitons Fractals 2020, 138, 109954. [Google Scholar] [CrossRef]
- Xu, C.J.; Liu, Z.X.; Liao, M.X.; Yao, L.Y. Theoretical analysis and computer simulations of a fractional order bank data model incorporating two unequal time delays. Expert Syst. Appl. 2022, 199, 116859. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Matignon, D. Stability results for fractional differential equations with applications to control processing. Comput. Eng. Syst. Appl. 1996, 2, 963–968. [Google Scholar]
- Li, H.L.; Zhang, L.; Hu, C.; Jiang, Y.L.; Teng, Z.D. Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J. Appl. Math. Comput. 2017, 54, 435–449. [Google Scholar] [CrossRef]
- Das, M.; Maiti, A.; Samanta, G.P. Stability analysis of a prey-predator fractional order model incorporating prey refuge. Ecol. Genet. Genom. 2018, 7–8, 33–46. [Google Scholar] [CrossRef]
- Sun, Q.S.; Xiao, M.; Tao, B.B. Local bifurcation analysis of a fractional-order dynamic model of genetic regulatory networks with delays. Neural Process. Lett. 2018, 47, 1285–1296. [Google Scholar] [CrossRef]
- Cai, P.; Yuan, Z.Z. Hopf bifurcation and chaos control in a new chaotic system via hybrid control strategy. Chin. J. Phys. 2017, 55, 64–70. [Google Scholar] [CrossRef]
- Cheng, Z.S.; Cao, J.D. Hybrid control of Hopf bifurcation in complex networks with delays. Neurocomputing 2014, 131, 164–170. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, L.Z.; Huang, C.D.; Xiao, M. A novel hybrid control technique for bifurcation in an exponential RED algorithm. Int. J. Circuit Theory Appl. 2020, 48, 1476–1492. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Yan, J.; Xu, C.; Gao, R.; Li, Y. Understanding Dynamics and Bifurcation Control Mechanism for a Fractional-Order Delayed Duopoly Game Model in Insurance Market. Fractal Fract. 2022, 6, 270. https://doi.org/10.3390/fractalfract6050270
Li P, Yan J, Xu C, Gao R, Li Y. Understanding Dynamics and Bifurcation Control Mechanism for a Fractional-Order Delayed Duopoly Game Model in Insurance Market. Fractal and Fractional. 2022; 6(5):270. https://doi.org/10.3390/fractalfract6050270
Chicago/Turabian StyleLi, Peiluan, Jinling Yan, Changjin Xu, Rong Gao, and Ying Li. 2022. "Understanding Dynamics and Bifurcation Control Mechanism for a Fractional-Order Delayed Duopoly Game Model in Insurance Market" Fractal and Fractional 6, no. 5: 270. https://doi.org/10.3390/fractalfract6050270
APA StyleLi, P., Yan, J., Xu, C., Gao, R., & Li, Y. (2022). Understanding Dynamics and Bifurcation Control Mechanism for a Fractional-Order Delayed Duopoly Game Model in Insurance Market. Fractal and Fractional, 6(5), 270. https://doi.org/10.3390/fractalfract6050270