A Special Family of m-Fold Symmetric Bi-Univalent Functions Satisfying Subordination Condition
Abstract
:1. Introduction
2. Coefficient Bounds for Function Family
3. Coefficient Bounds for Function Family
4. Coefficient Bounds for Function Family
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of starlike functions’. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Tan, D.L. Coefficient estimates for bi-univalent functions. Chin. Ann. Math. Ser. A 1984, 5, 559–568. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Math. Anal. Its Appl. 1985, 3, 18–21. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Aouf, M.K. New subclass of bi-univalent functons. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Tang, H.; Deng, G.; Li, S. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Ineq. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Amourah, A.; Frasin, B.A.; Swamy, S.R.; Sailaja, Y. Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activated function and k-Fibonacci numbers. J. Math. Comput. Sci. 2022, 27, 105–117. [Google Scholar] [CrossRef]
- Frasin, B.A.; Swamy, S.R.; Nirmala, J. Some special families of holomorphic and Al-Oboudi type bi-univalent functions related to k-Fibonacci numbers involving modified sigmoid activated function. Afr. Mat. 2021, 32, 631–643. [Google Scholar] [CrossRef]
- Shammaky, A.E.; Frasin, B.A.; Swamy, S.R. Fekete-Szegö inequality for bi-univalent functions subordinate to Horadam polynomials. J. Funct. Spaces. 2022, 2022, 9422945. [Google Scholar] [CrossRef]
- Swamy, S.R. Coefficient bounds for Al-Oboudi type bi-univalent functions based on a modified sigmoid activation function and Horadam polynimials. Earthline J. Math. Sci. 2021, 7, 251–270. [Google Scholar] [CrossRef]
- Swamy, S.R.; Bulut, S.; Sailaja, Y. Some special families of holomorphic and Sălăgean type bi-univalent functions associated with Horadam polynomials involving modified sigmoid activation function. Hacet. J. Math. Stat. 2021, 50, 710–720. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions. Tbilisi Math J. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Acta Univ. Apulensis Math. Inform. 2015, 41, 153–164. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Initial coefficients estimate for some subclasses of M-fold symmetric bi-univalent functions. Acta Math. Sci. Ser. B 2016, 36, 863–971. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zireh, A.; Hajiparvaneh, S. Coefficients estimate for some subclasses of m-fold symmetric bi-univalent functions. Filomat 2018, 32, 3143–3153. [Google Scholar] [CrossRef]
- Sakar, F.M.; Tasar, N. Coefficients bounds for certain subclasses of m-fold symmetric bi-univalent functions. New Trends Math. Sci. 2019, 7, 62–70. [Google Scholar] [CrossRef]
- Wanas, A.K.; Páll-Szabó, A.O. Coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions. Stud. Univ. Babes-Bolai Math. 2021, 66, 659–666. [Google Scholar] [CrossRef]
- Bulut, S.; Salehian, S.; Motamednezhad, A. Comprehensive subclass of m-fold symmetric biunivalent functions defined by subordination. Afr. Mat. 2021, 32, 531–541. [Google Scholar] [CrossRef]
- Swamy, S.R.; Frasin, B.A.; Aldawish, I. Fekete-Szegö functional problem for a special family of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 1165. [Google Scholar] [CrossRef]
- Shehab, N.H.; Juma, A.R.S. Coefficient bounds of m-fold symmetric bi-univalent functions for certain subclasses. Int. J. Nonlinear Anal. Appl. 2021, 12, 71–82. [Google Scholar] [CrossRef]
- Breaz, D.; Cotîrlă, L.-I. The study of the new classes of m-fold symmetric bi-univalent Functions. Mathematics 2022, 10, 75. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotîrlă, L.-I. Coefficient Estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Minda, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Conference Proceedings and Lecture Notes in Analysis); Li, J., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. [Google Scholar]
- Tang, H.; Srivastava, H.M.; Sivasubramanian, S.; Gurusamy, P. Fekete-Szegö functional problems of m-fold symmetric bi-univalent functions. J. Math. Ineq. 2016, 10, 1063–1092. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung Über Ungerade Schlichte Funktionen. J. Lond. Math. Soc. 1933, 89, 85–89. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Peng, Z.-G.; Han, Q.-Q. On the coefficients of several classes of bi-univalent functions. Acta Math. Sci. Ser. B Engl. Ed. 2014, 34, 228–240. [Google Scholar] [CrossRef]
- Akgul, A. Fekete-Szegö coefficient inequality for a new class of m-fold symmetric bi-univalent functions satisfying subordination conditions. Honam Math. J. 2018, 40, 733–748. [Google Scholar]
- Altınkaya, Ş.; Yalçın, S. Coefficients bounds for certain subclasses of m-fold symmetric bi-univalent functions. J. Math. 2015, 2015, 241683. [Google Scholar] [CrossRef] [Green Version]
- Mururugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent functions. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Cotîrlă, L.-I. Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial. AIMS Math. 2022, 7, 8733–8750. [Google Scholar] [CrossRef]
- Páll-Szabó, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskolc Math. Notes 2019, 20, 489–509. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldawish, I.; Swamy, S.R.; Frasin, B.A. A Special Family of m-Fold Symmetric Bi-Univalent Functions Satisfying Subordination Condition. Fractal Fract. 2022, 6, 271. https://doi.org/10.3390/fractalfract6050271
Aldawish I, Swamy SR, Frasin BA. A Special Family of m-Fold Symmetric Bi-Univalent Functions Satisfying Subordination Condition. Fractal and Fractional. 2022; 6(5):271. https://doi.org/10.3390/fractalfract6050271
Chicago/Turabian StyleAldawish, Ibtisam, Sondekola Rudra Swamy, and Basem Aref Frasin. 2022. "A Special Family of m-Fold Symmetric Bi-Univalent Functions Satisfying Subordination Condition" Fractal and Fractional 6, no. 5: 271. https://doi.org/10.3390/fractalfract6050271
APA StyleAldawish, I., Swamy, S. R., & Frasin, B. A. (2022). A Special Family of m-Fold Symmetric Bi-Univalent Functions Satisfying Subordination Condition. Fractal and Fractional, 6(5), 271. https://doi.org/10.3390/fractalfract6050271