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Abstract: Particle breakage was reported to have great influence on the mechanical property of
granular materials. However, limited studies were conducted to quantify the detailed effects of
relative density and initial grading on the particle breakage behaviour of granular materials under
different confining pressures. In this study, a series of monotonic drained triaxial tests were performed
on isotropically consolidated granular materials with four different initial gradings and relative
densities. It is observed that particle breakage increases as the confining pressure or relative density
increases, whereas it decreases with the increasing coefficient of uniformity. Due to particle breakage,
the grading curves of granular materials after triaxial tests can be simulated by a power-law function
with fractal dimension. As the confining pressure increases, the fractal dimension approaches the
limit of granular materials, i.e., 2.6. A unique normalized relation between the particle breakage
extent and confining pressure by considering relative density and grading index was found.

Keywords: granular materials; fractal dimension; particle breakage; relative density; grading curve

1. Introduction

Owing to the convenience of lower procurement cost, good compaction ability and
high shear strength, granular materials have been widely used in hydraulic engineering,
civil engineering and transport engineering, among others [1,2].

Due to the development of the rolling equipment technology, various types and grades
of granular materials have been used for engineering construction, where the compactness
of granular materials has been significantly improved, which effectively reduced the
deformation of engineering facilities, e.g., a rockfill dam [3]. In a rockfill dam, granular
materials often account for 60-90% of the total filling volume. Therefore, the strength and
deformation of rockfill has an important impact on the stability and deformation analysis.
However, upon external loading, significant particle breakage of granular materials can
occur, which would have an important impact on the stability and deformation of the
engineering facilities during both construction and operating periods. In particular, the
grading curve changed evidently before and after loading [4]. Such degradation behaviour
of granular materials was found to depend not only on stress history [5,6], but also on grain
size distribution curve [7,8], parent rock type, particle size [9,10], particle shape [11,12]
and relative density [13,14]. For example, particle shape has a significant influence on the
particle breakage, which increases with the increasing in shape index sphericity, aspect
ratio, convexity and overall regularity [12]. The critical state parameters (M, ¢cs, er, and A.)
decrease with increasing aspect ratio, sphericity and convexity [8].

The relative density and grading curve are important control indicators at engineering
site, e.g., the relative density of sand should be at least 0.70 [15]. It was also found to have a
great influence on the shear strength and deformation of granular materials. The greater
the relative density, the greater the initial elastic modulus and peak friction angle and
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the smaller the volume strain [16,17]. However, previous studies mainly focused on the
effect of strength and deformation of granular materials [18,19]. The fundamental physical
properties that trigger particle breakage were not investigated in depth. For example,
at large relative density, the stress—strain relationship usually exhibited strain softening.
The stress—strain curve exhibited strain hardening with the decrease of relative density.
The effect of initial void ratio on the stress—strain relationship decreases with increasing
confining pressure [20,21]. With the increase in confining pressure, the difference of initial
void decreases and reaches essentially the same value [20]. The residual strength of rockfill
at different relative density was observed to be the same [22]. The critical state parameters
(M and A.) are less affected by relative density and particle grading [7,13]. However,
the critical state parameters (er) decrease with increasing relative density. The relative
breakage index decreases with increasing relative density [14]. Extensive research has
also been carried out on the impact of granular materials particle gradation [23-25]. For
example, model parameters varied linearly with the coefficient of uniformity. The larger
the coefficient of uniformity, the smaller the peak intensity and the larger volumetric strain.

In this study, a comprehensive study on the effect of relative density and initial grading
on the particle breakage behavior of granular materials will be carried out, by using drained
triaxial tests. An attempt is also made to propose a unique normalized relation between the
particle breakage extent, applied pressure, relative density and grading index. The research
results play an important role in understanding and mastering the gradation change law
and strength characteristics of granular materials before and after loading, and provide an
important reference for the stable design parameters of the structure.

2. Laboratory Tests

The granular materials, as shown in Figure 1, were collected from a quarry near
Nanjing, China. Aggregates were derived from the parent of sandstone rock. The grain size
distribution of the material and triaxial apparatus are shown in Figure 2. The dry density,
coefficient of uniformity (C,) and curvature coefficient (C.) are listed in Table 1.

Figure 1. Test materials.
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Figure 2. (a) Grading curve; (b) Triaxial apparatus. Grain size distribution and triaxial apparatus for

tested granular materials.

Table 1. The basic characteristics of grading curves.

Gcel Ge2 Gc3 Gc4 Gc5

Coefficient of uniformity 2 5 10 20 40
Curvature coefficient 1.17 1.44 1.68 1.97 2.30
Maximum dry density (g/cm3) 1.71 1.78 1.94 2.12 2.23
Minimum dry density (g/ cm?) 1.47 1.57 1.68 1.78 1.79

The experimental program comprised a consolidated drained triaxial shear test with an
initial sample size of a 100 mm diameter and a 200 mm height. The specimen preparation
and loading process were carried out step by step with reference to the specification
of soil test (SL237-1999) [26]. Aggregates were weighed separately and mixed together
before being split into five equal portions. Each portion was then compacted inside a
split cylindrical mould. The monotonic shearing rate of displacement was determined
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to be 0.6 mm/min. Before shearing, the sample was saturated by allowing water to pass
through the base of the triaxial cell under a back pressure of 50 kPa until Skempton’s
B-value exceeded 0.95. In order to analyse the particle breakage, four different relative
densities (i.e., Rd = 0.6, 0.7, 0.8 and 0.9 of grading curve Gc3) and five kinds of grading
curves (i.e., Gel, Ge2, Ge3, Ge4 and Gceb in Rd = 0.9) were selected under four values of
confining pressures (i.e., 03 = 0.2, 0.4, 0.6 and 0.8 MPa). A load cell and pore-pressure
sensor were used to measure the deviator load and drainage volume, respectively, through
the electronic display system. All the tests were conducted up to a maximum axial strain
of 25%.

3. Analysis of Test Results
3.1. Particle Breakage under Different Relative Density

The particle size distribution of natural granular materials in this study can be de-
scribed by using the Talbot grading curve [27]. Blasting granular materials can meet
the Talbot grading curve by adjusting the blasting parameters, and subsequently it will
represent fractal characteristics and be easier to achieve the maximum dry density. The
proportion of particle mass can be calculated by using the following formula:

W >d)
e =1 E@) M)
3-D
o (4)

where d is the diameter of the particle, W(J > d) is the mass of particle with diameter
larger than d, W is the total mass of granular materials, dj; is the particle maximum
diameter, F(d) is the mass ratio of granular materials with diameter less than 4 and D is the
fractal dimension.

The stress—strain behaviour of granular materials tested at different Rd of 0.6, 0.7, 0.8
and 0.9 is shown in Figure 3, respectively. The peak shear stress increases (such as 2.42,
2.43, 2.53 and 2.78 MPa) with the increase in Rd, for a given effective confining pressure
(03 = 0.6 MPa). However, the residual shear stresses remain approximately the same for
the different Rd for a given confining pressure. The stress—strain behaviour of granular
materials transforms from a strain hardening type to a strain softening type for all the tested
specimens. As the shear strain further increases, the residual shear stresses corresponding
to the rockfill with different Rd become stable. All the granular materials tested in this
study exhibit characteristics similar to those observed by Lade [28] for sands. This can be
attributed to the observation that the greater the relative density, the greater the interlocking
between the particles; and the greater the loading, the greater was the peak strength of
the specimen under the same confining pressure. As the load increased, particle breakage
occurred, the interlocking force between particles would decrease and the shear strength
would decrease.

Furthermore, a general compression followed by the dilatancy can be observed in all
granular materials tested at low confining pressures. Granular materials gradually became
more compressive with the increasing confining pressure. The larger the relative density
was, the dilatancy became much more pronounced. The volumetric strain became stable
as the strain increased, whereas it decreased as the relative density increased. This can
be attributed to the enhanced sliding rather than rotation between aggregates when the
compressive pressure increases.

At the monotonic loading test, the grading curve of granular materials changed due
to the occurrence of particle breakage. Thus, the fractal dimensions of each grading curve
changed after each test. Figure 4 shows the fractal dimension obtained under different
confining pressures after monotonic loading. There is a good linear relationship between
InF(d) and In(d/dy,) after loading under different confining pressures. The values of R? are
larger than 0.97, and the Root mean squared Error (Re) is smaller than 0.23. The fractal
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dimension increases with confining pressure during of particle breakage. For example, the
fractal dimension increases from 2.33 (o3 = 0.2 MPa) to 2.37 (03 = 0.8 MPa) when relative
density Rd = 0.6. However, relative density has little influences on the fractal dimension,

especially under higher relative density. For example, the fractal dimensions are almost the
same for Rd = 0.8 and 0.9.
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Figure 3. (a) confining pressure of 0.2 MPa; (b) confining pressure of 0.4 MPa; (c) confining pressure
of 0.6 MPa; (d) confining pressure of 0.8 MPa. Stress—strain behaviour of granular materials under

different confining pressures.



Fractal Fract. 2022, 6, 347

7 of 17

In Aa)

Rd= 0.6
| —m— p=222 |Initial f)
* @ p=233 0,=0.2MPa 7
[ —A= p=2235 o, = 0.4MPa s
| —@ -D=236 c,=0.6MPa o
" -@- p=237 0,=0.8MPa Ay
= A. 4 /
I RidVa
u ”}" /7 - @ R*=0.98 Re=0.229
- e d —A= R*=0.98 Re=0.087
- Ay of —-@- R°=0.98 Re=0.103
i L& p - @ - 7=0.98 Re=0.069
’/-
|4."/.| 2\ | 1 | 1 | 1 |
-10 -8 -6 -4 -2 0
In(dd,)
(a)
| Rd=0.7
=B p=2.22 Initial ")
- ® p=2.31 0,=0.2MPa ‘/’
[—A- p=236 o,=0.4MPa ’/
~— -D=2.39 o,=0.6MPa ’éf
- ®-D=-241 o,=0.8MPa ’);-Z'/
B PV
5 7 )
7
B ,/;f/. / - @ R=0.98 Re=0.106
I S0 —A= R*=0.98 Re=0.110
i SOANEE | — @ - £=0.98 Re=0.047
i 2R - @ - R=0.98 Re=0.109
. ./ L 7
e .7 1 . I \ I \ I . L
-10 -8 -6 -4 -2 0
In(dld,)

Figure 4. Cont.

(b)



Fractal Fract. 2022, 6, 347 8of 17

5
| Rd=0.8
=B p=222 |Initial f)
4 _ e
@ D=229 o,=0.2MPa 4/
"—A— p=236 o,=0.4MPa '/
<3 [[—®-D=239 o,=0.6MPa ’2'.('f
T [-@-p=242 0,=08MPa ;:'-/-,
c , .
2r .2 797
| e
A7
Tr 7N P @ R=0.98 Re=0.071
- s : —A— R=0.98 Re=0.123
0| LAYy - @ - R°=0.98 Re=0.049
L ., - @ - R’=0.98 Re=0.139
4 Le” AR | ! | ! ! . !
-10 -8 6 -4 2 0
In(dd)
(c)
5
| Rd=0.9
—m p=222 Initial /f"
‘e ® p=230 o,=0.2MPa 4/ :
[—/A— p=238 o,=0.4MPa !;«;
s —@-Dp=240 o,=0.6MPa ’,5‘/.
T }--@- p=242 0,=0.8MPa /‘4//
c Z
_2 - 7': ../
L ’gl// - .
1| L " @ R=0.98 Re=0.067
I P aRnd —A= R=0.98 Re=0.055
o | R w —@- =098 Re=0.093
x ' -®- R=0.98 Re=0.113
Tt /
q L2 W 4 ! ; ! ; ! : !
-10 -8 -6 -4 -2 0
In(dld, )
(d)

Figure 4. (a) Rd = 0.6; (b) Rd = 0.7; (c) Rd = 0.8; (d) Rd = 0.9. Grading curves of different relative densities.

The extent of particle breakage during monotonic drained shearing is further assessed.
In this study, the breakage ratio Bg presented by Marsal [29] is used for analysis, which can
be expressed as the following:

Bg = E|Ptest - Pini‘ (3)
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where Pyt is percentage by mass of particles after the test, and P;,; is percentage by mass
of particles before the test.

The evolution of breakage ratio at different confining pressures is shown in Figure 5.
According to the results, breakage ratio increases with an increase in confining pressure.
The relationship between breakage ratio and confining pressure can be simulated by using a
power function. The larger the relative density is, the greater the interlocking force between
the particles is. Moreover, at the same axial strain level, the larger the shear stress is, the
larger the particle breakage ratio is. With the increase of the relative density, breakage
ratio increases. A power function is found to be able to fit well the relationship between
breakage ratio, relative density and confining pressure, such that:

B, = ki (?Rd) )

where ki and n are model parameters, determined to be 6.36 and 0.46, respectively; p,
(=101 kPa) is the atmospheric pressure.
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Figure 5. (a) Breakage ratio vs. confining pressure; (b) Breakage ratio vs. normalized confining

pressure. Particle breakage of different relative densities.
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3.2. Particle Breakage under Different Grading Curve

Figure 6 shows the fractal dimension under different confining pressures after mono-
tonic loading. There is also a good linear relationship between InF(d) and In(d/dy,) after
loading at different confining pressures. Compared with those under different relative
densities, the initial fractal dimension has great influences on the final fractal dimensions
obtained under different confining pressures, as shown in Figure 7. It can also be observed
that under low confining pressures, granular materials can undergo significant particle
breakage. The smaller the fractal dimension is, the more significant the particle breakage
extent will be. The larger the fractal dimension is, the greater the content of fine particles,
the smaller the particle crushing rate during shearing and the smaller the effect of confining
pressure on particle crushing. As the confining pressure increases, it tends to the final limit
fractal dimension 2.6 [30].

The evolution of the breakage ratio at different confining pressures is shown in Figure 8.
Unlike the relationship between the relative density and particle breakage ratio in direct
proportion, the coefficient of uniformity is inversely proportional to the particle breakage
ratio. The greater the coefficient of uniformity, the smaller is the particle breakage ratio.
A normalized power function is also found to fit well the relationship between breakage
ratio, relative density, uniform coefficient and confining pressure. The expression is shown

as follows: ;
— 93
Bg = ko (PaCu Rd> )
where k; and 7 are model parameters, determined to be 19.1 and 0.46, respectively.
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Figure 6. (a) Grading curves of Gc1; (b) Grading curves of Ge2; (¢) Grading curves of Ge3; (d) Grading

curves of Ge4; (e) Grading curves of Ge5. Grading curves of different grading curves.
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Figure 8. (a) Breakage ratio vs. confining pressure; (b) Breakage ratio vs. normalized confining

pressure. Particle breakage of different grading curves.
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Median diameter ds is an important soil grading curve index. The larger the median
diameter, the higher the shear strength and the more obvious is the shear expansion
effect [31]. Figure 9 shows the relationship between the particle breakage ratio with dsg
under different confining pressures after monotonic loading. The greater dsy, the greater is
the particle breakage ratio. According to previous research, the confining pressure effect
can be expressed by a power function. A normalized power function is also found to fit
well the relationship between breakage ratio, ds and confining pressure. The expression is
shown as follows:

_ s (03\"
By = ka (p) ©)

where k; and n3 are model parameters, determined to be 16.5 and 0.46 (which is the same
as the previous value of the coefficient of uniformity).
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Figure 9. Breakage ratio vs. median diameter under different confining pressures.

The particle breakage is related to the relative density, uniform coefficient and stress
level of the granular materials. Figure 10 shows the percentage increment of particle weight,
AF, under different confining pressures.

AF = Piest — Pini (7)

During the shear process, the percentage increment in the range of 5-10 mm is found
to be almost the same under different confining pressures except the grading curve Gcl.
However, the percentage increment in the range of 10-20 mm shows considerable increase
with an increase in the confining pressure, relative density and decrease in coefficient
of uniformity. Compared with particle percentage increment, particle breakage mainly
occurs in large particles during shear tests, indicating that the particles in the range of
5-10 mm exhibit limited breakage, because the large particles can break into middle and
small particles. However, further mechanisms should be analysed, combined with discrete
element model (DEM) simulations.
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Figure 10. (a) Different relative density; (b) different grading curves. Particle percentage increment

(AF > 0, particle percentage increasing).

4. Conclusions

In this study, the influence of relative density and grading curve on the particle

breakage of granular material was investigated. A series of consolidated drained triaxial
tests were performed on granular materials subjected to monotonic loading. The major
findings of this study are summarized below:

@

@)

®)

The particle size distribution exhibited good fractal characteristics after monotonic
loading of rockfill at different confining pressures. The fractal dimension increased
with the increase in confining pressure. The coefficient of uniformity exhibited a
greater effect on the fractal dimension than relative density.

During the shearing process, the main occurrence of breakage was found to be in
large particles. The extent of particle breakage increased with the increase of confining
pressure and relative density, whereas it decreased with an increase in the coefficient
of uniformity, which can be well described by a normalized power function. The
relationship between the breakage ratio and the median diameter can be described by
a linear function.

The conclusions are mainly based on the results after the test. In fact, fractal dimension
and particle breakage change with axial loading. Future research should focus on the
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results during the shear test. The relationship between fractal dimension and particle
breakage with shear modulus and volume strain should be investigated.
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