Multivalent Functions and Differential Operator Extended by the Quantum Calculus
Abstract
:1. Introduction
2. Preliminaries
2.1. Geometric Approaches
2.2. Quantum Calculus
3. Results
3.1. Properties of
- (i)
- ρ is univalent in
- (ii)
- is star-like in
- (iii)
- the subordination
- (i)
- Let ρ be univalent in
- (ii)
- Let be star-like in
- (iii)
- Let the subordinationhold.
- (i)
- ρ is univalent in
- (ii)
- is star-like in
- (iii)
- The subordination
- (i)
- ρ is univalent in
- (ii)
- is star-like in
- (iii)
- The subordination
3.2. Quantum Differential Operator
- (i)
- Θ is univalent in
- (ii)
- is star-like in
- (iii)
- The subordination
- (i)
- Θ is univalent in
- (ii)
- is star-like in
- (iii)
- The subordination
- (i)
- Θ is univalent in
- (ii)
- is star-like in
- (iii)
- The subordination
4. Conclusions
Author Contributions
Funding
Institutional Review Board
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. XI.–On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, D.O.; Fukuda, T.; Dunn, O.; Majors, E. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. Int. J. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal 2016, 10, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Zainab, S.; Shakeel, A.; Imran, M.; Muhammad, N.; Naz, H.; Malik, S.N.; Arif, M. Sufficiency criteria for starlike functions associated with cardioid. J. Funct. Spaces 2021, 2021, 9999213. [Google Scholar] [CrossRef]
- Hadid, S.B.; Ibrahim, R.W.; Momani, S. A New Measure of Quantum Starlike Functions Connected with Julia Functions. J. Funct. Spaces 2022, 2022, 4865785. [Google Scholar] [CrossRef]
- Noor, S.; Razzaque, A. New Subclass of Analytic Function Involving-Mittag–Leffler Function in Conic Domains. J. Funct. Spaces 2022, 2022, 8796837. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Baleanu, D. On quantum hybrid fractional conformable differential and integral operators in a complex domain. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2021, 115, 31. [Google Scholar] [CrossRef]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Aldawish, I.; Ibrahim, R.W. Solvability of a New q-Differential Equation Related to q-Differential Inequality of a Special Type of Analytic Functions. Fractal Fract. 2021, 5, 228. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Lakshmi, S.; Varadharajan, S.; Mohankumar, D.; Umadevi, E. Starlike Functions of Complex Order with Respect to Symmetric Points Defined Using Higher Order Derivatives. Fractal Fract. 2022, 6, 116. [Google Scholar] [CrossRef]
- Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
- Raees, M.; Kashuri, A.; Awan, M.U.; Anwar, M. Some new post-quantum integral inequalities involving multi-parameter and their applications. Math. Methods Appl. Sci. 2022. [Google Scholar] [CrossRef]
- Mohammad, A..M.; Serra-Capizzano, S. Statistical convergence via q-calculus and a korovkin’s type Approximation theorem. Axioms 2022, 11, 70. [Google Scholar] [CrossRef]
- Mursaleen, M.; Tabassum, S.; Fatma, R. On q-Statistical Summability Method and Its Properties. Iran. J. Sci. Technol. Trans. Sci. 2022, 46, 455–460. [Google Scholar] [CrossRef]
- Long, B.; Wu, W. The category of compact quantum metric spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2022, 25, 2250004. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Arif, M.; Haq, M.U.; Liu, J. A subfamily of univalent functions associated with-analogue of Noor integral operator. J. Funct. Spaces 2018, 2018, 3818915. [Google Scholar]
- Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H.; Rehman, S.U. Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Srivastava, R.; Liu, J. A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions. Mathematics 2021, 9, 1706. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: New York, NY, USA, 1994; pp. 157–169. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Srivastava, H.M.; Khan, M.G.; Khan, N.; Ahmad, B.; Khan, B.; Mashwani, W.K. Certain subclasses of analytic multivalent functions associated with petal-shape domain. Axioms 2021, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M. Applications of a q-Salagean type operator on multivalent functions. J. Inequal. Appl. 2018, 2018, 301. [Google Scholar]
- Seoudy, T.M.; Aouf, M.K. Convolution properties for certain classes of analytic functions defined by-derivative operator. Abstr. Appl. Anal. 2014, 2014, 846719. [Google Scholar]
- Silverman, H.; Silvia, E.M.; Telage, D. Convolution conditions for convexity, starlikeness and spiral-likeness. Math. Z. 1978, 162, 125–130. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadid, S.B.; Ibrahim, R.W.; Momani, S. Multivalent Functions and Differential Operator Extended by the Quantum Calculus. Fractal Fract. 2022, 6, 354. https://doi.org/10.3390/fractalfract6070354
Hadid SB, Ibrahim RW, Momani S. Multivalent Functions and Differential Operator Extended by the Quantum Calculus. Fractal and Fractional. 2022; 6(7):354. https://doi.org/10.3390/fractalfract6070354
Chicago/Turabian StyleHadid, Samir B., Rabha W. Ibrahim, and Shaher Momani. 2022. "Multivalent Functions and Differential Operator Extended by the Quantum Calculus" Fractal and Fractional 6, no. 7: 354. https://doi.org/10.3390/fractalfract6070354
APA StyleHadid, S. B., Ibrahim, R. W., & Momani, S. (2022). Multivalent Functions and Differential Operator Extended by the Quantum Calculus. Fractal and Fractional, 6(7), 354. https://doi.org/10.3390/fractalfract6070354