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Abstract: We used the concept of quantum calculus (Jackson’s calculus) in a recent note to develop
an extended class of multivalent functions on the open unit disk. Convexity and star-likeness
properties are obtained by establishing conditions for this class. The most common inequalities of
the proposed functions are geometrically investigated. Our approach was influenced by the theory
of differential subordination. As a result, we called attention to a few well-known corollaries of our
main conclusions.
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1. Introduction

The (Jackson’s calculus) (Quantum calculus (QC)) is a brand-new branch of mathemat-
ics that has applications in both physics and mathematics [1,2]. However, Ismail et al. [3]
presented QC in the geometric function theory. Based on this investigation, many Ma and
Minda classes of analytic functions are being proposed and developed on the open unit
disk (the classes of analytic functions that are defined by the subordination notion). For
example, quantum star-like function sub-classes were formulated in the effort of Seoudy
and Aouf [4] employing the notion of q-derivatives. Zainab et al. [5] developed accept-
able q-star-likeness criteria applying a unique curve. Furthermore, q-star-like functions
dominating the 2D-Julia set were examined by Samir et al. [6]. This calculus proved its
efficiency and accuracy to generalize the families of differential and integral operators in a
complex domain. In addition, special functions (see [7,8]) have associated with this calculus,
especially the queen of special functions: Mittag–Leffler function (see [9–12]). The quantum
calculus (q-calculus) has tremendous applications in different fields, for example, integral
inequalities [13], summability [14], approximation and polynomials [15], and sequence
spaces [16].

In a complex domain Ω, p-valent is an ordinary simplification of the concept of a
univalent function (normalized or meromorphic) in the complex plane. The number of
zeros of the equation φ(ξ) = ς in Ω does not go above p for any ς. This result highlights
there are at most p points of the Riemann surface and the ς-plane into which ς = φ(ξ)
maps Ω. Note that in Ω, φ(ξ) is univalent for p = 1. Based on the QC, this class of analytic
functions has been widely generalized by many researchers. Srivastava [17] utilized the
QC to study the existence of numerous arrangements of function theory. Arif et al. [18]
and Khan et al. [19] added investigations on the integral operator theory for holomorphic
and p-valent functions. Wang et al. [20] presented a generalization of Janowski p-valent
functions in view of QC.
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We propose a set of functional formulas connected with the class of multivalent
functions on the open unit disk in this work using QC. The proposed quantum formulas
will be geometrically investigated. For previous works, a collection of ramifications is
presented. Our technique is indicated by the theory of differential subordination and
superordination.

2. Preliminaries

In this section, we provide necessary definitions, lemmas and corollaries for explaining
the proofs of our Theorems.

2.1. Geometric Approaches

Let us begin with the fundamentals of geometric function theory which are covered in
this book [21].

Definition 1. The set U := {ξ ∈ C : |ξ| < 1} is specified in the open unit disk. The analytic
functions υ1, υ2 in U are subordinated υ1 ≺ υ2 or υ1(ξ) ≺ υ2(ξ), ξ ∈ U if, for an analytic function
v, |v| ≤ |ξ| < 1 satisfies

υ1(ξ) = υ2(v(ξ)), ξ ∈ U.

In the open unit disk, Ma and Minda [22] introduced two significant classes of star-like
and convex functions demarcated by the definition of the subordination, respectively:

ξυ′(ξ)

υ(ξ)
≺ p(ξ), p(0) = 1;

1 +
ξυ′′(ξ)

υ′(ξ)
≺ p(ξ), p(0) = 1,

Numerous investigations have prolonged and generalized these classes. Furthermore,
the investigators utilized differential and integral processes to generate advanced classes of
analytic functions.

Definition 2. Let Λp be the class of p-valent analytic functions defined as follows:

υ(ξ) = ξ p +
∞

∑
n=p+1

an ξn, ξ ∈ U,

where p ∈ N. Additionally, two functions are defined for υ ∈ Λp as follows:

Tυ(ξ) :=
ξυ′(ξ)

υ(ξ)
, ξ ∈ U;

and

Vυ(ξ) := 1 +
ξυ′′(ξ)

υ′(ξ)
, ξ ∈ U.

Based on the preceding functions, there are two classes of p-valent functions, the star-like Tυ

class and convex Vυ, which meet the following conditions, respectively:

<(Tυ(ξ)) > 0, <(Vυ(ξ)) > 0, ξ ∈ U.

Definition 3. Two functions

υ(ξ) = ξ p +
∞

∑
n=p+1

an ξn
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and

ϑ(ξ) = ξ p +
∞

∑
n=p+1

bn ξn

are convoluted if they satisfy the product

υ(ξ) ∗ ϑ(ξ) = ξ p +
∞

∑
n=p+1

anbn ξn, ξ ∈ U.

The next result can be found in [21] (Corollary 3.4h.1 p.135)

Lemma 1. Let f be analytic and g be univalent in U with f (0) = g(0), and let ψ be analytic in a
domain containing g(U) and g(U). If ξg′(ξ)ψ(g(ξ)) is star-like, then the inequality

ξ f ′(ξ)ψ( f (ξ)) ≺ ξg′(ξ)ψ(g(ξ))

implies that f (ξ) ≺ g(ξ) and g is the best dominant.

Lemma 2 ([22]). Let P(z) = 1 + ∑∞
n=1 pnzn be analytic in U satisfying <(P(z)) > 0. Then

|p2 − kp2
1| ≤ 2 max{1, |2k− 1|}, k ∈ C.

2.2. Quantum Calculus

Definition 4. The Jackson’s derivative, which contains the difference operator, can be shown
as follows:

(
ðq
)

f (ξ) =
f (ξ)− f (q ξ)

ξ(1− q)
, q ∈ (0, 1) (1)

where

ðq (ξ
p) =

(
1− qp

1− q

)
ξ p−1, κ ∈ R.

In Maclaurin’s series representation, the total of the numbers is also included as follows:

(
ðq f

)
(ξ) =

∞

∑
n=0

ϕn [n]q ξn−1, (2)

where
[n]q :=

1− qn

1− q
.

Note that
ðq K = 0, lim

q→1−

(
ðq f

)
(ξ) = f ′(ξ),

where K is a constant function.

Definition 5. For a function υ ∈ Λp, let Υq : U→ C be formulated by

Υq(ξ) := (1− δ)υ(ξ) +
δ

[p]q

(
ξðq υ(ξ)

)
, ξ ∈ U, δ ∈ [0, 1].
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Remark 1. Clearly, for υ ∈ Λp, we obtain

Υq(ξ) = (1− δ)υ(ξ) +
δ

[p]q

(
ξðq υ(ξ)

)
= (1− δ)

(
ξ p +

∞

∑
n=p+1

an ξn

)
+

δ

[p]q

(
ξðq

(
ξ p +

∞

∑
n=p+1

an ξn

))

= (1− δ)

(
ξ p +

∞

∑
n=p+1

an ξn

)
+

δ

[p]q

(
ξ

(
ðqξ p +

∞

∑
n=p+1

an ðqξn

))

= (1− δ)

(
ξ p +

∞

∑
n=p+1

an ξn

)
+

δ

[p]q

(
ξ

(
[p]qξ p−1 +

∞

∑
n=p+1

an [n]qξn−1

))

= (1− δ)

(
ξ p +

∞

∑
n=p+1

an ξn

)
+

δ

[p]q

(
[p]qξ p +

∞

∑
n=p+1

an [n]qξn

)

=

(
ξ p +

∞

∑
n=p+1

(
(1− δ) +

δ[n]q
[p]q

)
an ξn

)

:= ξ p +
∞

∑
n=p+1

χn(q, δ, p)an ξn, χn(q, δ, p) =
(
(1− δ) +

δ[n]q
[p]q

)
.

Thus, Υq(ξ) ∈ Λp.

3. Results

We have the following results.

3.1. Properties of Υq(ξ)

This part deals with the geometric properties of the functional Υq(ξ).

Theorem 1. Consider the following assumptions:

(i) ρ is univalent in U;

(ii)
ξρ′(ξ)

ρ(ξ)(ρ(ξ)− 1)
is star-like in U;

(iii) the subordination
VΥq(ξ)− p
TΥq(ξ)− p

≺ 1 +
1
p

ξρ′(ξ)

ρ(ξ)(ρ(ξ)− 1)

holds.

Then
TΥq(ξ)

p
≺ ρ(ξ), ξ ∈ U

and ρ is the best dominant.

Proof. Define function P as follows:

P(ξ) :=
TΥq(ξ)

p
, ξ ∈ U.

A computation implies

TP(ξ) = VΥq(ξ)− pP(ξ).



Fractal Fract. 2022, 6, 354 5 of 15

Substitution implies that

VΥq(ξ)− p
TΥq(ξ)− p

=
TP(ξ) + pP(ξ)− p

pP(ξ)− p

= 1 +
1
p

ξP′(ξ)
P(ξ)(P(ξ)− 1)

.

Hence,
ξP′(ξ)

P(ξ)(P(ξ)− 1)
≺ ξρ′(ξ)

ρ(ξ)(ρ(ξ)− 1)
, ξ ∈ U.

According to Lemma 1, we obtain the result.

Theorem 2. Consider the following assumptions:

(i) Let ρ be univalent in U;

(ii) Let
ξρ′(ξ)

ρ(ξ)− 1
be star-like in U;

(iii) Let the subordination

TΥq(ξ)

(
VΥq(ξ)− p
TΥq(ξ)− p

− 1

)
≺ ξρ′(ξ)

ρ(ξ)− 1

hold.

Then
TΥq(ξ)

p
≺ ρ(ξ), ξ ∈ U

and ρ is the best dominant.

Proof. We formulate the function P as follows:

P(ξ) :=
TΥq(ξ)

p
, ξ ∈ U.

Consequently, we have

TP(ξ) + pP(ξ) = VΥq(ξ).

Substitution yields that

TΥq(ξ)

(
VΥq(ξ)− p
TΥq(ξ)− p

− 1

)
=

ξP′(ξ)
P(ξ)− 1

.

Hence,
ξP′(ξ)

P(ξ)− 1
≺ ξρ′(ξ)

ρ(ξ)− 1
, ξ ∈ U.

According to Lemma 1, we obtain the result.

Theorem 3. Consider the following assumptions:

(i) ρ is univalent in U;
(ii) Tρ is star-like in U;
(iii) The subordination

VΥq(ξ)− TΥq(ξ) ≺ Tρ(ξ)

holds.
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Then
TΥq(ξ)

p
≺ ρ(ξ), ξ ∈ U

and ρ is the best dominant.

Proof. We present the function P as follows:

P(ξ) :=
TΥq(ξ)

p
, ξ ∈ U.

Thus, we have
TP(ξ) + pP(ξ) = VΥq(ξ).

Substitution yields that

VΥq(ξ)− TΥq(ξ) = TP(ξ).

Hence,
TP(ξ) ≺ Tρ(ξ), ξ ∈ U.

According to Lemma 1, we have the result P(ξ) ≺ ρ(ξ).

Theorem 4. Consider the following assumptions:

(i) ρ is univalent in U;
(ii) ξρ′(ξ) is star-like in U;
(iii) The subordination

TΥq(ξ)
(

VΥq(ξ)− TΥq(ξ)
)
≺ pξρ′(ξ)

holds.

Then
TΥq(ξ)

p
≺ ρ(ξ), ξ ∈ U

and ρ is the best dominant.

Proof. We define the function P as follows:

P(ξ) :=
TΥq(ξ)

p
, ξ ∈ U.

Consequently, we have

TP(ξ) + pP(ξ) = VΥq(ξ).

Substitution yields that

TΥq(ξ)
(

VΥq(ξ)− TΥq(ξ)
)
= pξP′(ξ).

Hence,
pξP′(ξ) ≺ pξρ′(ξ), ξ ∈ U.

According to Lemma 1, we obtain the result P(ξ) ≺ ρ(ξ).

Then, we consider the multivalued function ρ(ξ) = 1 + sinh−1(ξ) (as can be seen in
Figure 1).
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Figure 1. Plotting of the function 1 + sinh−1(ξ), which is analytic in the open unit disk and maps it
onto the petal-shape domain. The graphs presents the complex map, Riemann surface, real part, and
imaginary part of the function.

Theorem 5. Consider the functional Υq such that

TΥq(ξ)

p
≺ 1 + sinh−1(ξ), ξ ∈ U.

Then∣∣∣χp+2(q, δ, p)ap+2 − k
(
χp+1(q, δ, p)ap+1

)2
∣∣∣ ≤ p

2
max{1, |2k− 1|}, k ∈ C.

Furthermore, ∣∣χp+2(q, δ, p)ap+2
∣∣ ≤ p

2
.

Proof. By the assumption, we have

TΥq(ξ)

p
= 1 + sinh−1(ω(ξ)),

where ω(ξ) is analytic in U such that ω(0) = 0 and |ω| < |ξ| < 1. It is clear that

TΥq(ξ)

p
= 1 +

1
p

χp+1(q, δ, p)ap+1ξ

+

(
2
p

χp+2(q, δ, p)ap+2 −
1
p
(
χp+1(q, δ, p)ap+1

)2
)

ξ2

+ ...

and that
1 + sinh−1(ω(ξ)) = 1 + ς1ξ + ς2ξ2 + ...
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then, we obtain

χp+1(q, δ, p)ap+1 = pς1

χp+2(q, δ, p)ap+2 =
p
2

ς2 +
p2

2
ς2

1.

Combining the above equations, we obtain that∣∣∣χp+2(q, δ, p)ap+2 − k
(
χp+1(q, δ, p)ap+1

)2
∣∣∣ = p

2
|ς2 − (2k− 1)ς2

1|.

Hence, Lemma 2 implies the requested result. For the second result, let k = 0, then we
obtain the inequality.

Corollary 1 ([23], Theorem 1). Consider the functional Υq such that δ = 0 and

TΥq(ξ)

p
≺ 1 + sinh−1(ξ), ξ ∈ U,

then ∣∣∣ap+2 − k
(
ap+1

)2
∣∣∣ ≤ p

2
max{1, |2k− 1|}, k ∈ C.

Furthermore, ∣∣ap+2
∣∣ ≤ p

2
.

Corollary 2 ([23], Corollary 1). Consider the functional Υq such that δ = 0 and

TΥq(ξ)

p
≺ 1 + sinh−1(ξ), ξ ∈ U,

then ∣∣∣ap+2 −
(
ap+1

)2
∣∣∣ ≤ p

2
.

Furthermore, ∣∣ap+2
∣∣ ≤ p

2
.

Corollary 3 ([23], Corollary 2). Consider the functional Υq such that δ = 0 and

TΥq(ξ)

p
≺ 1 + sinh−1(ξ), ξ ∈ U.

Then ∣∣∣a3 − k(a2)
2
∣∣∣ ≤ p

2
max{1, |2k− 1|}, k ∈ C,

|a3| ≤
1
2

and ∣∣∣a3 − a2
2

∣∣∣ ≤ 1
2

.

Theorem 6. If ρ is convex univalent in U such that

TΥq(ξ)

p
≺ ρ(ξ), ξ ∈ U,
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where ρ(0) = 1. Then

Υq(ξ) ≺ ξ exp
(∫ ξ

0

pρ(ω(χ))

χ
dχ

)
,

where ω satisfies ω(0) = 0 and |ω(ξ)| < 1. Furthermore, the inequality |ξ| := $ < 1 implies

exp
(∫ 1

0

pρ(−$)

$
d$

)
≤
∣∣∣Υq(ξ)

ξ

∣∣∣ ≤ exp
(∫ 1

0

pρ($)

$
d$

)
.

Proof. By the assumption of the theorem, we obtain(
Υq(ξ)

)′
Υq(ξ)

− 1
ξ
=

pρ(ω(ξ))− 1
ξ

.

Integration implies that

Υq(ξ) ≺ ξ exp
(∫ ξ

0

pρ(ω(χ))

χ
dχ

)
,

which is equivalent to
Υq(ξ)

ξ
≺ exp

(∫ ξ

0

pρ(ω(χ))

χ
dχ

)
.

Since
ρ(−$|ξ|) ≤ <(ρ(ω(ξ$))) ≤ ρ($|ξ|)

then, consequently this yields∫ 1

0

ρ(−$|ξ|)
$

d$ ≤
∫ 1

0

<(ρ(ω(ξ$)))

$
d$ ≤

∫ 1

0

ρ($|ξ|)
$

d$.

Combining the above inequalities, we obtain

p
∫ 1

0

ρ(−$|ξ|)
$

d$ ≤ log
∣∣∣Υq(ξ)

ξ

∣∣∣ ≤ p
∫ 1

0

ρ($|ξ|)
$

d$.

This leads to

exp
(∫ 1

0

pρ(−$)

$
d$

)
≤
∣∣∣Υq(ξ)

ξ

∣∣∣ ≤ exp
(∫ 1

0

pρ($)

$
d$

)
.

Corollary 4. Let δ = 0. If ρ is convex univalent in U such that

Tυ(ξ)

p
≺ ρ(ξ), ξ ∈ U,

where ρ(0) = 1 then

υ(ξ) ≺ ξ exp
(∫ ξ

0

pρ(ω(χ))

χ
dχ

)
,

where ω satisfies ω(0) = 0 and |ω(ξ)| < 1. Furthermore, the inequality |ξ| := $ < 1 implies

exp
(∫ 1

0

pρ(−$)

$
d$

)
≤
∣∣∣υ(ξ)

ξ

∣∣∣ ≤ exp
(∫ 1

0

pρ($)

$
d$

)
.

Following that, we consider the functional Υq(ξ) as a q-differential operator, which is
a generalization of the Salagean q-differential operator.
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3.2. Quantum Differential Operator

In this part, we present a quantum differential operator generated by the functional
Υq(ξ) as follows:

Q1
q[Υq(ξ)] = (1− δ)υ(ξ) +

δ

[p]q

(
ξðq υ(ξ)

)
= ξ p +

∞

∑
n=p+1

χn(q, δ, p)an ξn

Q2
q[Υq(ξ)] = (1− δ)[Υq(ξ)] +

δ

[p]q

(
ξðq [Υq(ξ)]

)
= (1− δ)[ξ p +

∞

∑
n=p+1

χn(q, δ, p)an ξn] +
δ

[p]q

(
[p]qξ p +

∞

∑
n=p+1

χn(q, δ, p)an[n]q ξn

)

= ξ p +
∞

∑
n=p+1

(
(1− δ) +

δ[n]q
[p]q

)
χn(q, δ, p)an ξn

= ξ p +
∞

∑
n=p+1

[χn(q, δ, p)]2an ξn

...

Qm
q [Υq(ξ)] = Q1

q[Q
m−1
q [Υq(ξ)]]

= ξ p +
∞

∑
n=p+1

[χn(q, δ, p)]man ξn.

(
ξ ∈ U χn(q, δ, p) =

(
(1− δ) +

δ[n]q
[p]q

))
It is clear that

Qm
q [Υq(ξ)] = ξ p +

∞

∑
n=p+1

[χn(q, δ, p)]man ξn ∈ Λp. (3)

Note that when p = 1 and δ = 1, we obtain the Salagean q-differential operator [24].
Furthermore, for δ = 1, we obtain the q-multivalent case [25].

Theorem 7. Consider the following assumptions:

(i) Θ is univalent in U;

(ii)
ξΘ′(ξ)

Θ(ξ)(Θ(ξ)− 1)
is star-like in U;

(iii) The subordination
VQm

q [Υq ](ξ)− p

TQm
q [Υq ](ξ)− p

≺ 1 +
1
p

ξΘ′(ξ)
Θ(ξ)(Θ(ξ)− 1)

holds.

Then
TQm

q [Υq ](ξ)

p
≺ Θ(ξ), ξ ∈ U

and Θ is the best dominant.

Proof. Define the function Σ as follows:

Σ(ξ) :=
TQm

q [Υq ](ξ)

p
, ξ ∈ U.
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Accordingly, we have

TΣ(ξ) = VQm
q [Υq ](ξ)− pΣ(ξ).

Substitution implies that

VQm
q [Υq ](ξ)− p

TQm
q [Υq ](ξ)− p

=
TΣ(ξ) + pΣ(ξ)− p

pΣ(ξ)− p

= 1 +
1
p

ξΣ′(ξ)
Σ(ξ)(Σ(ξ)− 1)

.

Hence,
ξΣ′(ξ)

Σ(ξ)(Σ(ξ)− 1)
≺ ξΘ′(ξ)

Θ(ξ)(Θ(ξ)− 1)
, ξ ∈ U.

According to Lemma 1, we obtain the result.

Theorem 8. Consider the following assumptions:

(i) Θ is univalent in U;

(ii)
ξΘ′(ξ)

Θ(ξ)− 1
is star-like in U;

(iii) The subordination

TQm
q [Υq ](ξ)

(
VQm

q [Υq ](ξ)− p

TQm
q [Υq ](ξ)− p

− 1

)
≺ ξΘ′(ξ)

Θ(ξ)− 1

occurs.

Then
TQm

q [Υq ](ξ)

p
≺ Θ(ξ), ξ ∈ U

and ρ is the best dominant.

Proof. Formulate the function P as follows:

Σ(ξ) :=
TQm

q [Υq ](ξ)

p
, ξ ∈ U.

Accordingly, we have

TΣ(ξ) + pΣ(ξ) = VQm
q [Υq ](ξ).

Substitution yields that

TQm
q [Υq ](ξ)

(
VQm

q [Υq ](ξ)− p

TQm
q [Υq ](ξ)− p

− 1

)
=

ξΣ′(ξ)
Σ(ξ)− 1

.

Hence,
ξΣ′(ξ)

Σ(ξ)− 1
≺ ξΘ′(ξ)

Θ(ξ)− 1
, ξ ∈ U.

According to Lemma 1, we obtain the result.

Theorem 9. Consider the following assumptions:

(i) Θ is univalent in U;
(ii) TΘ is star-like in U;
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(iii) The subordination
VQm

q [Υq ](ξ)− TQm
q [Υq ](ξ) ≺ TΘ(ξ)

holds.

Then
TQm

q [Υq ](ξ)

p
≺ Θ(ξ), ξ ∈ U

and Θ is the best dominant.

Proof. We present the function Σ as follows:

Σ(ξ) :=
TQm

q [Υq ](ξ)

p
, ξ ∈ U.

Thus, we have
TΣ(ξ) + pΣ(ξ) = VQm

q [Υq ](ξ).

Substitution yields that

VQm
q [Υq ](ξ)− TQm

q [Υq ](ξ) = TΣ(ξ).

Hence,
TΣ(ξ) ≺ TΘ(ξ), ξ ∈ U.

According to Lemma 1, we obtain the result Σ(ξ) ≺ Θ(ξ).

Theorem 10. Consider the q-differential operator Qm
q [Υq](ξ), ξ ∈ U. Then

1
[p]q

ξðq

(
Qm

q [Υq](ξ)
)

Qm
q [Υq](ξ)

≺ 1 + σ1ξ

1 + σ2ξ
, −1 ≤ σ2 < σ1 ≤ 1

if and only if(
Qm

q [Υq](ξ) ∗
(

ξ p(1 + σ2 exp(iθ))
(1− ξ)(1− qξ)

−
ξ p[p]q(1 + σ1 exp(iθ))

1− ξ

))
6= 0.

Proof. The first direction (necessary) yields

1
[p]q

ξðq

(
Qm

q [Υq](ξ)
)

Qm
q [Υq](ξ)

=
1 + σ1v(ξ)

1 + σ2v(ξ)
,

where |v(ξ)| < |ξ| < 1 and v(0) = 0. That is

1
[p]q

ξðq

(
Qm

q [Υq](ξ)
)

Qm
q [Υq](ξ)

6= 1 + σ1 exp(iθ)
1 + σ2 exp(iθ)

, θ ∈ [0, 2π],

which is equivalent to(
ξðq

(
Qm

q [Υq](ξ)
)
(1 + σ2 exp(iθ))− [p]qQm

q [Υq](ξ)(1 + σ1 exp(iθ))
)
6= 0. (4)
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Convolution properties imply

Qm
q [Υq](ξ) = Qm

q [Υq](ξ) ∗
ξ p

1− ξ

ξðq

(
Qm

q [Υq](ξ)
)
= Qm

q [Υq](ξ) ∗
ξ p

(1− ξ)(1− qξ)
.

Thus, in terms of convolution properties, Formula (4) becomes(
ξðq

(
Qm

q [Υq](ξ)
)
(1 + σ2 exp(iθ))− [p]qQm

q [Υq](ξ)(1 + σ1 exp(iθ))
)

=

(
Qm

q [Υq](ξ) ∗
ξ p

(1− ξ)(1− qξ)

)
(1 + σ2 exp(iθ))

−
(

Qm
q [Υq](ξ) ∗

ξ p

1− ξ

)
[p]q(1 + σ1 exp(iθ))

= Qm
q [Υq](ξ) ∗

(
ξ p(1 + σ2 exp(iθ))
(1− ξ)(1− qξ)

−
ξ p[p]q(1 + σ1 exp(iθ))

1− ξ

)
6= 0,

which proves the necessary direction. Conversely, since

1
[p]q

ξðq

(
Qm

q [Υq](ξ)
)

Qm
q [Υq](ξ)

6= 1 + σ1 exp(iθ)
1 + σ2 exp(iθ)

, θ ∈ [0, 2π], (5)

where

f (ξ) :=
1

[p]q

ξðq

(
Qm

q [Υq](ξ)
)

Qm
q [Υq](ξ)

is analytic in U.
Let

h(ξ) =
1 + σ1ξ

1 + σ2ξ
, ξ ∈ U.

Relation (5) indicates that
f (U)

⋂
h(U) = ∅.

As a result, a connected component of C(U)\{h(∂U)} includes the simply connected
domain f (U). The fact that

f (0) = h(0) = 1,

together with the function’s univalence leads to the conclusion that

1
[p]q

ξðq

(
Qm

q [Υq](ξ)
)

Qm
q [Υq](ξ)

≺ 1 + σ1ξ

1 + σ2ξ
, −1 ≤ σ2 < σ1 ≤ 1.

This completes the proof.

Corollary 5 ([26]). Consider the q-differential operator Qm
q [Υq](ξ), ξ ∈ U, with δ = 0. Then

1
[p]q

ξðqυq(ξ)

υq(ξ)
≺ 1 + σ1ξ

1 + σ2ξ
, −1 ≤ σ2 < σ1 ≤ 1

if and only if (
υq(ξ) ∗

(
ξ p(1 + σ2 exp(iθ))
(1− ξ)(1− qξ)

−
ξ p[p]q(1 + σ1 exp(iθ))

1− ξ

))
6= 0.
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Corollary 6 (Theorem 5-[26]). Consider the q-differential operator Qm
q [Υq](ξ), ξ ∈ U, with

δ = 0. Then
1

[p]q

ξðqυq(ξ)

υq(ξ)
≺ 1 + σ1ξ

1 + σ2ξ
, −1 ≤ σ2 < σ1 ≤ 1

if and only if (
υq(ξ) ∗

(
ξ p(1 + σ2 exp(iθ))
(1− ξ)(1− qξ)

−
ξ p[p]q(1 + σ1 exp(iθ))

1− ξ

))
6= 0.

Corollary 7 (Corollary 6-[26]). Consider the q-differential operator Qm
q [Υq](ξ), ξ ∈ U, with

δ = 0. Furthermore, let σ1 = 1− 2α, α ∈ [0, 1), σ2 = −1. Then

1
[p]q

ξðqυq(ξ)

υq(ξ)
≺ 1 + (1− 2α)ξ

1− ξ

if and only if(
υq(ξ) ∗

(
ξ p(1− exp(iθ))
(1− ξ)(1− qξ)

−
ξ p[p]q(1 + (1− 2α) exp(iθ))

1− ξ

))
6= 0.

Moreover, when q→ 1−, we have received the result in [Theorem 2-[27]].

4. Conclusions

In view of Jackson’s calculus, a formula of multivalent functions on the open unit
disk was presented (Υq(ξ)). We introduced the sufficient conditions on Υq(ξ) to satisfy the
star-like inequality

TΥq(ξ)

p
≺ ρ(ξ).

The upper and lower bounds are determined in Theorem 6. Subsequently, we prepared
Υq(ξ) as a q-differential operator (3), which is a generalization of the Salagean q-differential
operator. We studied the main q-star-like formula by giving the sufficient conditions. The
operator can be viewed as a conformable differential operator of constant coefficients of
convex frame. The consequences are provided for earlier efforts.

In future works, one can employ the q-differential operator (3) in different classes of
multivalent types such as the convex, uniform and symmetry styles. Furthermore, it can
be used to generalize classes of differential equations of a complex variable in the open
unit disk and investigate the geometric properties of the solutions. For example, one can
investigate the following Briot–Bouquet differential Equation [21]

TΥq(ξ)

p
= ρ(ξ), ξ ∈ U, ρ(0) = 1.
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