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Abstract: The functional implications of substances, such as retardation and relaxation, can be studied
for magnetized diffusion coefficient based on the relative increase throughout magnetization is a well-
known realization. In this context, we have explored the Oldroyd-B hybrid nanofluid flowing through
a pored oscillating plate along with an inclined applied magnetics effect. The slipping effect and
sinusoidal heating conditions are also supposed to be under consideration. An innovative and current
classification of fractional derivatives, i.e., Prabhakar fractional derivative and Laplace transform, are
implemented for the result of transformed leading equations. The graphical representation is also
described to understand the physical implementation of all effecting parameters. In order to justify
and physically examine the considered problem, some limiting cases, the rate of heat and mass transfer,
and friction factors are also analyzed. As a result, we have concluded that the thermal enhancement
can be improved more progressively with the interaction of silver-water-based nanofluid suspension
compared to copper-nanoparticles mixed nanofluid. Furthermore, It has examined the impact of both
parameters, i.e., time relaxation Ω1 and retardation Ω2 is opposite of the momentum field.

Keywords: Prabhakar fractional derivative; hybrid nanofluid; Oldroyd-B fluid; Mittage-Leffler
function; slip effect; thermal radiation

1. Introduction

Newtonian and non-Newtonian fluids theories define the mechanical trend of various
natural fluids. The movement of such kinds of natural fluids significantly influenced the
different fields of industry, ecological manufacturing, and science. The characteristics
of different fluid flow detect the variety of physical construction for the flows of non-
Newtonian fluids. In this type of liquid, the rate of strain and stress consume a nonlinear
relationship. OBF models have developed a substantial model of rate type. This model is
a particular extension form of upper viscous-elastic Maxwell fluid along with a factor of
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retardation time. It designates the natural relaxation as well as retardation phenomena of
viscoelastic-type fluids [1]. Recently, the implication of such types of fluids with the effect
of MHD force has diverse utilizations in polymer manufacturing, aerodynamic heating
process, power fields, biochemical engineering, and solar collection [2–5].

The OBF model was familiarized through Oldroyd in [6] and is rate-type fluid and
significant because of its particular behavior. The OBF models are premium for examining
the memory effects of diverse polymeric and biological fluids. The OBF is a polymeric fluid
clarified shortly in a branch named rheology, which is the branch that explains the logic
of flows of different fluids. This branch of mathematics is essential to the non-Newtonian
organization of fluids. This viscoelastic fluid model effectively describes the different terms
such as time relaxation, retardation stress, strain, and time derivatives that other models are
incapable of disclosing. The constancy, exceptionality, and consequences for OBF shearing
flows of viscoelastic are studied in [7]. For further specifics concerning solutions of the OBF
model, see [8,9]. Usually, two kinds of limit conditions, slip, and no-slip limits, are used to
examine the dynamics of the fluid. The no-slip condition illuminates that there is no relative
motion among the fluid on the wall as well as the wall. Generally, the no-slip condition
is exploited to contract with the fluid dynamics. The technique comprises a couple of
limitations, but it boosts the thickness of the liquid dynamics. The slip speed boundary
condition was used introduced through Navier. The shear stress value is always directly
proportional to the value of slip velocity. In different fields of industry, there are numerous
implications to the consequence to slip slippage. The slip condition is generated by the
irregularity/roughness of a surface. In manufacturing, there are numerous submissions to
the consequence to slip slippage on the fluid as well as the velocity on the surface [10]. The
researchers used no-slip primarily boundary conditions in the literature. Nevertheless, it is
clear from the theoretical and experimental studies that non-Newtonian fluids frequently
show wall slip which is governed by some relation between the slip velocity and the shear
stress. Only a few investigators have solved the Oldroyd model with slip conditions [11].
Le Roux [12] [B] proved that there is a strong steady and locally unique solution under
some limitations on the data and material constants. Iftikhar et al. [13] discussed an MHD
OBF model based on fractional calculus and submitted essential results. Anwar et al. [14]
studied an unsteady three-dimensional OBF model with a CF approach and slip conditions.
Mburu et al. [15] discussed an OBF model with entropy generation and viscous dissipation.
Wang et al. [16] studied an OBF model with radiation effects.

Firstly, Caputo introduced the fractional operator with the help of the Laplace transfor-
mation convolutions product and functions of power-law coupled with fractional derivatives
in 1967. This was the initial fractional derivative to shoot the problem in the Riemann–
Liouville operator. However, this operator has the singular kernel at t = τ, which has some
fault in the form of specious solutions. In 2015, Fractional calculus was more advanced;
Caputo and Fabrizio familiarized a fractional operator named the Caputo-Fabrizio fractional
operator with an exponential and non-singular kernel [17]. Nevertheless, the CF operator is
criticized as the solution of the CFoperator is in the form of an exponential equation and not
an exponential function; also, the kernel of the CF operator is non-singular and local. To
conquer these problems, a novel technique of the fractional kernel is discoursed in fractional
differential operators due to their momentous skill for biological sciences applications. Later,
Atangana and Baleanu initiated a well-known AB-fractional operator with Mittag-Leffler
non-singular kernel, which delivers stabilizing point and a bounded solution [18].

In this research, we will emphasize the recent well-known Prabhakar fractional calcu-
lus, initiating from the integral operator described through Prabhakar in 1971 [19], later
deliberated as a portion of fractional calculus [20] with accompanying fractional opera-
tors [21] and then called as a part of fractional operators which comprises several others as
particular cases [22]. The theory based on Prabhakar fractional calculus [23] is expansively
considered in current years. It takes differential equations modeled through Prabhakar oper-
ators, which are fascinating for their applied and pure mathematical characteristics [24–26]
and due to applications in different fields such as anomalous dielectrics, viscoelasticity and
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options pricing [27–29]. It is pointed out that the operators of Prabhakar fractional calculus
may be observed as exceptional cases of at least two classes of fractional operators: i.e., the
class of operators along with analytic and Sonine kernels [30,31]. Nevertheless, Prabhakar
fractional operator is silent wealth perusing in its peculiar right, not only as a particular
case of general classes such as these. As associated with the ordinary model, the effect of
memory is superior in fractional derivatives. Cancer remedies as well as blood movement
in veins by MHD and ultraslow diffusion, are the most appropriate submissions of these
descriptions in research [32,33]. Convective flow based on ramped wall temperature and
non-singular kernel was investigated in [34]. Furthermore, researchers [35] deliberated the
inclusive report on MHD OBF with diverse boundary conditions. Lately, Riaz et al. [10]
have examined the character of no-local and local kernels based on magnetic OBF slip flow.

It is a well-known realization that the functional implications of substances, such as
retardation and relaxation, can be analyzed for magnetic diffusion coefficient based on rela-
tive increment all through magnetization. A parametric study predicated on slippage and
nonslip page suppositions for the Oldroyd-B fluid through magnetic porosity is developed
in this context. An imaginative Prabhakar-like definition of time-fractional derivative is
incorporated into the theories of total momentum and energy equations. The treatments to
the stated problem are calculated by employing mathematical tools, specifically the Laplace
transform with slipping model parameters, to address the system of equations of velocity
and temperature. Physical understanding has also been used to approximate the heat
emission rate using the Nusselt number and restricts solutions. For problem justification,
the exclusion of the time retardation parameter leads to examining solutions having a solid
consensus in the literature.

2. Problem Description

Suppose a laminar Oldroyd-B hybrid nanofluid flow on an oscillating pored infinite
inclined plate with heat transfer. The flowing fluid is mixed with different types of nanopar-
ticles (Ag, Cu, TiO2) with water and engine oil as base fluid. In addition, its also supposed
that the flowing fluid is electrically conducting, and an inclined magnetic field is applied
with strength Bo. Furthermore, the slipping effect on the plate boundary and sinusoidal
thermal conditions are also considered. At the start, both the plate and fluid are in a rest
state with constant concentration ψ∞ and temperature T∞. After the passage of some time
at t > 0+, the static hybrid suspension of different types of nanoparticles starts to move on
the oscillating plate due to mixed convection, oscillations, and the inclination of the pored
plate. The pored plate vibrates with some constant velocity UoCos(ωt) in which ω is the
vibration rate of the inclined plane, as configured in Figure 1.
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The basic partial differential equations are provided below, taking into account the
following assumptions and ignoring the pressure gradient, viscous dissipation, and the use
of Boussinseq’s and Rosseland approximations [36,37],

ρn f

(
1 + Ω1

∂
∂t

)
∂v(ξ,t)

∂t

= µn f

(
1 + Ω2

∂
∂t

)
∂2v(ξ,t)

∂ξ2

−
(

1 + Ω1
∂
∂t

)(
σB2

o sin(θ1) +
µn f ϕn f

K

)
v(ξ,t)

+g(ρβT)n f Cos(θ2)T(ξ,t) − g(ρβT)n f Cos(θ2)T∞

+g(ρβC)n f Cos(θ2)ψ(ξ,t) − g(ρβC)n f Cos(θ2)ψ∞

(1)

(
1 + Ω1

∂

∂t

)
τ(ξ,t) = µn f

∂v(ξ,t)

∂ξ
(2)

(
ρCp

)
n f

∂T(ξ,t)

∂t
= −

∂δ(ξ,t)

∂ξ
, δ(ξ,t) = −kn f

∂T(ξ,t)

∂ξ
(3)

∂ψ(ξ,t)

∂t
= −Dn f

∂J(ξ,t)

∂ξ
, J(ξ,t) = −

∂ψ(ξ,t)

∂ξ
(4)

where all of the conditions and variables are given in the nomenclature portion. The fol-
lowing are the consistent conditions for momentum, concentration, and thermal equations:

v(ξ,0) = 0, ψ(ξ,0) = ψ∞, T(ξ,0) = T∞; ∀ξ ≥ 0 (5)

v(0,t) − h
∂v(ξ,t)

∂ξ

∣∣∣∣
ξ=0

= UoCos(ωt), ψ(0,t) = ψw

T(0,t) =


T∞ + (Tw − T∞) t

to
, 0 < t < to

Tw, t > to

(6)

v(ξ,t) → 0, ψ(ξ,t) → ψ∞, T(ξ,t) → T∞; ξ → ∞, t > 0. (7)

Now, to analyze the impact of all effecting parameters, introducing the following
dimensionless variables, the related guided equations may be non-dimensionalized:

v∗ = v
Uo

, t∗ = t
to

, to =
ν

U2
o

, ξ∗ = Uo
ν ξ, T∗ =

T(ξ,t)−T∞
T∞

,

ψ∗ =
C(ξ, t)−C∞

C∞
, δ∗ = δo, τ∗ = k

h
τ

Uoµ

By manipulating the above dimensionless variables in the governing Equations (1) to
(4) along with boundary conditions (5) to (7) to overlooking the “*” symbols or notations,
one acquires as follows:

Λo

(
1 + Ω1

∂
∂t

)
∂v(ξ,t)

∂t

= Λ1

(
1 + Ω2

∂
∂t

)
∂2v(ξ,t)

∂ξ2 −
(

1 + Ω1
∂
∂t

)(
Msin(θ1) +

Λ1
K

)
v(ξ,t) + Λ2GrCos(θ2)T(ξ,t)

+Λ3GmCos(θ2)ψ(ξ,t)

(8)

(
1 + Ω1

∂

∂t

)
τ(ξ,t) =

∂v(ξ,t)

∂ξ
(9)

Λ4Pr
∂T(ξ,t)

∂t
= −

∂δ(ξ,t)

∂ξ
, δ(ξ,t) = −Λ5

∂T(ξ,t)

∂ξ
(10)

Λ6Sc
∂ψ(ξ,t)

∂t
= −

∂J(ξ, t)

∂ξ
, J(ξ,t) = −

∂ψ(ξ,t)

∂ξ
(11)
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With consistent dimensionless conditions,

v(ξ,0) = 0, ψ(ξ,0) = 0, T(ξ,0) = 0; ∀ξ ≥ 0 (12)

v(0,t) − h
∂v(ξ,t)

∂ξ

∣∣∣∣
ξ=0

= Cos(ωt), ψ(0,t) = 1, T(0,t) =


t, 0 < t ≤ 1

1, t > 1

(13)

v(ξ, t) → 0, ψ(ξ, t) → 0, T(ξ, t) → 0; ξ → ∞, t > 0 (14)

where M, Ω1, Ω2, Gr, Gm, Pr, Sc, K are identified as the magnetic parameter, time relaxation,
retardation parameter, heat Grashof number, mass Grashof number, Prandtl number,
Schmidt number, and porosity parameter, respectively, whose mathematical forms are
given below.

Λo = (1− ϕ) + ϕ
ρs
ρ f

, Λ1 = 1
(1−ϕ)2.5

Λ2 = (1− ϕ) +
(ρβT)s
(ρβT) f

, Λ3 = (1− ϕ) +
(ρβc)s
(ρβc) f

, Λ4 = (1− ϕ) +
(ρCp)s
(ρCp) f

Λ5 =
ks+2k f−2ϕ(k f−ks)
ks+2k f +ϕ(k f−ks)

, M = σ∗kB2
o

h2µ
, 1

K = ν ϕ1
K∗U2

o
, Pr =

ν f Cp
k

Gr = gβTνT∞
U3

o
, Gm = gβcνC∞

U3
o

, Sc = ν
D f

Tables 1 and 2 summarize the thermal properties of the hybrid nanofluid model, base
material, and solid nanoparticles. Furthermore, for such thermal models, the particle’s
solid volume fraction, hybrid nanofluid, mercury, copper, titanium dioxide, the nanofluid,
and actual base liquid are reflected by hn f , Ag, Cu, TiO2, n f , f , respectively.

Table 1. The quantities of nanofluids thermophysical properties.

Thermal Features Regular Nanofluid Hybrid Nanofluid

Density ρ f =
ρn f

(1−ϕ)+ϕ
ρs
ρs

ρ f =
ρhn f(

(1−ϕ2)

(
(1−ϕ1)+ϕ1

ρs1
ρ f

)
+ϕ2ρs2

)
Dynamic Viscosity µ f = µn f (1− ϕ)2.5 µ f = µhn f (1− ϕ1)

2.5(1− ϕ2)
2.5

Electrical conductivity σf =
σn f1+

3
(

σs
σf
−1
)

ϕ(
σs
σf

+2
)
−
(

σs
σf
−1
)

ϕ

 σb f =
σhn f(

1+
3ϕ(ϕ1σ1+ϕ2σ2−σb f (ϕ1+ϕ2))

(ϕ1σ1+ϕ2σ2+2ϕσb f −ϕσb f (ϕ1σ1+ϕ2σ2−σb f (ϕ1+ϕ2)))

)

Thermal conductivity k f =
kn f(

ks+(n−1)k f −(n−1)(k f −ks)ϕ

ks+(n−1)k f +(k f −ks)ϕ

)
kb f =

khn f(
ks2+(n−1)kb f −(n−1)(kb f −ks2)ϕ2

ks2+(n−1)kb f +(kb f −ks2)ϕ2

) and

k f =
kb f(

ks1+(n−1)k f −(n−1)(k f −ks1)ϕ1

ks1+(n−1)k f +(k f −ks1)ϕ1

)

Heat capacitance (
ρCp

)
f =

(ρCp)n f

(1−ϕ)+ϕ
(ρCp)s
(ρCp) f

(
ρCp

)
s =

(ρCp)hn f

(1−ϕ2)

(
(1−ϕ1)+ϕ1

(ρCp)s1
(ρCp) f

)
+ϕ2(ρCp)s2

Thermal Expansion Coefficient (ρβ) f =
(ρβ)n f

(1−ϕ)+ϕ
(ρβ)s
(ρβ) f

(ρβ) f =
(ρβ)hn f

(1−ϕ2)

(
(1−ϕ1)+ϕ1

(ρβ)s1
(ρβ) f 1

)
+ϕ2(ρβ)s2
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Table 2. The thermal features of nanoparticles and regular fluids.

Material Water Engine Oil Ag Cu TiO2

ρ
(
kg/m3) 997.1 884 10,500 8933 4250

Cp(J/kg K) 4179 1910 235 385 686.2

k(W/m K) 0.613 0.144 429 401 8.9528

βT × 10−5(K−1) 21 70 1.89 1.67 0.90

3. Basic Preliminaries

The regularized Prabhakar fractional derivative operator CD
γ
α,β,α for a continuous

function h(t) is defined as,

CD
γ
α,β,αh(t) = E−γ

α,m−β,αhm(t) =
∫ t

0
(t− τ)m−β−1E−γ

α,m−β

(
α(t− τ)α)hm(τ)d(τ)

where,

Eγ
α,β,αh(t) =

∫ t

0
(t− τ)β−1Eγ

α,β

(
α(t− τ)α)h(τ)d(τ)

Is the Prabhakar integral, and,

Eγ
α,β(z) =

∞

∑
n=0

Γ(γ + n)zn

n!Γ(γ)Γ(αn + β)
′ , α, β, γεC, Re(α) > 0

Is known as the three-parameter Mittage-Leffler function and CD
γ
α,β,α signifies the

Prabhakar derivative operator with α, β, γεC, Re(α) > 0. The LT of regularized Prabhakar
derivative may be developed as.

L
{

CD
γ
α,β,αh(t)

}
= qβ−m(1− αq−α

)γL{hm(t)} (15)

Here α, β, γ represent the Prabhakar fractional constraints, and q is the Laplace trans-
formed variable. In this study, we used an efficient and current mathematical fractional
approach, from which we may also infer the effect of thermal memory. So, in this section,
we will become acquainted with the derivative of Prabhakar fractional, which is primarily
based on generalized Fourier’s and Fick’s laws of thermal conductivity

δ(ξ,t) = −kn f
CD

γ
α,β,α

∂T(ξ,t)

∂ξ
(16)

J(ξ,t) = −CD
γ
α,β,α

∂ψ(ξ,t)

∂ξ
(17)

where kn f is the generalized thermal conductivity and CD
γ
α,β,α is well known as Prabhakar

fractional derivative.

4. Solution of the Problem

The fractional modeling of guided equations using the Prabhakar-fractional descrip-
tion and the solution of the associated fractional model will be carried out in this framework,
with their respective converted physical conditions.

4.1. Concentration Profile

For the solution of fractional systems, many strategies have been utilized. However,
in this work, we selected the integral transform approach, called Laplace transformation
(LT), by implementing the LT to fractional Equations (11) and (17) for the concentration
solution profile.
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Λ6Sc sψ(ξ,s) = −
∂J(ξ,s)

∂ξ
(18)

J(ξ,s) = −sβ
(
1− αs−α

)γ ∂ψ(ξ,s)

∂ξ
(19)

ψ(ξ,s) =
1
s

, ψ(∞,s) = 0

Inserting Equation (13) into Equation (12), we acquire,

ψ(ξ,s) =
1
s

e
−ξ

√
Λ6 Sc s

sβ(1−αs−α)γ (20)

The Laplace inverse of the above-attained solution will be analyzed numerically by
employing Stehfest and Tzou’s algorithms in Tables 3 and 4.

Table 3. Numerical comparison of thermal, concentration, and momentum pro-files.

ξ
T(ξ,t) by
Tzous

T(ξ,t) by
Stehfest

ψ(ξ,t) by
Tzous

ψ(ξ,t) by
Stehfest

V(ξ,t) by
Tzous

V(ξ,t) by
Stehfest

0.1 0.8847 0.8893 0.9356 0.9376 0.6252 0.6140

0.3 0.7177 0.7216 0.8214 0.8242 0.5969 0.5852

0.5 0.5822 0.5855 0.7204 0.7245 0.5645 0.5338

0.7 0.4722 0.4754 0.6318 0.5597 0.4840 0.4727

0.9 0.3831 0.3854 0.5540 0.5597 0.4020 0.4096

1.1 0.3107 0.3126 0.4558 0.4919 0.3590 0.3493

1.3 0.2520 0.2536 0.4260 0.4324 0.3028 0.2940

1.5 0.2044 0.2057 0.3735 0.3800 0.2529 0.2450

1.7 0.1658 0.1669 0.3275 0.3340 0.2094 0.2025

1.9 0.1344 0.1354 0.2872 0.3935 0.1722 0.1662

Table 4. Numerical values of the skin friction, the Sherwood number, and the Nusselt number at
different times.

α Nu at t = 1.0 Nu at t = 1.5 Sh at t = 1.0 Sh at t = 1.5 Cf at t = 1.0 Cf at t = 1.0

0.1 0.8386 0.7829 0.4927 0.4456 0.1371 0.0105

0.2 0.8739 0.8268 0.5211 0.4779 0.1317 0.0130

0.3 0.9094 0.8806 0.5560 0.5256 0.1254 0.0155

0.4 0.9430 0.9427 0.5960 0.5936 0.1181 0.0180

0.5 0.9726 1.0094 0.6383 0.6852 0.1093 0.0209

0.6 0.9965 1.0759 0.6795 0.7999 0.0982 0.0237

0.7 1.0140 1.1375 0.7166 0.9323 0.0839 0.0265

0.8 1.0252 1.1904 0.7373 1.0732 0.0633 0.0295

0.9 1.0306 1.2327 0.7708 1.2127 0.0280 0.0325

4.2. Solution of Temperature Field

The temperature field is solved using the Laplace technique on second-order partial
differential Equations (10) and (16) and their matching conditions.

Λ4PrsT(ξ,s) = −
∂δ(ξ,s)

∂ξ
(21)
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δ(ξ,s) = −Λ5sβ
(
1− αs−α

)γ ∂T(ξ,s)

∂ξ
(22)

With,

T(0,s) =
1− e−s

s2 , T(∞,s) = 0

we acquire,

T(y,s) =
1− e−s

s2 e
−ξ

√
Λ4Pr

Λ5
s1−β

(1−αs−α)γ (23)

Yet again, using the Laplace inverse of the above equation will be numerically analyzed
in Tables 2 and 3.

4.3. Solution of the Velocity Field

In this segment, the solution of the velocity equation will be derived by pertaining the
LT on second-order PDE Equation (8), and with Equation (15), we procure a differential
equation that is not homogeneous.

∂2v(ξ,s)

∂ξ2 − (1 + Ω1s)
Λ1(1 + Ω2s)

(
Msin(θ1) +

Λ1

K
+ Λos

)
v(ξ,s) = −

Λ2GrCos(θ2)

Λ1(1 + Ω2s)
T(ξ,s) −

Λ3GmCos(θ2)

Λ1(1 + Ω2s)
ψ(ξ,s) (24)

with conditions,

v(0,s) − h
∂v(ξ,s)

∂ξ

∣∣∣∣
ξ=0

=
s

s2 + ω2 ; v(ξ,s) → 0 as ξ → ∞

Using the matching conditions, we obtain the solution to Equation (24) as follows:

v(ξ,s) =
1

1 + h
√

(1+Ω1s)
Λ1(1+Ω2s)

(
MSin(θ1) +

Λ1
K + Λos

)
(

Λ2GrCos(θ2)

Λ1(1 + Ω2s)
1− e−s

s2

1 + h
√

Λ4Pr
Λ5

s1−β

(1−αs−α)γ(
Λ4Pr

Λ5
s1−β

(1−αs−α)γ

)
− (1+Ω1s)

Λ1(1+Ω2s)

(
MSin(θ1) +

Λ1
K + Λos

)
+

Λ3GmCos(θ2)

Λ1(1 + Ω2s)s

1 + h
√

Λ6Scs
sβ(1−αs−α)γ(

Λ6Scs
sβ(1−αs−α)γ

)
− (1+Ω1s)

Λ1(1+Ω2s)

(
MSin(θ1) +

Λ1
K + Λos

)
+

s
s2 + ω2

)
e
−ξ

√
(1+Ω1s)

Λ1(1+Ω2s) (MSin(θ1)+
Λ1
K +Λos)

−Λ2GrCoS(θ2)

Λ1(1 + Ω2s)
1− e−s

s2
e
−ξ

√
Λ4Prs1−β

Λ5(1−αs−α)γ(
Λ4Pr

Λ5
s1−β

(1−αs−α)γ

)
− (1+Ω1s)

Λ1(1+Ω2s)

(
MSin(θ1) +

Λ1
K + Λos

)

−Λ3GmCos(θ2)

Λ1(1 + Ω2s)s
e
−ξ

√
Λ6Scs

sβ(1−αs−αγ(
Λ6Scs

sβ(1−αs−α)γ

)
− (1+Ω1s)

Λ1(1+Ω2s)

(
MSin(θ1) +

Λ1
K + Λos

)

(25)

The attained solutions of thermal, concentration, and momentum profiles are compli-
cated to solve analytically. Different authors have utilized different numerical techniques,
so we have also used numerical algorithms for the Laplace inverse, namely Stehfest and
Tzou’s numerical schemes. The mathematical form of these algorithms can be described
as [38–40],
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w(ξ, t) = ln(2)
t

N
∑

n=1
vnw

(
ξ, n ln(2)

t

)
vn = (−1)n+ N

2
min(q, N

2 )

∑
r=[

q+1
2 ]

r
N
2 (2r)!

( N
2 −r)!r! (r−1)! (q−r)! (2r−q)!

In addition,

w(ξ, t) =
e4.7

t

[
1
2

w
(

r,
4.7
t

)
+ Re

{
N

∑
j=1

(−1)kw
(

r,
4.7 + kπi

t

)}]

4.3.1. Limiting Cases

The above-achieved solution of the profile of velocity can be transmuted into a frac-
tional Maxwell fluid model as attained by Ghalib et al. [41] by inserting Ω2 = 0 into
Equation (25), then the momentum profile will become as,

v(ξ,s) =
1

1 + h
√

(1+Ω1s)
Λ1

(
MSin(θ1) +

Λ1
K + Λos

)
(

Λ2GrCos(θ2)

Λ1

1− e−s

s2

1 + h
√

Λ4Pr
Λ5

s1−β

(1−αs−α)γ(
Λ4Pr

Λ5
s1−β

(1−αs−α)γ

)
− (1+Ω1s)

Λ1

(
MSin(θ1) +

Λ1
K + Λos

)
+

Λ3GmCos(θ2)

Λ1s

1 + h
√

Λ6Scs
sβ(1−αs−α)γ(

Λ6Scs
sβ(1−αs−α)γ

)
− (1+Ω1s)

Λ1

(
MSin(θ1) +

Λ1
K + Λos

)
+

s
s2 + ω2

)
e
−ξ

√
(1+Ω1s)

Λ1
(MSin(θ1)+

Λ1
K +Λos)

−Λ2GrCos(θ2)

Λ1

1− e−s

s2
e
−ξ

√
Λ4Prs1−β

Λ5(1−αs−α)γ(
Λ4Pr

Λ5
s1−β

(1−αs−α)γ

)
− (1+Ω1s)

Λ1

(
MSin(θ1) +

Λ1
K + Λos

)

−Λ3GmCos(θ2)

Λ1s
e
−ξ

√
Λ6Scs

sβ(1−αs−αγ(
Λ6Scs

sβ(1−αs−α)γ

)
− (1+Ω1s)

Λ1

(
MSin(θ1) +

Λ1
K + Λos

)

(26)

Similarly, the solution attained of the velocity field in Equation (25) can be transformed
into the attained results of Talha et al. in [14] by taking f (t) = Cos(ωt) = 0, which validates
the attained solution of this work.

4.3.2. Validity

The comparison, including both numerical techniques, Stehfest and Tzou’s, was
examined by drawing Figure 2a–d for thermal, concentration, and momentum profiles. The
results from both curves have a slight overlap. In Figure 2d, a comparison of both numerical
models and strategies for velocity fields using the Prabhakar fractional method is displayed
with the work of Riaz et al. [42]. The calculations gained by using the Prabhakar fractional
framework have an adequate accuracy compared to the exploration of Riaz et al. [42].
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Figure 2. Temperature for fractional parameters with Pr = 5.4, ϕ = 0.02 at (a) t = 0.5, (b) t = 1.5,
(c) t = 0.5 and (d) t = 1.5.

5. Discussion of Results

This paper examines an Oldroyd-B hybrid nanofluid on a pored oscillating plate
under the magnetic impact, slipping effect, and sinusoidal heating conditions by exploiting
a newly introduced and effective mathematical method, Prabhakar fractional operator,
which has a Mittag-Leffler kernel in its constitutive equations. The physical impact of flow
parameters, i.e., fractional constraints, Prandtl number, thermal Grashof and mass Groshof
numbers, time relaxation and retardation parameters, Schmidt number, volume fraction,
porosity and magnetic parameters, and angle of magnetic fields’ inclination are utilized to
discourse the physical understanding of the obtained results for concentration, momentum,
and thermal profiles in Figures 2–10.

Figure 3 depicts the influence of fractional parameters and Pr on the temperature
field. The computations expose that rate of temperature declines by moving the fractional
parameters values as well as Pr. It’s to be seen that the temperature for silver-based
nanofluid has a relatively higher value than copper-based nanofluid. Figure 4 portrays the
impact of fractional parameters (β, α, and γ) and Sc on the concentration. It is exposed
that the concentration rate declines by varying the estimations of fractional parameters as
well as Sc. Moreover, it’s noted that the concentration profile for silver-based nanofluid has
a relatively higher value than copper-based nanofluid. Figure 5a shows that the velocity
field declines as fractional parameters are increased. Furthermore, the velocity profile for
silver-based nanofluid has a relatively higher value than copper-based nanofluid. Figure 5b
reveals the impact of fractional parameters on velocity profile in the existence of slip
conditions and considers the slip constraint estimation to be zero. This figure shows that
velocity decay agrees with significant fractional parameter estimations. Moreover, there is
a prominent fast growth in velocity on the profile through the condition of slip associated
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with the slip constraint. Figure 6a,b represent the impact of the Ω1 and Ω2 on the velocity
profile. It is found that the increase in velocity for growing the estimations of Ω1 but a
decrease in velocity has seemed to enhance the estimations of Ω2. In fact, a rise in Ω1,
declined the fluid’s thickness so that it will hasten the speed of the liquid and velocity
increases. Moreover, the growth of Ω2 which guides to an increase in the outline layer
viscosity and lessening the fluid velocity. It is portrayed that the impact of Ω1 and Ω2 on
velocity are relatively reverse.
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Figure 5. Momentum fields for (a) α, β, γ and (b) α, β, γ and h with α = β = γ = 0.6, Pr = 6.0,
Sc = 1.6, Gr = 6.2, Gm = 4.3, h = 0.5, K = 3.2, M = 1.2, θ1 = θ2 = π

3 , ϕ = 0.02, t = 1.0.
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Fractal Fract. 2022, 6, x FOR PEER REVIEW 13 of 18 
 

 

  

Figure 6. Momentum fields for (𝒂) Ωଵ (ℎ𝑖𝑔ℎ𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠) and (𝒃) Ωଵ (𝑙𝑜𝑤𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠) with 𝛼 = 𝛽 = 𝛾 =0.6, 𝑃𝑟 = 6.0, 𝑆𝑐 = 1.6,   𝐺𝑟 = 6.2,    𝐺𝑚 = 4.3,    ℎ = 0.5,    𝐾 = 3.2,   𝑀 = 1.2,   𝜃ଵ = 𝜃ଶ = గଷ ,    𝜑 =0.02,    𝑡 = 1.0. 

  
Figure 7. Momentum fields for (𝒂) 𝐺𝑟 and (𝒃) 𝐺𝑚 with 𝛼 = 𝛽 = 𝛾 = 0.6, 𝑃𝑟 = 6.0, 𝑆𝑐 = 1.6, ℎ =0.5,    𝐾 = 3.2, 𝐺𝑟 = 6.2, 𝐺𝑚 = 4.3, 𝑀 = 1.2,   𝜃ଵ = 𝜃ଶ = గଷ ,    𝜑 = 0.02, 𝑡 = 1.0. 

  
Figure 8. Momentum fields for (𝒂) 𝑃𝑟 and (𝒃) 𝑆𝑐  with  𝛼 = 𝛽 = 𝛾 = 0.6, 𝑃𝑟 = 6.0, 𝑆𝑐 = 1.6,   𝐺𝑟 =6.2,    𝐺𝑚 = 4.3,    ℎ = 0.5,    𝐾 = 3.2,   𝑀 = 1.2,   𝜃ଵ = 𝜃ଶ = గଷ ,    𝜑 = 0.02, 𝑡 = 1.0. 
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3 , ϕ = 0.02, t = 1.0.
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a relatively higher value than copper-based nanofluid. Figure 4 portrays the impact of frac-
tional parameters (β, α, and γ) and Sc on the concentration. It is exposed that the concentra-
tion rate declines by varying the estimations of fractional parameters as well as Sc. Moreo-
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value than copper-based nanofluid. Figure 5a shows that the velocity field declines as frac-
tional parameters are increased. Furthermore, the velocity profile for silver-based nanofluid 
has a relatively higher value than copper-based nanofluid. Figure 5b reveals the impact of 
fractional parameters on velocity profile in the existence of slip conditions and considers the 
slip constraint estimation to be zero. This figure shows that velocity decay agrees with sig-
nificant fractional parameter estimations. Moreover, there is a prominent fast growth in ve-
locity on the profile through the condition of slip associated with the slip constraint. Figure 
6a,b represent the impact of the  𝛺ଵ and 𝛺ଶ on the velocity profile. It is found that the in-
crease in velocity for growing the estimations of 𝛺ଵ but a decrease in velocity has seemed 
to enhance the estimations of 𝛺ଶ. In fact, a rise in  𝛺ଵ, declined the fluid’s thickness so that 
it will hasten the speed of the liquid and velocity increases. Moreover, the growth of 𝛺ଶ 
which guides to an increase in the outline layer viscosity and lessening the fluid velocity. It 
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Figure 7a illustrates the velocity to evaluate the influence of Gr. An increase in velocity
field is observed for enhancing the estimation of Gr. Substantially, the rise in Gr, which is the
effect of more encouraging fluid flows, is due to growth in buoyancy effects. Consequently,
these forces can influence increasing the velocity. Figure 7b demonstrate the momentum
field to evaluate the influence of Gm. An augment in the velocity is observed for enhancing
the estimation of Gm. Physically, the mass Grashof number exemplifies the ratio of the
buoyant force to the viscous force of hydrodynamic. As typical, the fluid velocity rises, and
the peak value is more distinctive owing to an improvement in the species’ buoyant force.
Figure 8a denoted the impact of Pr on momentum profile and noted that the moving fluid’s
velocity improvements in Pr decay. The outline velocity layer gains thicker because of the
lower thermal diffusion rate, Pr governs the relative viscosity of momentum boundary
layers in thermal transmission problems. Figure 8b shows that the velocity profile is also
inversely proportional to the Sc because as the estimations of Sc rise, it grows kinematic
viscosity and declines mass diffusivity. Figure 9a displays the temperature field for various
estimations of nanoparticle volume fraction when the other constraints are fixed. It is
detected that the velocity of the nanofluid growths with the growing volume of a fraction
of nanoparticles because by growing values of volume fraction pointing that thickness of
thermal boundary layer is reduced. This highlights that fluid becomes more viscous with
the rise in volume fraction. The fluid velocity is increased by growing the estimations of
K, as observed in Figure 9b. The impact of magnetic field M is deliberated in Figure 10a,
and noted that the velocity is reduced by swelling the value of M because of Lorentz forces.
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It is a form of resistant force that supports the velocity decline. The velocity is inversely
proportional to the angle of inclination θ1 which is seen in Figure 10b. Moreover, it’s
prominent that the temperature, concentration, and momentum profiles for silver-based
nanofluid have a relatively higher value than copper-based nanofluid.

6. Conclusions

This study examines the investigations of convection Oldroyd-B nanofluid model
flowing fluid on an incline poured oscillating plate under the impact of an incline mag-
netic field. In order to account for generalized effects of memory, a fractional model was
proposed using the recently announced Mittag-Leffler kernel and Prabhakar fractional
operator in the governing equations. The research given in this article is entirely new. This
model introduces fractionalized diffusion and thermal equations by combining Prabhakar’s
fractional operator with generalized Fick’s and Fourier’s laws. The solution of the non-
integer Prabhakar-like fractional model is attained by employing the numerical technique,
namely the Laplace transformation scheme. Finally, the impact of different parameters
and comparisons is plotted to evaluate the physical interpretation of the attained results of
governed equations. The primary outcomes can be encapsulated as follows:

• The heat transfer declines as the fractional parameter values and Prandtl number enhance.
• The concentration field also declined with the Schmidt number and the fractional

constraints variation.
• The velocity delays by changing fractional parameters values as well as Pr, Sc, M, and K.
• The momentum profile increase by augmenting the amount of mass and heat Grashof

number Gm, Gr due to the buoyancy effect.
• It is examined that the impact of both parameters Ω1, Ω2 are opposite to the momen-

tum field.
• For magnetic and permeability constraints, the viscosity of the hybrid nanofluid losses

causes the fluid to slow the motion.
• The thermal and momentum profiles are more progressive for silver (Ag) nanoparti-

cles as compared to copper (Cu) based nanofluid.
• The interchanging of both curves of the numerical scheme and the obtained results of

Riaz et al. [42] validate this study’s solutions.

In order to suggest a future extension of the problem examined in this paper, we
idolize the following recommendations based on techniques, expansions, geometries, and
analysis. The present problem may be analyzed on a horizontal plate of constant length
along with the linear velocity. The same problem can also be examined by exploiting Keller
Box scheme.
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Nomenclature

Symbol Quantitie Unit
v Fluid velocity (m/s)
t Times (s)
g Gravity acceleration

(
m/s2)

kn f Thermal conductivity of the nanofluid (W/mk)
C f Skin friction (−)
k∗ Mean absorption parameter (−)
ρn f Nanofluid density

(
Kg/m3)

U0 Characteristic velocity
(
ms−1)

θ1 The angle of magnetic inclination (−)
θ2 The angle of plate inclination (−)
Pr Prandtl number (−)
Gr Heat Grashof number (−)
Gm Mass Grashof number (−)
Sc Schmidt number (−)
M Magnetic field (−)
s Laplace transform variable (−)
α, β, γ Prabhakar Fractional parameters (−)
B0 Magnetic field strength

(
Kg/s2)

cp Specific heat at constant pressure (J/kgK)
µn f Dynamic viscosity (Kg/ms)
βT Thermal expansion coefficient (1/k)
σ Electrical conductivity (−)
Tw Wall temperature (K)
T∞ Ambient temperature (K)
Nu Nusselt number (−)
Sh Sherwood number (−)
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