Certain New Subclass of Multivalent Q-Starlike Functions Associated with Q-Symmetric Calculus
Abstract
:1. Introduction and Definitions
2. A Set of Lemmas
3. Main Results
3.1. Fekete–Szegö Problem
3.2. Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Pure Appl. Math. Q. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press: Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Arif, M.; Haq, M.U.; Lin, J.-L. A subfamily of univalent functions associated with q-analogue of Noor integral operator. J. Funct. Spaces 2018, 2018, 3818915. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Rehman, M.S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2020, 6, 1110–1125. [Google Scholar] [CrossRef]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Arjika, S.; Khan, S.; Khan, N.; Ahmad, Q.Z. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv. Differ. 2021, 2021, 279. [Google Scholar] [CrossRef]
- Arif, M.; Barkub, O.; Srivastava, H.M.; Abdullah, S.; Khan, S.A. Some Janowski type harmonic q-starlike functions associated with symmetrical points. Mathematics 2020, 8, 629. [Google Scholar] [CrossRef]
- Arif, M.; Srivastava, H.M.; Uma, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. RACSAM 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Ahmad, Q.Z.; Khan, N.; Raza, M.; Tahir, M.; Khan, B. Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions. Filomat 2019, 33, 3385–3397. [Google Scholar] [CrossRef]
- Hu, Q.; Srivastava, H.M.; Ahmad, B.; Khan, N.; Khan, M.G.; Mashwani, W.K.; Khan, B. A subclass of multivalent Janowski type q-starlike functions and its consequences. Symmetry 2021, 13, 1275. [Google Scholar] [CrossRef]
- Mahmood, S.; Raza, M.; AbuJarad, E.S.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, B.; Khan, N. Partial sums of generalized q-Mittag-Leffler functions. AIMS Math. 2019, 5, 408–420. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- Wang, Z.G.; Raza, M.; Ayaz, M.; Arif, M. On certain multivalent functions involving the generalized Srivastava-Attiya operator. J. Nonlinear Sci. Appl. 2016, 9, 6067–6076. [Google Scholar] [CrossRef] [Green Version]
- Lavagno, A. Basic-deformed quantum mechanics. Rep. Math. Phys. 2009, 64, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.M.D.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Altinkaya, S.; Yalcin, S. Subclass of k uniformly starlike functions defined by symmetric q-derivative operator. Ukr. Math. 2019, 70, 1727–1740. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric q-derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Khan, S.; Khan, N.; Hussain, A.; Araci, S.; Khan, B.; Al-Sulami, H.H. Applications of symmetric conic domains to a subclass of q-starlike functions. Symmetry 2022, 14, 803. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.G.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of q-derivative operator to the subclass of bi-univalent functions involving q-chebyshev polynomials. J. Math. 2022, 2022, 8162182. [Google Scholar] [CrossRef]
- Biedenharn, L.C. The quantum group SUq(2) and a q-analogue of the boson operators. J. Phys. A 1984, 22, 873–878. [Google Scholar] [CrossRef]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Le Mat. 2013, 68, 107–122. [Google Scholar]
- Mishra, A.K.; Gochhayat, P. Invariance of some subclass of multivalent functions under a differintegral operator. Complex Var. Elliptic Equ. 2010, V55, 677–689. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the second Hankel derminant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 233, 337–346. [Google Scholar]
- Janteng, A.; Halim, A.S.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 2007, 619–625. [Google Scholar]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2007, 6, 1–7. [Google Scholar]
- Duren, P.L. Univalent functions. Grundlehren der Mathematischen Wissenschaften (Band 259); Springer: New York, NY, USA, 1983. [Google Scholar]
- Hussain, S.; Khan, S.; Roqia, G.; Darus, M. Hankel Determinant for certain classes of analytic functions. J. Comput. Theor. Nanosci. 2016, 13, 9105–9110. [Google Scholar] [CrossRef]
- Hayami, T.; Owa, S. Hankel determinant for p-valently starlike and convex functions of order α. Gen. Math. 2009, 17, 29–44. [Google Scholar]
- Singh, G.; Singh, G. On the second Hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1–3. [Google Scholar]
- Efraimidis, I. A generalization of Livingstons coefficient inequalities for functions with positive real part. J. Math. Anal. Appl. 2016, 435, 369–379. [Google Scholar] [CrossRef]
- Ali, M.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose element are the coefficients of univalent functions. Bull. Aust. Math. Soc. 2018, 97, 253–264. [Google Scholar] [CrossRef]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Noor, K.I.; Riaz, S.; Noor, M.A. On q-Bernardi integral operator. TWMS J. Pure Appl. Math. 2017, 8, 3–11. [Google Scholar]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; Goswami, A.; Khan, S. Certain New Subclass of Multivalent Q-Starlike Functions Associated with Q-Symmetric Calculus. Fractal Fract. 2022, 6, 367. https://doi.org/10.3390/fractalfract6070367
Khan MF, Goswami A, Khan S. Certain New Subclass of Multivalent Q-Starlike Functions Associated with Q-Symmetric Calculus. Fractal and Fractional. 2022; 6(7):367. https://doi.org/10.3390/fractalfract6070367
Chicago/Turabian StyleKhan, Mohammad Faisal, Anjali Goswami, and Shahid Khan. 2022. "Certain New Subclass of Multivalent Q-Starlike Functions Associated with Q-Symmetric Calculus" Fractal and Fractional 6, no. 7: 367. https://doi.org/10.3390/fractalfract6070367
APA StyleKhan, M. F., Goswami, A., & Khan, S. (2022). Certain New Subclass of Multivalent Q-Starlike Functions Associated with Q-Symmetric Calculus. Fractal and Fractional, 6(7), 367. https://doi.org/10.3390/fractalfract6070367