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Abstract: In this paper, the partial topology identification of stochastic multi-group models with
multiple dispersals is investigated. Based on adaptive pinning control and a graph-theoretic method,
some sufficient criteria about partial topology identification of stochastic multi-group models with
multiple dispersals are obtained. That is to say, the unknown partial topological structures can be
identified successfully. In the end, numerical examples are provided to verify the effectiveness of
theoretical results.
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1. Introduction

Recently, multi-group models have gained more attention due to their wide range of
applications in many different fields such as biology, epidemiology, etc. [1,2]. The different
dynamical behaviors of multi-group models have been extensively investigated, see [3,4]
for global stability, [5] for synchronization and [6] for stationary distribution.

Multiple dispersals have great influence in many multi-group models, especially in a
multi-path environment, and different dispersal always exists among species. In addition,
systems in nature are indispensable to be affected by stochastic perturbation [7–10]. Stochas-
tic multi-group models with multiple dispersals are effective mathematical models and
have attracted increasing attention, see [11–13]. It should be noted that topological struc-
tures in many studies [3–6,8–13] are known. In fact, topological structures in many practical
applications are usually unknown or uncertain. Therefore, it is important to identify the
unknown topological structures of stochastic multi-group models with multiple dispersals.

In this paper, we consider the following stochastic multi-group models with multiple
dispersals as

dx(i)k (t) =

[
φ
(i)
k (xk(t), t) +

N

∑
h=1

a(i)kh H(i)
kh (x(i)k (t), x(i)h (t), t)

]
dt + ψ

(i)
k (x(i)k (t), t)dW(t),

1 ≤ i ≤ s, 1 ≤ k ≤ N, (1)

where x(i)k ∈ Rmi is the state vector of the i-th component in the k-th group. We define

m = ∑s
i=1 mi for mi ∈ R+. xk(t) =

(
(x(1)k (t))T, (x(2)k (t))T, · · · , (x(s)k (t))T)T ∈ Rm denotes

the state vector of the k-th group. φ
(i)
k (xk(t), t) : Rm × R+ → Rmi represents the perfor-

mance of the i-th component of the k-th group. ψ
(i)
k (x(i)k (t), t) : Rmi × R+ → Rmi shows

the perturbation intensity on the i-th component of the k-th group. a(i)kh means the dis-

persal rate of the i-th component from the h-th group to the k-th group. Here, a(i)kh = 0
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iff there is no dispersal for the i-th component from the h-th group to the k-th group.
H(i)

kh : Rmi × Rmi × R+ → Rmi is the influence of vertex h on vertex k, W(·) is a one-
dimensional Brownian motion. For better understanding, we draw a diagraph of four
groups with two dispersals, see Figure 1. Here, a(1)11 = a(1)13 = a(1)14 = a(1)22 = a(1)24 = a(1)31 =

a(1)33 = a(1)34 = a(1)44 = 0, a(2)11 = a(2)14 = a(2)21 = a(2)22 = a(2)24 = a(2)33 = a(2)41 = a(2)42 = a(2)44 = 0.
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Figure 1. A four-group diagraph for model (1) with two dispersals.

In this paper, the mathematical models have a number of groups. If we add a controller
to every group, it will result in high control cost. As is known, pinning control strategy is an
effective technique to reduce the number of controlled groups [14–16]. On the other hand,
if a large number of groups have unknown partial topological structures or we are only
interested in partial topological structures, then pinning control is an efficient technique.
Therefore, we will try to use a pinning control mechanism to identify unknown partial
topological structures of (1).

It should be mentioned that the Lyapunov method is an efficient tool for studying
partial topology identification [17–19]. However, it is difficult to construct a suitable global
Lyapunov function for (1) due to multiple groups and dispersals. It is inspiring that Li and
his co-authors have combined graph theory and the Lyapunov method to build a global
Lyapunov function indirectly for coupled systems. At the same time, they use this method
to study global stability of coupled systems [20]. This method is called the graph-theoretic
method. As far as we know, there are few works about partial topology identification of
stochastic multi-group models via the graph-theoretic method.

Motivated by the above discussions, this paper aims to use the graph-theoretic method
to identify unknown partial topological structures of stochastic multi-group models with
multiple dispersals. The main contributions are as follows.

• The mathematical model is general, which includes multiple dispersals and stochastic
perturbation.

• The pinning controller is cost-effective and can reduce controlled groups.
• The graph-theoretic method for partial topology identification is novel.
• The unknown partial topological structures of stochastic multi-group models with

multiple dispersals can be identified successfully.

The remainder of this paper is organized as follows. In Section 2, some preliminaries
are displayed. The main results are introduced in Section 3. In Section 4, two numerical
examples are used to verify the effectiveness of theoretical results. Conclusions are given in
Section 5.
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2. Preliminaries
Some Necessary Basic Knowledge of Graph Theory and Stochastic Differential Equations

A directed graph M = (D, P) contains a set D = {1, 2, · · · , N} of vertices and a set
P of arcs (i, j), in which (i, j) is the arc from initial vertex i to terminal vertex j. Given a
digraph M with N vertices, we define the weighted matrix U = (uij)N×N whose entry uij
equals the weight of arc (j, i) if there is an arc from vertex i to vertex j, and 0 otherwise.
The directed graph with weighted matrix U is described as (M, U). The Laplacian matrix L
of (M, U) is defined as L = (lij)N×N , where lii = ∑j 6=i uij, lij = −uij (j 6= i), 1 ≤ i, j ≤ N.

Suppose that the coefficients φ
(i)
k and ψ

(i)
k of (1) satisfy the local Lipschitz condition and

the linear growth condition [21,22]. Then, for initial value x0, (1) has a unique continuous
solution, which is denoted as x(t; x0). Moreover, if φ

(i)
k (0, t) = 0, ψ

(i)
k (0, t) = 0 and

H(i)
kh (0, 0, t) = 0, then (1) admits a trivial solution x(t; 0) ≡ 0.

We define the differential operator L acting on V(i)
k ∈ C2,1(Rmi ×R+; R+) along with

the trajectories of (1) as

LV(i)
k (x(i)k , t) =

∂V(i)
k (x(i)k , t)

∂t
+

∂V(i)
k (x(i)k , t)

∂x(i)k

[
φ
(i)
k (x(i)k (t), t) +

N

∑
h=1

a(i)kh H(i)
kh (x(i)k (t), x(i)h (t), t)

]

+
1
2

Trace

ψ
(i)
k

T
(x(i)k (t), t)

∂2V(i)
k (x(i)k , t)

∂x(i)k

2

ψ
(i)
k (x(i)k (t), t)

, (2)

where
∂V(i)

k (x(i)k ,t)

∂x(i)k

=

(
∂V(i)

k (x(i)k ,t)

∂x
(i1)
k

, ∂V(i)
k (x(i)k ,t)

∂x(i2)k

, . . . , ∂V(i)
k (x(i)k ,t)

∂x
(imi )
k

)
, ∂2V(i)

k (x(i)k ,t)

∂(x(i)k )2
=

(
∂2V(i)

k (x(i)k ,t)

∂x
(ip)
k ∂x

(iq)
k

)
mi×mi

.

Lemma 1 ([21]). Assume that there is a function V ∈ C2,1(RmN × R+; R+), a function ϑ ∈
L1(R+; R+) and a continuous function ξ : RmN → R+ such that

lim
|x|→∞

inf
0≤t<∞

V(x, t) = ∞,

and the differential operator L acting on V along with the trajectories of (1) satisfies

LV(x, t) ≤ ϑ(t)− ξ(x), (x, t) ∈ RmN ×R+.

Furthermore, ψi
k is bounded for 1 ≤ i ≤ s, 1 ≤ k ≤ N. Then, for every initial value

x0 ∈ RmN , limt→∞ V(x(t; x0), t) exists and is almost surely finite. Moreover,

lim
t→∞

ξ(x(t; x0)) = 0 a.s.

Lemma 2 (Theorem 2.2 in [20]). Assume that N ≥ 2. νk is the cofactor of the k-th diagonal
element of L. Then, the following identity holds:

N

∑
k,h=1

νkakhFkh(xk, xh) = ∑
Q∈Q

ω(Q) ∑
(s,r)∈E(CQ)

Frs(xr, xs).

Here, Fkh(xk, xh), k, h = 1, 2, . . . , N are arbitrary functions, Q is the set of all spanning
unicyclic graphs of (G, A), ω(Q) is the weight of Q, and CQ denotes the directed cycle of Q.

3. Main Results

In this section, we will study the problem of partial topology identification of stochastic
multi-group models with multiple dispersals based on adaptive pinning synchronization
and the graph-theoretic method.
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In order to identify partial topological structures of stochastic multi-group models
with multiple dispersals, taking (1) as a drive system, the response system with an adaptive
pinning controller is described as

dy(i)k (t) =

[
φ
(i)
k (yk(t), t) +

l

∑
h=1

b(i)kh H(i)
kh (y

(i)
k (t), y(i)h (t), t) +

N

∑
h=l+1

b(i)kh H(i)
kh (x(i)k (t), x(i)h (t), t) + u(i)

k (t)

]
dt

+ ψ
(i)
k (y(i)k (t), t)dW(t), 1 ≤ i ≤ s, 1 ≤ k ≤ l. (3)

ψ
(i)
k (y(i)k (t), t) and φ

(i)
k (yk(t), t) are the perturbation intensity and function governing the

dynamical behavior of the i-th component of the k-th group in the response network,
respectively. y(i)k =

(
y(i)k1 , y(i)k2 , · · · , y(i)kmi

)T ∈ Rmi is the state vector of the i-th component

in the k-th group. yk(t) =
(
(y(1)k (t))T, (y(2)k (t))T, · · · , (y(s)k (t))T)T ∈ Rm denotes the state

vector of the k-th group. B(i) = (b(i)kh )l×N represents the estimation of the unknown

partial coupling matrix A(i) =
(

a(i)kh

)
l×N

(1 ≤ i ≤ s). u(i)
k is the general adaptive pinning

controller. Without loss of generality, it is enough to identify partial topological structures of
stochastic multi-group models with multiple dispersals consisting of the front l groups and
their dispersals, that is, (a(i)kh )l×N . Let e(t) = y(t)− x(t) = (eT

1 (t), eT
2 (t), · · · , eT

l (t))
T be the

synchronization error, where ek(t) = yk(t)− xk(t) =
(
(e(1)k (t))T, (e(2)k (t))T, · · · , (e(s)k (t))T)T

(1 ≤ k ≤ l). We denote c(i)kh = b(i)kh − a(i)kh (1 ≤ i ≤ s, 1 ≤ k ≤ l, 1 ≤ h ≤ N). The dynamical
system of synchronization error between systems (1) and (3) can be written as

de(i)k (t) =
[
φ
(i)
k (yk(t), t)− φ

(i)
k (xk(t), t) +

l

∑
h=1

b(i)kh H(i)
kh (y

(i)
k (t), y(i)h (t), t) +

N

∑
h=l+1

b(i)kh H(i)
kh (x(i)k (t), x(i)h (t), t)

−
N

∑
h=1

a(i)kh H(i)
kh (x(i)k (t), x(i)h (t), t) + u(i)

k (t)
]
dt + [ψ

(i)
k (y(i)k (t), t)− ψ

(i)
k (x(i)k (t), t)]dW(t)

=
[
φ
(i)
k (yk(t), t)− φ

(i)
k (xk(t), t) +

l

∑
h=1

c(i)kh H(i)
kh (y

(i)
k (t), y(i)h (t), t) +

l

∑
h=1

a(i)kh H̄(i)
kh (e

(i)
k (t), e(i)h (t), t)

+
N

∑
h=l+1

c(i)kh H(i)
kh (x(i)k (t), x(i)h (t), t) + u(i)

k (t)
]
dt + [ψ

(i)
k (y(i)k (t), t)− ψ

(i)
k (x(i)k (t), t]dW(t),

1 ≤ i ≤ s, 1 ≤ k ≤ l, (4)

where H̄(i)
kh (e

(i)
k (t), e(i)h (t), t) = H(i)

kh (y
(i)
k (t), y(i)h (t), t)− H(i)

kh (x(i)k (t), x(i)h (t), t).
Suppose that the following conditions hold for each 1 ≤ i ≤ s and 1 ≤ k ≤ l.

• (A1) There are constants
(

α
(i)
k

)
j
, 1 ≤ j ≤ s such that the following inequality holds

for any xk, yk ∈ Rm:(
e(i)k

)T(
φ
(i)
k (yk, t)− φ

(i)
k (xk, t)

)
≤

s

∑
j=1

(
α
(i)
k

)
j

∣∣∣e(j)
k

∣∣∣2.

• (A2) Assume that ψ
(i)
k (y(i)k , t)− ψ

(i)
k (x(i)k , t) is bounded for x(i)k , y(i)k ∈ Rmi and there

exists a constant β
(i)
k such that∣∣∣ψ(i)

k (y(i)k , t)− ψ
(i)
k (x(i)k , t)

∣∣∣ ≤ β
(i)
k

∣∣∣y(i)k − x(i)k

∣∣∣.
• (A3) There exist positive constants B(i)

kh and D(i)
kh such that

|H̄(i)
kh (e

(i)
k , e(i)h , t)| ≤ B(i)

kh |e
(i)
k |+ D(i)

kh |e
(i)
h |, e(i)k , e(i)h ∈ Rmi .
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• (A4) Suppose that for each i (1 ≤ i ≤ s) and k (1 ≤ k ≤ l), {H(i)
kh (y

(i)
k , y(i)h , t)}N

h=1 are

linearly independent on the orbit {y(i)h (t)}N
h=1 of the outer synchronization manifold

{x(i)h (t) = y(i)h (t)}l
h=1.

Next, we give some adaptive pinning controller and updating laws for 1 ≤ i ≤ s,
1 ≤ k ≤ l.

u(i)
k (t) = −d(i)k (t)e(i)k (t), (5)

ḋ(i)k (t) = p(i)k

(
e(i)k (t)

)T
e(i)k (t),

ḃ(i)kh (t) =


− δ

(i)
kh

(
e(i)k (t)

)T
H(i)

kh (y
(i)
k (t), y(i)h (t), t), 1 ≤ h ≤ l,

− η
(i)
kh

(
e(i)k (t)

)T
H(i)

kh (x(i)k (t), x(i)h (t), t), l + 1 ≤ h ≤ N,
(6)

where p(i)k , δ
(i)
kh and η

(i)
kh are arbitrarily positive constants.

Theorem 1. If (A1)–(A4) hold and (M, (a(i)kh D(i)
kh )l×l) (1 ≤ i ≤ s) is strongly connected for each

i (1 ≤ i ≤ s), then the unknown partial topological structures (M, (a(i)kh )l×N) (1 ≤ i ≤ s) of

coupled network (1) can be identified by (M, (b(i)kh )l×N) (1 ≤ i ≤ s) under the controller (5) and
updating laws (6) with probability one. That is, it holds for each i (1 ≤ i ≤ s) that

lim
t→∞

l

∑
k=1

N

∑
h=1
|b(i)kh (t)− a(i)kh | = 0, a.s.

Proof. We define

V(i)
k (e(i)k , t) =

1
2

(
e(i)k

)T
e(i)k +

1
2

l

∑
h=1

(
c(i)kh

)2

δ
(i)
kh

+
1
2

N

∑
h=l+1

(
c(i)kh

)2

η
(i)
kh

+
1

2p(i)k

(
d(i)k − d∗

)2
,

in which d∗ is a large enough positive number. Then, it holds from the definition of
differential operator L that

LV(i)
k (e(i)k (t), t)

=
(

e(i)k (t)
)T
[

φ
(i)
k (yk(t), t)− φ

(i)
k (xk(t), t)− d(i)k (t)e(i)k (t) +

l

∑
h=1

c(i)kh H(i)
kh (y

(i)
k (t), y(i)h (t), t) +

l

∑
h=1

a(i)kh H̄(i)
kh (e

(i)
k (t), e(i)h (t), t)

+
N

∑
h=l+1

c(i)kh H(i)
kh (x(i)k (t), x(i)h (t), t)

]
+

1
2

Trace
[(

ψ
(i)
k (y(i)k (t), t)− ψ

(i)
k (x(i)k (t), t)

)T
×
(

ψ
(i)
k (y(i)k (t), t)− ψ

(i)
k (x(i)k (t), t)

)]

−
l

∑
h=1

c(i)kh

(
e(i)k (t)

)T
H(i)

kh (y
(i)
k (t), y(i)h (t), t)−

N

∑
h=l+1

c(i)kh

(
e(i)k (t)

)T
H(i)

kh (x(i)k (t), x(i)h (t), t) +
(

d(i)k − d∗
)(

e(i)k (t)
)T

e(i)k (t)

≤
s

∑
j=1

(
α
(i)
k

)
j

∣∣∣e(j)
k (t)

∣∣∣2 + (e(i)k (t)
)T l

∑
h=1

a(i)kh H̄(i)
kh (e

(i)
k (t), e(i)h (t), t)− d∗

(
e(i)k (t)

)T
e(i)k (t) +

1
2

(
β
(i)
k

)2∣∣∣e(i)k (t)
∣∣∣2

≤
s

∑
j=1

(
α
(i)
k

)
j

∣∣∣e(j)
k (t)

∣∣∣2 − d∗
∣∣∣e(i)k (t)

∣∣∣2 + 1
2

(
β
(i)
k

)2∣∣∣e(i)k (t)
∣∣∣2 + l

∑
h=1

a(i)kh

∣∣∣e(i)k (t)
∣∣∣(B(i)

kh

∣∣∣e(i)k (t)
∣∣∣+ D(i)

kh

∣∣∣e(i)h (t)
∣∣∣)

=
s

∑
j=1

(
α
(i)
k

)
j

∣∣∣e(j)
k (t)

∣∣∣2 + 1
2

l

∑
h=1

a(i)kh D(i)
kh

(∣∣∣e(i)h (t)
∣∣∣2 − ∣∣∣e(i)k (t)

∣∣∣2)+

(
l

∑
h=1

a(i)kh

(
B(i)

kh + D(i)
kh

)
+

1
2

(
β
(i)
k

)2
− d∗

)∣∣∣e(i)k (t)
∣∣∣2.

We define

V(e, t) =
l

∑
k=1

s

∑
i=1

λ
(i)
k V(i)

k (e(i)k , t),
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where λ
(i)
k is the cofactor of the k-th diagonal element of the Laplacian matrix of(

M,
(

a(i)kh D(i)
kh

)
l×l

)
(1 ≤ i ≤ s). Then, it is not difficult to derive that

LV(e(t), t) =
l

∑
k=1

s

∑
i=1

λ
(i)
k LV(i)

k (e(i)k (t), t)

≤
l

∑
k=1

s

∑
i=1

λ
(i)
k

s

∑
j=1

(
α
(i)
k

)
j

∣∣∣e(j)
k (t)

∣∣∣2 + 1
2

l

∑
k=1

s

∑
i=1

λ
(i)
k

l

∑
h=1

a(i)kh D(i)
kh

(∣∣∣e(i)h (t)
∣∣∣2 − ∣∣∣e(i)k (t)

∣∣∣2)

+
l

∑
k=1

s

∑
i=1

λ
(i)
k

(
l

∑
h=1

a(i)kh

(
B(i)

kh + D(i)
kh

)
+

1
2

(
β
(i)
k

)2
− d∗

)∣∣∣e(i)k (t)
∣∣∣2

,I + I I + I I I.

Now, we calculate two parts, I and I I.

I =
l

∑
k=1

s

∑
j=1

λ
(j)
k

s

∑
i=1

(
α
(j)
k

)
i

∣∣∣e(i)k (t)
∣∣∣2 =

l

∑
k=1

s

∑
i=1

λ
(i)
k

[
1

λ
(i)
k

s

∑
j=1

λ
(j)
k

(
α
(j)
k

)
i

]∣∣∣e(i)k (t)
∣∣∣2. (7)

According to Lemma 2, it yields

l

∑
k=1

s

∑
i=1

l

∑
h=1

λ
(i)
k a(i)kh D(i)

kh F(i)
kh (e

(i)
k (t), e(i)h (t)) =

s

∑
i=1

 ∑
Qi∈Qi

ω(Qi) ∑
(v,u)∈E(CQi

)

F(i)
uv (e

(i)
u (t), e(i)v (t))

,

where Qi is the set of all spanning unicyclic graphs of
(

M,
(

a(i)kh D(i)
kh

)
l×l

)
, ω(Qi) is the

weight of Qi and CQi means the directed cycle of Qi. Taking

F(i)
kh (e

(i)
k (t), e(i)h (t)) =

1
2

(∣∣∣e(i)h (t)
∣∣∣2 − ∣∣∣e(i)k (t)

∣∣∣2),

it holds that

I I =
1
2

s

∑
i=1

 ∑
Qi∈Qi

ω(Qi) ∑
(u,v)∈E(CQi

)

∣∣∣∣(e(i)u (t)
∣∣∣2 − ∣∣∣e(i)v (t)

∣∣∣2)
 = 0. (8)

Then, one can obtain

LV(e(t), t) ≤
l

∑
k=1

s

∑
i=1

λ
(i)
k

 1

λ
(i)
k

s

∑
j=1

λ
(j)
k

(
α
(j)
k

)
i

∣∣∣e(i)k (t)
∣∣∣2 + l

∑
k=1

s

∑
i=1

λ
(i)
k

(
l

∑
h=1

a(i)kh

(
B(i)

kh + D(i)
kh

)
+

1
2

(
β
(i)
k

)2
− d∗

)∣∣∣e(i)k (t)
∣∣∣2

=
l

∑
k=1

s

∑
i=1

λ
(i)
k

 1

λ
(i)
k

s

∑
j=1

λ
(j)
k

(
α
(j)
k

)
i
+

l

∑
h=1

a(i)kh

(
B(i)

kh + D(i)
kh

)
+

1
2

(
β
(i)
k

)2
− d∗

∣∣∣e(i)k (t)
∣∣∣2.

As d∗ is large enough, there exists a σ
(i)
k =

(
∑s

j=1 λ
(j)
k

(
α
(j)
k

)
i

)
/λ

(i)
k +

∑l
h=1 a(i)kh

(
B(i)

kh + D(i)
kh

)
+
(

β
(i)
k

)2
/2− d∗ < 0. Therefore,

LV(e(t), t) ≤
l

∑
k=1

s

∑
i=1

λ
(i)
k σ

(i)
k

∣∣∣e(i)k (t)
∣∣∣2 ≤ −ρeT(t)e(t) , −ξ(e(t)), (9)
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where ρ > 0 is a constant determined by λ
(i)
k and σ

(i)
k , 1 ≤ i ≤ s, 1 ≤ k ≤ l. Furthermore,

the above analysis implies that

lim
|e|→∞

inf
0≤t<∞

V(e, t) = ∞.

Hence, from Lemma 1, limt→∞ V(e; t) exists and is almost surely finite. It also holds
that limt→∞ ξ(e(t)) = 0. a.s. By combining LaSalle’s invariance principle, assumption (A4)
and error system (4), one can obtain that the set M = {e = 0, b(i)kh = a(i)kh , d(i)k = d∗, 1 ≤
i ≤ s, 1 ≤ k ≤ l, 1 ≤ h ≤ N} is the largest invariant set of M′ = {ξ(e) = 0} = {e = 0}.
Thus, for any initial value of error system (4), the trajectory asymptotically converges to
the M with probability one [21]. It is proved that stochastic multi-group models with
multiple dispersals (1) and (3) asymptotically achieve complete outer synchronization
under an adaptive controller (5) and updating laws (6). Furthermore, the unknown multiple

topological structures
(

M,
(

a(i)kh

)
l×N

)
(1 ≤ i ≤ s) have been successfully identified by(

M,
(

b(i)kh

)
l×N

)
(1 ≤ i ≤ s) with probability one, which completes this proof.

Remark 1. It is well-known that the Lyapunov method plays a significant role in the study of
partial topology identification [17–19]. However, multiple dispersals and stochastic disturbances
are considered in this paper, which makes mathematical models more complex. Hence, it is difficult
to construct a global Lyapunov function directly for multi-group models. Motivated by [20,23,24],
we construct a global Lyapunov function by the weighted summation of vertex Lyapunov functions
Vi

k in the form of V = ∑l
k=1 ∑s

i=1 λi
kVi

k . Here, λ
(i)
k is the cofactor of the k-th diagonal element

of the Laplacian matrix of
(

M,
(

a(i)kh D(i)
kh

)
l×l

)
(1 ≤ i ≤ s). Obviously, this method is closely

related to topological structures of networks. It is always called the graph-theoretic method since
this method uses some results of graph theory. The method can be applied to study dynamic behavior
of many other networks. For example, in [20], the authors use the graph-theoretic method to study
stability of single-species ecological models with dispersal. The global-stability result they obtained
is stronger than those in [25,26]. Moreover, the global asymptotic stability of coupled oscillators and
multi-patch predator–prey models can also be obtained by using the graph-theoretic method.

Remark 2. Though the adaptive control method can realize topology identification of multi-group
models, it needs to add a controller to every group [27,28]. However, in this paper, the model includes
a great number of groups. Adding controllers to all groups is sometimes difficult to implement
and the control costs may be higher. Therefore, the proposed pinning control of this paper is useful.
On the one hand, it can reduce control costs because only a small fraction of groups need to be
controlled. On the other hand, it is more feasible that one can only add controllers to groups of
interest to identify the corresponding unknown topological structures.

When l = N, we can obtain the whole topology identification. In detail, the corre-
sponding response system of drive system (1) can be characterized by

dy(i)k (t) =

[
φ
(i)
k (yk(t), t) +

N

∑
h=1

b(i)kh H(i)
kh (y

(i)
k (t), y(i)h (t), t) + u(i)

k (t)

]
dt

+ ψ
(i)
k (y(i)k (t), t)dW(t), 1 ≤ i ≤ s, 1 ≤ k ≤ N. (10)

Then, the error system between drive system (1) and response system (10) can be
denoted by

de(i)k (t) =
[
φ
(i)
k (yk(t), t)− φ

(i)
k (xk(t), t) +

N

∑
h=1

b(i)kh H(i)
kh (y

(i)
k (t), y(i)h (t), t)−

N

∑
h=1

a(i)kh H(i)
kh (x(i)k (t), x(i)h (t), t)
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+ u(i)
k (t)

]
dt +

[
ψ
(i)
k (y(i)k (t), t)− ψ

(i)
k (x(i)k (t), t)

]
dW(t), 1 ≤ i ≤ s, 1 ≤ k ≤ N. (11)

The adaptive controller and updating laws for 1 ≤ i ≤ s, 1 ≤ k ≤ N are given
as follows:

u(i)
k (t) = −d(i)k (t)e(i)k (t), ḋ(i)k (t) = p(i)k

(
e(i)k (t)

)T
e(i)k (t), (12)

ḃ(i)kh (t) = −δ
(i)
kh

(
e(i)k (t)

)T
H(i)

kh (y
(i)
k (t), y(i)h (t), t), 1 ≤ h ≤ N, (13)

where p(i)k and δ
(i)
kh are arbitrarily positive constants. Then, we obtain the following corollary.

Corollary 1. If (A1)–(A4) hold and (M, (a(i)kh D(i)
kh )N×N) (1 ≤ i ≤ s) is strongly connected for

each i (1 ≤ i ≤ s), then the unknown whole topological structures (M, (a(i)kh )N×N) (1 ≤ i ≤ s) of

coupled network (1) can be identified by (M, (b(i)kh )N×N) (1 ≤ i ≤ s) under the controller (12) and
updating laws (13). That is, it holds for each i (1 ≤ i ≤ s) that

lim
t→∞

N

∑
k=1

N

∑
h=1
|b(i)kh (t)− a(i)kh | = 0, a.s.

The proof is similar to Theorem 1 and we omit it here.
If H(i)

kh (x(i)k (t), x(i)h (t), t) = Γix
(i)
h (t), then the corresponding whole topology identi-

fication result can be found in [27]. Therefore, the mathematical model of this paper is
more general. Moreover, theoretical results of this paper are common, where both partial
topology identification and whole topology identification can be obtained.

4. Simulation Results

In this section, two simulation examples are given to verify the validity of theoretical
results. We use the Lorenz system to describe the dynamic of each group. Obviously, the
Lorenz system satisfies (A1) [29].

Example 1. We consider a general coupled systems with four groups and three kinds of diffusion.
The drive system can be put into the following form:

dx(i)k (t) =

[
φ
(i)
k (xk(t), t) +

4

∑
h=1

a(i)kh Γix
(i)
h (t)

]
dt + ψ

(i)
k (x(i)k (t), t)dW(t), i = 1, 2, 3, k = 1, 2, 3, 4, (14)

where xk(t) = (x(1)k (t), x(2)k (t), x(3)k (t))T, Γ1 = Γ2 = Γ3 = diag{0.1, 0.1, 0.1}.

• φ
(1)
k (xk(t), t) = 10

(
x(1)k (t)− x(2)k (t)

)
, ψ

(1)
k (x(1)k (t), t) = 0.5 sin x(1)k (t);

• φ
(2)
k (xk(t), t) = 28x(1)k (t)− x(2)k (t)− x(1)k (t)x(3)k (t), ψ

(2)
k (x(2)k (t), t) = 0.3 cos x(2)k (t);

• φ
(3)
k (xk(t), t) = x(1)k (t)x(2)k (t)− 8x(3)k (t)/3, ψ

(3)
k (x(3)k (t), t) = 0.1 cos x(3)k (t).

Some weights a(i)kh of configuration matrices A(i) = (a(i)kh )4×4 (i = 1, 2, 3, k = 1, 2, 3, 4) can
be arbitrarily selected as

• a(1)12 = a(1)34 = a(1)43 = a(2)24 = a(2)31 = a(3)24 = 1; a(1)13 = a(1)21 = a(2)34 = a(3)12 = a(3)34 =a(3)43 = 2;

• a(1)32 = a(1)41 = a(2)12 = a(2)43 = a(3)31 = 3; a(1)42 = a(2)21 = 4;

the other values are set as 0. Without loss of generality, we add controllers to the first two groups. Then,
we only need to identify partial weight configuration matrices Ā(i) = (a(i)kh )2×4 (i = 1, 2, 3, k = 1, 2,



Fractal Fract. 2022, 6, 371 9 of 14

h = 1, 2, 3, 4). Accordingly, the response system with an adaptive pinning controller can be
denoted by

dy(i)k (t) =
[

φ
(i)
k (yk(t), t) +

2

∑
h=1

b(i)kh Γiy
(i)
h (t) +

4

∑
h=3

b(i)kh Γix
(i)
h (t) + u(i)

k (t)
]

dt

+ ψ
(i)
k (y(i)k (t), t)dW(t), i = 1, 2, 3, k = 1, 2.

(15)

We define e(i)k (t) = y(i)k (t) − x(i)k (t) (i = 1, 2, 3, k = 1, 2). Then, the error system
between (14) and (15) can be shown as

de(i)k (t) =
[
φ
(i)
k (yk(t), t)− φ

(i)
k (xk(t), t) +

2

∑
h=1

c(i)kh H(i)
kh (y

(i)
k (t), y(i)h (t), t) +

2

∑
h=1

a(i)kh H̄(i)
kh (e

(i)
k (t), e(i)h (t), t) + u(i)

k (t)

+
4

∑
h=3

c(i)kh H(i)
kh (x(i)k (t), x(i)h (t), t)

]
dt + [ψ

(i)
k (y(i)k (t), t)− ψ

(i)
k (x(i)k (t), t]dW(t), i = 1, 2, 3, k = 1, 2. (16)

Available from Theorem 1, three weight configuration matrices Ā(i) = (a(i)kh )2×4 can

be estimated by B(i) = (b(i)kh )2×4 under the following controller and updating laws for
i = 1, 2, 3, k = 1, 2.

u(i)
k (t) = −d(i)k (t)e(i)k (t), ḋ(i)k (t) = p(i)k

(
e(i)k (t)

)T
e(i)k (t), (17)

ḃ(i)kh (t) =


− δ

(i)
kh

(
e(i)k (t)

)T
Γiy

(i)
h (t), h = 1, 2,

− η
(i)
kh

(
e(i)k (t)

)T
Γix

(i)
h (t), h = 3, 4.

(18)

Taking d(i)1 = 1, d(i)2 = 2, x(i)k (0) = y(i)k (0) = 0, p(i)k = δ
(i)
kh = η

(i)
kh = 1, b(i)kh (0) =

0.1, (i = 1, 2, 3, k = 1, 2, h = 1, 2, 3, 4), we can obtain some simulations. The synchroniza-
tion error for drive system (14) and response system (15) are shown in Figure 2. Figure 2a
shows the synchronization error of the first group and Figure 2b shows the synchronization
error of the second group. Apparently, all of the error curves approach 0 over time, which
means the drive–response systems can reach synchronization. Figure 3 gives time evolution
of b(i)kh (i = 1, 2, 3, k = 1, 2, h = 1, 2, 3, 4) in system (15). Figure 3a shows the identification

results of b(1)kh (k = 1, 2, h = 1, 2, 3, 4). It is observed that the curves stabilize at three

constants: 2 for b(1)kh and b(1)21 , 1 for b(1)12 and 0 for b(1)11 , b(1)14 , b(1)22 , b(1)23 , b(1)24 . Figure 3b shows

the identification results of b(2)kh (k = 1, 2, h = 1, 2, 3, 4). One can see that b(2)21 tends to 4,

b(2)12 tends to 3, b(2)24 tends to 1 and b(2)11 , b(2)13 , b(2)14 , b(2)22 , b(2)23 tend to 0. Figure 3c shows the

identification results of b(3)kh (k = 1, 2, h = 1, 2, 3, 4). As we can see, curve b(3)12 converges to 2,

curve b(3)24 converges to 1 and curves b(3)11 , b(3)13 , b(3)14 , b(3)21 , b(3)22 , b(3)23 converge to 0. Therefore,

all of the curves of b(i)kh (i = 1, 2, 3, k = 1, 2, h = 1, 2, 3, 4) can converge to a real value,
which implies the partial topology identification is successful.

Example 2. In this example, we suppose that the network structure obeys the small-world algorithm
proposed by Newman and Watts [30]. Consider system (14) consisting of eight groups and the
number of pinned groups is the same as the above example. For a better view, the topological
structures are demonstrated in Figure 4, in which Figure 4a obeys the small-world algorithm
with parameters (N = 8, K = 2, P = 0.1), Figure 4b obeys the small-world algorithm with
parameters (N = 8, K = 2, P = 0.2), Figure 4c obeys the small-world algorithm with parameters
(N = 8, K = 2, P = 0.3). Therein,

a(1)12 = a(1)13 = a(1)17 = a(1)18 = a(1)21 = a(1)23 = a(1)24 = a(1)28 = a(1)31 = a(1)32 = a(1)34 = a(1)35 = a(1)36 = a(1)42 =
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a(1)43 = a(1)45 = a(1)46 = a(1)53 = a(1)54 = a(1)56 = a(1)57 = a(1)63 = a(1)64 = a(1)65 = a(1)67 = a(1)67 = a(1)68 = a(1)71 =

a(1)75 = a(1)76 = a(1)78 = a(1)81 = a(1)82 = a(1)86 = a(1)87 = 1;

a(2)12 = a(2)13 = a(2)14 = a(2)17 = a(2)18 = a(2)21 = a(2)24 = a(2)24 = a(2)28 = a(2)31 = a(2)32 = a(2)34 = a(2)35 = a(2)38 =

a(2)41 = a(2)42 = a(2)43 = a(2)45 = a(2)46 = a(2)47 = a(2)53 = a(2)54 = a(2)56 = a(2)57 = a(2)64 = a(2)65 = a(2)67 = a(2)68 =

a(2)71 = a(2)74 = a(2)75 = a(2)76 = a(2)78 = a(2)81 = a(2)82 = a(2)83 = a(2)86 = a(2)87 = 1;

a(3)12 = a(3)13 = a(3)15 = a(3)17 = a(3)17 = a(3)18 = a(3)21 = a(3)23 = a(3)24 = a(3)25 = a(3)28 = a(3)31 = a(3)32 =

a(3)34 = a(3)35 = a(3)42 = a(3)43 = a(3)45 = a(3)46 = a(3)51 = a(3)52 = a(3)53 = a(3)54 = a(3)56 = a(3)57 = a(3)58 =

a(3)61 = a(3)64 = a(3)65 = a(3)67 = a(3)68 = a(3)71 = a(3)75 = a(3)76 = a(3)78 = a(3)81 = a(3)82 = a(3)85 = a(3)86 = a(3)87 = 1.

The other a(i)kh = 0. Moreover, some parameters are arbitrarily set as follows: x(i)1 (0) = −0.2,

x(i)2 (0) = −0.3, x(i)3 (0) = −0.1, x(i)4 (0) = −0.6, x(i)5 (0) = 0.2, x(i)6 (0) = 0.2, x(i)7 (0) = 0.3,

x(i)8 (0) = 0.4, y(i)1 (0) = 0.8, y(i)2 (0) = 0.7, d(i)1 = 1.5, d(i)2 = 1, b(i)kh (0) = 1, (i = 1, 2, 3, k =
1, 2, h = 1, 2, . . . , 8). The other parameters are the same as the above example.
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Figure 2. Some sample paths of synchronization error for drive system (14) and response system (15).

Under the same conditions as the above example, one can obtain that all assumptions
of Theorem 1 are satisfied. This implies that three weight configuration matrices Ā(i) =

(a(i)kh )2×8 can be estimated by B(i) = (b(i)kh )2×8 under the controller and updating laws (17)
and (18) for i = 1, 2, 3, k = 1, 2, h = 1, 2, . . . , 8.

Figure 5 shows the simulation results of B(i) = (b(i)kh )2×8 (i = 1, 2, 3, k = 1, 2, h =
1, 2, . . . , 8). It is obvious that all curves stabilize at real values, which means the partial
topology identification is successful.
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Figure 3. The identification of coupling configuration matrices Ā(i) (i = 1, 2, 3) in (14).
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Figure 4. Topological structures of a small-world network with 8 vertices.
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Figure 5. The identification of coupling configuration matrices Ā(i) (i = 1, 2, 3).

5. Conclusions

In summary, the contents of this paper have four aspects.

1. In the model, multi-group models, multiple dispersals and stochastic disturbances
are considered.

2. By using the graph-theoretic method, one can indirectly construct a global Lyapunov
function for stochastic multi-group models with multiple dispersals. Especially, this
method can be used to investigate many dynamic behaviors of large-scale complex
networks, such as stability of coupled oscillators and multi-patch predator–prey models.

3. The unknown partial topological structures of stochastic multi-group models can be
identified successfully by using pinning control.

4. Through numerical examples, one can see that the theoretical results obtained in this
paper are valid.
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In this paper, the noise is white noise. However, color noise also exists in real applica-
tions. Therefore, the partial topology identification of multi-group models with color noise
will be one of the future works.
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Nomenclature

R+ positive real number.
Rn n-dimensional Euclidean space.
Rm×n the set of m× n real matrices.
E(·) the mathematical expectation.
T the transpose of a matrix or vector.
Lp(R+; R+) the family of R+-valued random variable y with E(|y|p) < ∞.

C2,1(Rn ×R+; R+)
the family of all nonnegative functions V(x, t) on Rn ×R+

that are continuously twice differentiable in x and once in t.
a complete probability space with a filtration {Ft}t≥0 satisfying

(Ω, F, {Ft}t≥0, P) the usual conditions, i.e., it is right continuous and F0 contains all
P-null sets.
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